CS 134 Lecture 3:
Functions

Check-in After First Lab!

You have all survived your first computer science lab session
« C ratul tions
Software tools that you used:
VS Code as a text editor for code
Terminal as a text-based interface to the computer
Git for retrieving & submitting your work

Python, of course!

Do You Have Any Questions?

A

@ git

Announcements & Logistics

Can work in TCL 216/217A anytime
Lab | there is no scheduled class

Due today at |0 pm (for Mon labs), tomorrow at |0 pm (for Tues labs)

How to submit: make sure your work is up-to-date on evolene.cs.williams.edu
HW 2 will be released today, due next Monday at 10 pm

Open book/notes/computer. There Is no time limit.

Optional Personal machine setup (Mac/VWindows): Step-by-step guide on website

Lots of helps hours if you have questions!

Today noon-4 pm, 4-6 pm and /-10 pm (in TCL 216)

'omorrow |-4 pm,4-6 pm and /-10 pm (in TCL 216)

Do You Have Any Questions?

L ast [Ime

Discussed data types and variables in Python
int, float,boolean, string
Learned about basic operators
arithmetic, assignment
Experimented with built-in Python functions
- input(), print(), int()
Discussed different ways to run and interact with Python
Create a file using an editor (VS Code), run as a script from Terminal

Interactively execute Python from Terminal

Jloday's Plan

Discuss functions In greater detall
Review the built-in functions we (briefly) saw last time and in lab
input (), print(), int() all expect argument(s) within the parens
- We will examine these a brt more today

L earn how to define our own functions

Jupyter Notebook

Last class we did examples In interactive python

Upsides: low overhead, easy to use, can explore as you go

Downsides:

No record of what we did

Can't pre-type examples to run in class

For today, we will try using

* Jupyter notebook is an “enhanced’

for lecture examples

'way to use interactive python

nstalled on lab machines & included in personal machine setup guide

- Anything we do In Jupyter notebook can be done In Interactive Python!

Regardless of format, all examples will be posted on the website

Review:
Python Bullt-in Functions

input(), print()
int(), float(), str()

Bullt-in functions: iInput()

input () displays its single argument as a prompt on the screen and
waits for the user to input text, followed by Enter/Return

[t interprets the entered value as a string (a sequence of characters)

>>> input('Enter your name: ')
Enter your name: Charlie Brown
'Charlie Brown'

>>> age = input('Enter your age: ')
Enter your age: 8

>>> age

g

Prompts in Maroon. User input in blue.
Inputted values are by default a string

Bullt-in functions: print()

print () displays a character-based representation of its argument(s)
on the screen/Terminal.

>>> name = 'Peppermint Patty' Comma as a separator adds a space

>>> print('Your name is', name)

Your name 1s Peppermint Patty

>>> age = input('Enter your age : ')

Enter your age: 7

>>> print('The age of ' + name + ' is ' + age)
The age of Peppermint Patty 1s 7

Can also add spaces through string
concatenation

Built-in functions: int()

When given a string that's a sequence of digits, optionally preceded by +
or—, 1nt () returns the corresponding

On any other string, int () raises a ValueError

When given a (loar, int () returns the integer that results after
truncating the fractional part (rounds towards zero)

When given an integer, int () returns that same integer

>>> int('42"')

42

>>> int('-5")

-5

>>> int('3.141")
ValueError

Built-in functions: float()

When given a string that's a sequence of digits, optionally preceded by +
or —, and optionally including one decimal point, float () returns the
corresponding floating point number.

On any other string float () raises a ValueError
When given an . float() converts it to a floating point number.

When given a floating point number, float returns that number

>>> float('3.141")
3.141

>>> float('-273.15")
-273.15

>>> float('3.1.4")
ValueError

Bulilt-in functions: str()

Converts a given type to a String and returns it

Returns a syntax error when given invalid input

>>> str(3.141)

'3.141"

>>> str(None)

'None'

>>> str(134)

'134"

>>> str($)

SyntaxError: invalid syntax

loday:
User-Defined Functions

Organizing Code with Functions

So far we have:

Written simple expressions in Python

Created small scripts to perform concrete tasks

This is fine for small computations!

Need more organization and structure for larger problems

Structured code Is good for:

Keeping trac

Keeping trac

< of w

< of w

nich part of our code Is doing what actions

nat information needs to supplied where

Reusability! Specifically, reusing blocks of code

Abstracting with Functions

Abstraction: Reduce code complexity by ignoring (or hiding) some

implementations detalls
Allows us to and parts of our code
Real life example: a video projector
We know how to switch it on and off (public interface)
We know how to connect it to our computer (input/output)
We don't know how it works internally (information hiding)

Key idea: We don't need to know much about the internals of a

projector to be able to use It

Same Is true with functions!

Decomposition

Divide In our code Into
Functions are self-contained and reusable
Fach function is a small piece of a larger task
Keeps code organized and coherent

We have already seen some built-in examples (int (), input(),
print(), etc)

Now we will learn how to decompose our Python code and hide small

detalls using user-defined functions

Later we will learn a new abstraction which achieves a greater level of

and . classes

Anatomy of a Function

Function definition characteristics:
Has a header consisting of:
of the function
(optional)
(optional, but strongly recommended)
Has a body (indented and required)

Always returns something (with or without an explicit return statement)

Statements within the body of a function are not run in a program until they

are " or" " through a function call (like calling print () or

int () In your program)

Function Example

Function definition Function’s name is square

def square(x):
'""Takes a number x and returns 1its square''’
return x*x

"\;r

Function Calls/Invocations Notice the indentation.

>>> square(5) This whitespace Is very important!

25
>>> square(-2)

4

Function Example

square has one parameter, X, which is
Function definition the expected input to the function.

def square(x):
"""Takes a number x and returns 1its square'''’

return x*x

Function Calls/Invocations

>>> square(5)
25
>>> square(-2)

4

Function Example

. o This Is the docstring, which i1s enclosed In triple
Function definition o qtes It is a short description of the function.

def square(x):
''""Takes a number x and returns 1its square''’

return x*x

Function Calls/Invocations

>>> square(5)
25
>>> square(-2)

4

Function Example

All of this Is the function’s header

Function definition

def square(x):

'""Takes a number x and returns 1its square''’

return x*x

Function Calls/Invocations

>>> square(5)
25
>>> square(-2)

4

Function Example

Function definition This is the body of the function. Notice
the use of an explicit return statement.

def square(x):

"""Takes a 'wmber and returns 1its square'''’

return x*x

Function Calls/Invocations

>>> square(5)
25
>>> square(-2)

4

Function Example

Function definition
def square(x):
"""Takés a number and returns 1its square'''’

returni x*x

‘When we call/invoke the function,
> Is the argument value.

Function Calls/Invocations Function Is evaluated using x=>5.
>>> square(5) . . :

25

>>> square(-2)

4

Function Example

Function definition
def square(x):
"""Takes a number and returns 1its square'''’

return x*x Summary:

» Indent In function body (required)

- Colon after function name (required)

; lis/| i -
Function Calls/Invocations - Docstring (recommended, good style)

>>> square(5) * X in function definition is a parameter

25 » Single line body which returns the result

of the expression X * X

>>> square(-2) - return always ends execution!

4 - A function is defined once and can be
called any number of times!

A Closer Look At Parameters

Parameters are “placeholders’ in the body of a function that will be

filled in with argument values during each invocation

A particular name for a parameter is irrelevant, as long as we use It

consistently in the body (just like f(x) and f(y) in math)

All square function definitions below work exactly the same way!

Invocation would also look exactly the same: square(5)

def square(x): def square(apple):

return x*x return apple*apple

def square(num):

return num*num

Rule of thumb: Choose parameter names that make sense and convey meaning

Python Function Call Model

Function frame: Model for understanding how a function call works

def square(x):

Return value replaces the function call!

return x*x

square| (2+3) | =P |square (5) | ====p | 25

square frame square frame

Xx= |5 X= |5

> -+

return| x * x return' 5 * 5

~unction Call Replaced by Return Value

17 + square| (2+3)

4

17 + square| (5)

4

17 + 25

4

42

rint() vs Functions that Return Values

Notice that the print () function does not any value:
No Out [] cell when we print in Jupyter
In contrast to print():
input () function returns the value inputted by user as a str
int () function returns the given value as type int
type () function returns the type of given value, etc

Functions that do not explicitly return a value, implicitly return None

Value vs. None Returning Functions

We call functions that return a None value None-returning functions.

Such functions are invoked to perform an action (e.g., print something,
change state). They do not compute and return a result.

We call functions that return a value other than None value returning

functions.
Value Returning None-Returning
def square(x): def printHW():
return x*x print('Hello World')

What if | run print(printHW) or print(print((printHW))?

Return Statements

* return only has meaning of a function definition

* A function definition may have multiple returns, but only the first one
encountered Is executed!

 Any code that exists after a return statement and will
not be executed

» The value returned by the function’s return statement replaces the
function call In a computation

* Functions without an explicit return statement implicitly return None

