Laboratories from

Java Structures

Data Structures in Java for the Principled Programmer

Second Edition

Duane A. Bailey

Williams College

Laboratory: The Day of the Week Calculator

Objective. To (re)establish ties with Java: to write a program that reminds us
of the particulars of numeric calculations and array manipulation in Java.

Discussion. In this lab we learn to compute the day of the week for any date
between January 1, 1900, and December 31, 2099.! During this period of time,
the only calendar adjustment is a leap-year correction every 4 years. (Years
divisible by 100 are normally not leap years, but years divisible by 400 always
are.) Knowing this, the method essentially computes the number of days since
the beginning of the twentieth century in modulo 7 arithmetic. The computed
remainder tells us the day of the week, where 0 is Saturday.

An essential feature of this algorithm involves remembering a short table of
monthly adjustments. Each entry in the table corresponds to a month, where
January is month 1 and December is month 12.

Month 1123|1456 7 89|10 11|12
Adjustment || 1 {4 |4|0[2|5]|0|3|6| 1| 4] 6

If the year is divisible by 4 (it’s a leap year) and the date is January or February,
you must subtract 1 from the adjustment.

Remembering this table is equivalent to remembering how many days are in
each month. Notice that 144 is 122, 025 is 52, 036 is 62, and 146 is a bit more
than 122. Given this, the algorithm is fairly simple:

1. Write down the date numerically. The date consists of a month between
1 and 12, a day of the month between 1 and 31, and the number of
years since 1900. Grace Hopper, computer language pioneer, was born
December 9, 1906. That would be represented as year 6. Jana the Giraffe,
of the National Zoo, was born on January 18, 2001. That year would be
represented as year 101.

2. Compute the sum of the following quantities:

e the month adjustment from the given table (e.g. 6 for Admiral Hop-
per)

e the day of the month

e the year

e the whole number of times 4 divides the year (e.g. 25 for Jana the
Giraffe)

1 This particular technique is due to John Conway, of Princeton University. Professor Conway
answers 10 day of the week problems before gaining access to his computer. His record is at the
time of this writing well under 15 seconds for 10 correctly answered questions. See “Scientist
at Work: John H. Conway; At Home in the Elusive World of Mathematics,” The New York
Times, October 12, 1993.

3. Compute the remainder of the sum of step 2, when divided by 7. The
remainder gives the day of the week, where Saturday is 0, Sunday is 1,
etc. Notice that we can compute the remainders before we compute the
sum. You may also have to compute the remainder after the sum as
well, but if you’re doing this in your head, this considerably simplifies the
arithmetic.

What day of the week was Tiger Woods born?
1. Tiger’s birth date is 12-30-75.
2. Remembering that 18 x 4 = 72, we write the sum as follows:
6+ 30+ 75+ 18
which is equivalent to the following sum, modulo 7:

6+2+5+4=17=3mod 7

3. He was born on day 3, a Tuesday.

Now you practice: Which of Grace and Jana was born on a Thursday? (The
other was born on a Sunday.)

Procedure. Write a Java program that performs Conway’s day of the week
challenge:

1. Develop an object that can hold a date.

2. Write a method to compute a random date between 1900 and 2099. How
will you limit the range of days potentially generated for any particular
month?

3. Write a method of your date class to compute the day of the week as-
sociated with a date. Be careful: the table given in the discussion has
January as month 1, but Java would prefer it to be month 0! Don’t forget

Jimmy was a to handle the birthday of Jimmy Dorsey (famous jazzman), February 29,
Monday’s 1904.
chald.

4. Your main method should repeatedly (1) print a random date, (2) read
a predicted day of the week (as an integer /remainder), and (3) check the
correctness of the guess. The program should stop when 10 dates have
been guessed correctly and print the elapsed time. (You may wish to set
this threshold lower while you're testing the program.)

Helpful Hints. You may find the following Java useful:

1. Random integers may be selected using the java.util.Random class:

Random r = new Random() ;
int month = (Math.abs(r.nextInt()) % 12) + 1;

You will need to import java.util.Random; at the top of your program
to make use of this class. Be aware that you need to only construct one
random number generator per program run. Also, the random number
generator potentially returns negative numbers. If Math.abs is not used,
these values generate negative remainders.

2. You can find out how many thousandths of seconds have elapsed since
the 1960s, by calling the Java method, System.currentTimeMillis(). It
returns a value of type long. We can use this to measure the duration of
an experiment, with code similar to the following:

long start = System.currentTimeMillis();
//

// place experiment to be timed here

//

long duration = System.currentTimeMillis()-start;
System.out.println("time: "+(duration/1000.0)+" seconds.");

The granularity of this timer isn’t any better than a thousandth of a
second. Still, we’re probably not in Conway’s league yet.

After you finish your program, you will find you can quickly learn to answer
10 of these day of the week challenges in less than a minute.

Thought Questions. Consider the following questions as you complete the
lab:

1. True or not: In Java is it true that (a % 7) == (a - a/7%7) for a >=
07

2. It’s rough to start a week on Saturday. What adjustments would be
necessary to have a remainder of 0 associated with Sunday? (This might
allow a mnemonic of Nun-day, One-day, Twos-day, Wednesday, Fours-day,
Fives-day, Saturday.)

3. Why do you subtract 1 in a leap year if the date falls before March?

4. Tt might be useful to compute the portion of any calculation associated
with this year, modulo 7. Remembering that value will allow you to
optimize your most frequent date calculations. What is the remainder
associated with this year?

Notes:

In 2001,

1 trillion millis
since the ’60s.
Dig that!

For years
divisible by 28:
think zero!

Laboratory: Using Javadoc Commenting

Objective. To learn how to generate formal documentation for your programs.

Discussion. The javadoc program? allows the programmer to write comments
in a manner that allows the generation web-based documentation. Program-
mers generating classes to be used by others are particularly encouraged to
consider using javadoc-based documentation. Such comments are portable,
web-accessible, and they are directly extracted from the code.

In this lab, we will write documentation for an extended version of the Ratio
class we first met in Chapter ?7.

Comments used by javadoc are delimited by a /** */ pair. Note that there
are two asterisks in the start of the comment. Within the comment are a number
of keywords, identified by a leading “at-sign” (@). These keywords identify the
purpose of different comments you right. For example, the text following an
@author comment identifies the programmer who originally authored the code.
These comments, called javadoc comments, appear before the objects they
document. For example, the first few lines of the Assert class are:

package structure;
/**

*

A library of assertion testing and debugging procedures.

<p>

This class of static methods provides basic assertion testing
facilities. An assertion is a condition that is expected to

be true at a certain point in the code. Each of the
assertion-based routines in this class perform a verification
of the condition and do nothing (aside from testing side-effects)
if the condition holds. If the condition fails, however, the
assertion throws an exception and prints the associated message,
that describes the condition that failed. Basic support is
provided for testing general conditions, and pre- and
post-conditions. There is also a facility for throwing a

failed condition for code that should not be executed.

<p>

Features similar to assertion testing are incorporated

in the Java 2 language beginning in SDK 1.4.

Qauthor duane a. bailey

¥R K X K X X X X X X X X X * X

*/
public class Assert

{

2 javadoc is a feature of command-line driven Java environments. Graphical environments

likely provide javadoc-like functionality, but pre- and postcondition support may not be avail-
able.

For each class you should provide any class-wide documentation, including
id@author and @version-tagged comments.

Within the class definition, there should be a javadoc comment for each
instance variable and method. Typically, javadoc comments for instance vari-
ables are short comments that describe the role of the variable in supporting
the class state:

VELS
* Size of the structure.
*/

int size;

Comments for methods should include a description of the method’s purpose.
A comment should describe the purpose of each parameter (@param), as well as
the form of the value returned (@return) for function-like methods. Program-
mers should also provide pre- and postconditions using the @pre and @post
keywords.?

/**
*
* This method computes the square root of a double value.
* @param x The value whose root is to be computed.
* Q@return The square root of x.
* Opre x >= 0
* @post computes the square root of x

*/
To complete this lab, you are to
1. Download a copy of the

2. Ratio.java source from the Java Structures web site. This version of the
Ratio package does not include full comments.

3. Review the code and make sure that you understand the purpose of each
of the methods.

4. At the top of the Ratio. java file, place a javadoc comment that describes
the class. The comment should describe the features of the class and an
example of how the class might be used. Make sure that you include an
@author comment (use your name).

3 In this book, where there are constraints on space, the pre- and postconditions are provided
in non-javadoc comments. Code available on the web, however, is uniformly commented using
the javadoc comments. javadoc and be upgraded to recognize pre- and postconditions; details
are available from the Java Structures web site.

5. Run the documentation generation facility for your particular environ-
ment. For Sun’s Java environment, the javadoc command takes a pa-
rameter that describes the location of the source code that is to be docu-
mented:

javadoc prog.java

The result is an index.html file in the current directory that contains
links to all of the necessary documentation. View the documentation to
make sure your description is formatted correctly.

6. Before each instance variable write a short javadoc comment. The com-
ment should begin with /** and end with */. Generate and view the
documentation and note the change in the documentation.

7. Directly before each method write a javadoc comment that includes, at
a minimum, one or two sentences that describe the method, a @param
comment for each parameter in the method, a @return comment describ-
ing the value returned, and a @pre and @post comment describing the
conditions.

Generate and view the documentation and note the change in the doc-
umentation. If the documentation facility does not appear to recognize
the @pre and @post keywords, the appropriate javadoc doclet software
has not been installed correctly. More information on installation of the
javadoc software can be found at the Java Structures web site.

Notes:

Laboratory: The Silver Dollar Game

Objective. To implement a simple game using Vectors or arrays.

Discussion. The Silver Dollar Game is played between two players. An arbi-
trarily long strip of paper is marked off into squares:

The game begins by placing silver dollars in a few of the squares. Each square
holds at most one coin. Interesting games begin with some pairs of coins sepa-
rated by one or more empty squares.

The goal is to move all the n coins to the leftmost n squares of the paper.
This is accomplished by players alternately moving a single coin, constrained
by the following rules:

1. Coins move only to the left.
2. No coin may pass another.
3. No square may hold more than one coin.

The last person to move is the winner.

Procedure. Write a program to facilitate playing the Silver Dollar Game.
When the game starts, the computer has set up a random strip with 3 or more
coins. Two players are then alternately presented with the current game state
and are allowed to enter moves. If the coins are labeled 0 through n — 1 from
left to right, a move could be specified by a coin number and the number of
squares to move the coin to the left. If the move is illegal, the player is repeat-
edly prompted to enter a revised move. Between turns the computer checks the
board state to determine if the game has been won.
Here is one way to approach the problem:

1. Decide on an internal representation of the strip of coins. Does your
representation store all the information necessary to play the game? Does
your representation store more information than is necessary? Is it easy
to test for a legal move? Is it easy to test for a win?

2. Develop a new class, CoinStrip, that keeps track of the state of the play-
ing strip. There should be a constructor, which generates a random board.
Another method, toString, returns a string representation of the coin
strip. What other operations seem to be necessary? How are moves per-
formed? How are rules enforced? How is a win detected?

Hint: When
flipped, the
Belgian Furo
is heads

149 times
out of 250.

3.

Implement an application whose main method controls the play of a single
game.

Thought Questions. Consider the following questions as you complete the

lab:

1.

How might one pick game sizes so that, say, one has a 50 percent chance
of a game with three coins, a 25 percent chance of a game with four coins,
a 12% percent chance of a game with five coins, and so on? Would your
technique bias your choice of underlying data structure?

How might one generate games that are not immediate wins? Suppose
you wanted to be guaranteed a game with the possibility of n moves?

Suppose the computer could occasionally provide good hints. What op-
portunities appear easy to recognize?

How might you write a method, computerPlay, where the computer plays
to win?

A similar game, called Welter’s Game (after C. P. Welter, who analyzed
the game), allows the coins to pass each other. Would this modification
of the rules change your implementation significantly?

Notes:

Laboratory: How Fast Is Java?

Objective. To develop an appreciation for the speed of basic Java operations
including assignment of value to variables, arrays, and Vectors.

Discussion. How long does it take to add two integers in Java? How long does
it take to assign a value to an entry in an array? The answers to these questions
depend heavily on the type of environment a programmer is using and yet play
an important role in evaluating the trade-offs in performance between different
implementations of data structures.

If we are interested in estimating the time associated with an operation,
it is difficult to measure it accurately with clocks available on most modern
machines. If an operation takes 100 ns (nanoseconds, or billionths of a second),
10,000 of these operations can be performed within a single millisecond clock
tick. It is unlikely that we would see a change in the millisecond clock while the
operation is being performed.

One approach is to measure, say, the time it takes to perform a million
of these operations, and divide that portion of the time associated with the
operation by a million. The result can be a very accurate measurement of the
time it takes to perform the operation. Several important things must be kept
in mind:

e Different runs of the experiment can generate different times. This vari-
ation is unlikely to be due to significant differences in the speed of the
operation, but instead to various interruptions that regularly occur when
a program is running. Instead of computing the average of the running
times, it is best to compute the minimum of the experiment’s elapsed
times. It’s unlikely that this is much of an underestimate!

e Never perform input or output while you are timing an experiment. These
operations are very expensive and variable. When reading or writing,
make sure these operations appear before or after the experiment being
timed.

e On modern systems there are many things happening concurrently with
your program. Clocks tick forward, printer queues manage printers, net-
work cards are accepting viruses. If you can keep your total experiment
time below, say, a tenth of a second, it is likely that you will eliminate
many of these distractions.

e The process of repeating an operation takes time. One of our tasks will be
to measure the time it takes to execute an empty for loop. The loop, of
course, is not really empty: it performs a test at the top of the loop and
an increment at the bottom. Failing to account for the overhead of a for
loop makes it impossible to measure any operation that is significantly
faster.

e Good compilers can recognize certain operations that can be performed
more efficiently in a different way. For example, traditional computers can
assign a value of 0 much faster than the assignment of a value of 42. If an
experiment yields an unexpectedly short operation time, change the Java
to obscure any easy optimizations that may be performed. Don’t forget
to subtract the overhead of these obscuring operations!

Keeping a mindful eye on your experimental data will allow you to effectively
measure very, very short events accurate to nanoseconds. In one nanosecond,
light travels 11.80 inches!

Procedure. The ultimate goal of this experiment is a formally written lab re-
port presenting your results. Carefully design your experiment, and be prepared
to defend your approach. The data you collect here is experimental, and nec-
essarily involves error. To reduce the errors described above, perform multiple
runs of each experiment, and carefully document your findings. Your report
should include results from the following experiments:

1. A description of the machine you are using. Make sure you use this ma-
chine for all of your experiments.

2. Write a short program to measure the time that elapses, say, when an
empty for loop counts to one million. Print out the elapsed time, as well
as the per-iteration elapsed time. Adjust the number of loops so that the
total elapsed time falls between, say, one-hundredth and one-tenth of a
second.

Recall that we can measure times accurate to one-thousandth of a second
using System.currentTimeMillis():

int i, loops;

double speed;

loops = 10000000;

long start,stop,duration;

start = System.currentTimeMillis();
for (i = 0; i < loops; i++)
{

// code to be timed goes here
}

stop = System.currentTimeMillis();

duration = stop-start;

System.out.println("# Elapsed time: "+duration+"ms");

System.out.println("# Mean time: "+
(((double)duration)/loops*NANOSPERMILLI)+
"nanoseconds") ;

3. Measure the time it takes to do a single integer assignment (e.g., i=42;).
Do not forget to subtract the time associated with executing the for loop.

4. Measure the time it takes to assign an integer to an array entry. Make
sure that the array has been allocated before starting the timing loop.

5. Measure the time it takes to assign a String reference to an array.

6. Measure the length of time it takes to assign a String to a Vector. (Note
that it is not possible to directly assign an int to a Vector class.)

7. Copy one Vector to another, manually, using set. Carefully watch the
elapsed time and do not include the time it takes to construct the two
Vectors! Measure the time it takes to perform the copy for Vectors of
different lengths. Does this appear to grow linearly?

Formally present your results in a write-up of your experiments.

Thought Questions. Consider the following questions as you complete the
lab:

1. Your Java compiler and environment may have several switches that affect
the performance of your program. For example, some environments allow
the use of just-in-time (jit) compilers, that compile frequently used pieces
of code (like your timing loop) into machine-specific instructions that are
likely to execute faster. How does this affect your experiment?

2. How might you automatically guarantee that your total experiment time
lasts between, say, 10 and 100 milliseconds?

3. It is, of course, possible for a timer to underestimate the running time of an
instruction. For example, if you time a single assignment, it is certainly
possible to get an elapsed time of 0—an impossibility. To what extent
would a timing underestimate affect your results?

Notes:

Laboratory: Sorting with Comparators

Objective. To gain experience with Java’s java.util.Comparator interface.

Discussion. In Chapter 7?7 we have seen a number of different sorting tech-
niques. Each of the techniques demonstrated was based on the fixed, natural
ordering of values found in an array. In this lab we will modify the Vector
class so that it provides a method, sort, that can be used—with the help of a
Comparator—to order the elements of the Vector in any of a number of different
ways.

Procedure. Develop an extension of structure.Vector, called MyVector, that
includes a new method, sort.

Here are some steps toward implementing this new class:

1. Create a new class, MyVector, which is declared to be an extension of the
structure.Vector class. You should write a default constructor for this
class that simply calls super() ;. This will force the structure.Vector
constructor to be called. This, in turn, will initialize the protected fields
of the Vector class.

2. Construct a new Vector method called sort. It should have the following
declaration:

public void sort(Comparator c)
// pre: c is a valid comparator
// post: sorts this vector in order determined by c

This method uses a Comparator type object to actually perform a sort of
the values in MyVector. You may use any sort that you like.

3. Write an application that reads in a data file with several fields, and,
depending on the Comparator used, sorts and prints the data in different
orders.

Thought Questions. Consider the following questions as you complete the
lab:

1. Suppose we write the following Comparator:

import structure.x*;

import java.util.Iterator;

import java.util.Comparator;

public class RevComparator implements Comparator
{

protected Comparator base;

public RevComparator (Comparator baseCompare)

{

base = baseCompare;

}
public int compare(Object a, Object b)
{
return -base.compare(a,b);
}

What happens when we construct:

MyVector v = new MyVector();
ReadStream r = new ReadStream();

for (r.skipWhite(); !r.eof(); r.skipWhite())
{

v.add(new Integer(r.readInt()));
}

Comparator ¢ = new RevComparator(new IntegerComparator());
v.sort(c);

2. In our examples, here, a new Comparator is necessary for each sorting
order. How might it be possible to add state information (protected
data) to the Comparator to allow it to sort in a variety of different ways?
One might imagine, for example, a method called ascending that sets the
Comparator to sort into increasing order. The descending method would
set the Comparator to sort in reverse order.

Notes:

Laboratory: The Two-Towers Problem

Objective. To investigate a difficult problem using Iterators.

Discussion. Suppose that we are given n uniquely sized cubic blocks and that
each block has a face area between 1 and n. Build two towers by stacking these
blocks. How close can we get the heights of the two towers? The following two
towers built by stacking 15 blocks, for example, differ in height by only 129
millions of an inch (each unit is one-tenth of an inch):

Still, this stacking is only the second-best solution! To find the best stacking,
we could consider all the possible configurations.

We do know one thing: the total height of the two towers is computed by
summing the heights of all the blocks:

h:i\ﬁ

If we consider all the subsets of the n blocks, we can think of the subset as the
set of blocks that make up, say, the left tower. We need only keep track of that
subset that comes closest to h/2 without exceeding it.

In this lab, we will represent a set of n distinct objects by a Vector, and we
will construct an Iterator that returns each of the 2™ subsets.

Procedure. The trick to understanding how to generate a subset of n values
from a Vector is to first consider how to generate a subset of indices of elements
from 0 to n — 1. Once this simpler problem is solved, we can use the indices to
help us build a Vector (or subset) of values identified by the indices.

There are exactly 2™ subsets of values 0 to n—1. We can see this by imagining
that a coin is tossed n times—once for each value—and the value is added to
the subset if the coin flip shows a head. Since there are 2 x 2 x -+- x 2 = 2"
different sequences of coin tosses, there are 2™ different sets.

We can also think of the coin tosses as determining the place values for n
different digits in a binary number. The 2" different sequences generate binary

numbers in the range 0 through 2™ — 1. Given this, we can see a line of attack:
count from 0 to 2" —1 and use the binary digits (bits) of the number to determine
which of the original values of the Vector are to be included in a subset.

Computer scientists work with binary numbers frequently, so there are a
number of useful things to remember:

e An int type is represented by 32 bits. A long is represented by 64 bits.

For maximum flexibility, it would be useful to use long integers to repre-
sent sets of up to 64 elements.

The arithmetic shift operator (<<) can be used to quickly compute powers
of 2. The value 2! can be computed by shifting a unit bit (1) i places to
the left. In Java we write this 1<<i. This works only for nonnegative,
integral powers.

The bitwise and of two integers can be used to determine the value of
a single bit in a number’s binary representation. To retrieve bit i of an
integer m we need only compute m & (1<<i).

Armed with this information, the process of generating subsets is fairly straight-
forward. One line of attack is the following:

1.

Construct a new extension to the AbstractIterator class. (By extending
the AbstractIterator we support both the Iterator and Enumeration
interfaces.) This new class should have a constructor that takes a Vector
as its sole argument. Subsets of this Vector will be returned as the
Iterator progresses.

Internally, a long value is used to represent the current subset. This value
increases from 0 (the empty set) to 2" — 1 (the entire set of values) as the
Iterator progresses. Write a reset method that resets the subset counter
to 0.

Write a hasNext method that returns true if the current value is a rea-
sonable representation of a subset.

Write a get method that returns a new Vector of values that are part of
the current subset. If bit i of the current counter is 1, element i of the
Vector is included in the resulting subset Vector.

Write a next method. Remember it returns the current subset before
incrementing the counter.

For an Iterator you would normally have to write a remove method. If
you extend the AbstractIterator class, this method is provided and will
do nothing (this is reasonable).

You can now test your new SubsetIterator by having it print all the subsets
of a Vector of values. Remember to keep the Vector small. If the original values
are all distinct, the subsets should all have different values.

To solve the two-towers problem, write a main method that inserts the values
V1, V2, .. /1 as Double objects into a Vector. A SubsetIterator is then
used to construct 2" subsets of these values. The values of each subset are
summed, and the sum that comes closest to, but does not exceed, the value
h/2 is remembered. After all the subsets have been considered, print the best
solution.

Thought Questions. Consider the following questions as you complete the
lab:

1. What is the best solution to the 15-block problem shown above?

2. This method of exhaustively checking the subsets of blocks will not work
for very large problems. Consider, for example, the problem with 50
blocks: there are 2°0 different subsets. One approach is to repeatedly
pick and evaluate random subsets of blocks (stop the computation after
1 second of elapsed time, printing the best subset found). How would you
implement randomSubset, a new SubsetIterator method that returns a
random subset?

Notes:

Laboratory: Lists with Dummy Nodes

Objective. To gain experience implementing List-like objects.

Discussion. Anyone attempting to understand the workings of a doubly linked
list understands that it is potentially difficult to keep track of the references. One
of the problems with writing code associated with linked structures is that there
are frequently boundary cases. These are special cases that must be handled
carefully because the “common” path through the code makes an assumption
that does not hold in the special case.

Take, for example, the addFirst method for DoublyLinkedLists:

public void addFirst(Object value)
// pre: value is not null
// post: adds element to head of list

{
// construct a new element, making it head
head = new DoublyLinkedListElement(value, head, null);
// fix tail, if necessary
if (tail == null) tail = head;
count++;
}

The presence of the if statement suggests that sometimes the code must reas-
sign the value of the tail reference. Indeed, if the list is empty, the first element
must give an initial non-null value to tail. Keeping track of the various special
cases associated with a structure can be very time consuming and error-prone.

One way that the complexity of the code can be reduced is to introduce
dummy nodes. Usually, there is one dummy node associated with each external
reference associated with the structure. In the DoublyLinkedList, for example,
we have two references (head and tail); both will refer to a dedicated dummy
node:

These nodes appear to the code to be normal elements of the list. In fact, they
do not hold any useful data. They are completely hidden by the abstraction of
the data structure. They are transparent.

LinkedList

Because most of the boundary cases are associated with maintaining the
correct values of external references and because these external references are
now “hidden” behind their respective dummy nodes, most of the method code
is simplified. This comes at some cost: the dummy nodes take a small amount
of space, and they must be explicitly stepped over if we work at either end of
the list. On the other hand, the total amount of code to be written is likely
to be reduced, and the running time of many methods decreases if the special
condition testing would have been expensive.

Procedure. In this lab we will extend the DoublyLinkedList, building a new
class, LinkedList, that makes use of two dummy nodes: one at the head of the
list, and one at the end.

You should begin taking a copy of the LinkedList. java starter file. This
file simply declares LinkedList to be an extension of the structure package’s
DoublyLinkedList class. The code associated with each of the existing methods
is similar to the code from DoublyLinkedList. You should replace that code
with working code that makes use of two dummy nodes:

1. First, recall that the three-parameter constructor for DoublyLinkedList—
Elements takes a value and two references—the nodes that are to be next
and previous to this new node. That constructor will also update the
next and previous nodes to point to the newly constructed node. You
may find it useful to use the one parameter constructor, which builds a
node with null next and previous references.

2. Replace the constructor for the LinkedList. Instead of constructing head
and tail references that are null, you should construct two dummy
nodes; one node is referred to by head and the other by tail. These
dummy nodes should point to each other in the natural way. Because
these dummy nodes replace the null references of the DoublyLinkedList
class, we will not see any need for null values in the rest of the code.
Amen.

3. Check and make necessary modifications to size, isEmpty, and clear.

4. Now, construct two important protected methods. The method insert-
After takes a value and a reference to a node, previous. It inserts a new
node with the value value that directly follows previous. It should be
declared protected because we are not interested in making it a formal
feature of the class. The other method, remove, is given a reference to a
node. It should unlink the node from the linked list and return the value
stored in the node. You should, of course, assume that the node removed
is not one of the dummy nodes. These methods should be simple with no
if statements.

5. Using insertAfter and remove, replace the code for addFirst, addLast,
getFirst, getLast, removeFirst, and removeLast. These methods should
be very simple (perhaps one line each), with no if statements.

6. Next, replace the code for the indexed versions of methods add, remove,
get, and set. Each of these should make use of methods you have already
written. They should work without any special if statements.

7. Finally, replace the versions of methods index0f, lastIndex0f, and contains
(which can be written using index0f), and the remove method that takes
an object. Each of these searches for the location of a value in the list
and then performs an action. You will find that each of these methods is
simplified, making no reference to the null reference.

Thought Questions. Consider the following questions as you complete the
lab:

1. The three-parameter constructor for DoublyLinkedListElements makes
use of two if statements. Suppose that you replace the calls to this
constructor with the one parameter constructor and manually use setNext
and setPrevious to set the appropriate references. The if statements
disappear. Why?

2. The contains method can be written making use of the index0f method,
but not the other way around. Why?

3. Notice that we could have replaced the method insertAfter with a sim-
ilar method, insertBefore. This method inserts a new value before the
indicated node. Some changes would have to be made to your code. There
does not appear, however, to be a choice between versions of remove. Why
is this the case? (Hint: Do you ever pass a dummy node to remove?)

4. Even though we don’t need to have the special cases in, for example, the
indexed version of add, it is desirable to handle one or more cases in a
special way. What are the cases, and why is it desirable?

5. Which file is bigger: your final result source or the original?

Notes:

Laboratory: A Stack-based Language

Objective. To implement a PostScript-based calculator.

Discussion. In this lab we will investigate a small portion of a stack-based
language called PostScript. You will probably recognize that PostScript is a file
format often used with printers. In fact, the file you send to your printer is a
program that instructs your printer to draw the appropriate output. PostScript
is stack-based: integral to the language is an operand stack. Each operation that
is executed pops its operands from the stack and pushes on a result. There are
other notable examples of stack-based languages, including forth, a language
commonly used by astronomers to program telescopes. If you have an older
Hewlett-Packard calculator, it likely uses a stack-based input mechanism to
perform calculations.

We will implement a few of the math operators available in PostScript.

To see how PostScript works, you can run a PostScript simulator. (A good
simulator for PostScript is the freely available ghostscript utility. It is avail-
able from www.gnu.org.) If you have a simulator handy, you might try the
following example inputs. (To exit a PostScript simulator, type quit.)

1. The following program computes 1 + 1:
1 1 add pstack

Every item you type in is a token. Tokens include numbers, booleans,
or symbols. Here, we’ve typed in two numeric tokens, followed by two
symbolic tokens. Each number is pushed on the internal stack of operands.
When the add token is encountered, it causes PostScript to pop off two
values and add them together. The result is pushed back on the stack.
(Other mathematical operations include sub, mul, and div.) The pstack
command causes the entire stack to be printed to the console.

2. Provided the stack contains at least one value, the pop operator can be
used to remove it. Thus, the following computes 2 and prints nothing:

1 1 add pop pstack
3. The following “program” computes 1 + 3 * 4:
1 3 4 mul add pstack

The result computed here, 13, is different than what is computed by the
following program:

1 3 add 4 mul pstack

In the latter case the addition is performed first, computing 16.

4. Some operations simply move values about. You can duplicate values—the
following squares the number 10.1:

10.1 dup mul pstack pop
The exch operator to exchange two values, computing 1 — 3:
3 1 exch sub pstack pop
5. Comparison operations compute logical values:
1 2 eq pstack pop
tests for equality of 1 and 2, and leaves false on the stack. The program
1 1 eq pstack pop

yields a value of true.

6. Symbols are defined using the def operation. To define a symbolic value
we specify a “quoted” symbol (preceded by a slash) and the value, all
followed by the operator def:

/pi 3.141592653 def
Once we define a symbol, we can use it in computations:

/radius 1.6 def
pi radius dup mul mul pstack pop

computes and prints the area of a circle with radius 1.6. After the pop,
the stack is empty.

Procedure. Write a program that simulates the behavior of this small subset
of PostScript. To help you accomplish this, we’ve created three classes that you
will find useful:

e Token. An immutable (constant) object that contains a double, boolean,
or symbol. Different constructors allow you to construct different Token
values. The class also provides methods to determine the type and value
of a token.

e Reader. A class that allows you to read Tokens from an input stream.

Token The typical use of a reader is as follows:
Reader r = new Reader();
Token t;
while (r.hasNext())

Reader t

t = (Token)r.next();

if (t.isSymbol() && // only if symbol:
t.getSymbol() .equals("quit")) break;

// process token

This is actually our first use of an Iterator. It always returns an Object
of type Token.

e SymbolTable. An object that allows you to keep track of String-Token
associations. Here is an example of how to save and recall the value of 7:

SymbolTable table = new SymbolTable();
// sometime later:

table.add("pi",new Token(3.141592653));
// sometime even later:

if (table.contains("pi"))

{
Token token = table.get("pi");
System.out.println(token.getNumber()) ;

You should familiarize yourself with these classes before you launch into writing
your interpreter.

To complete your project, you should implement the PostScript commands
pstack, add, sub, mul, div, dup, exch, eq, ne, def, pop, quit. Also implement
the nonstandard PostScript command ptable that prints the symbol table.

Thought Questions. Consider the following questions as you complete the
lab:

1. If we are performing an eq operation, is it necessary to assume that the
values on the top of the stack are, say, numbers?

2. The pstack operation should print the contents of the operand stack with-
out destroying it. What is the most elegant way of doing this? (There are
many choices.)

3. PostScript also has a notion of a procedure. A procedure is a series of
Tokens surrounded by braces (e.g. { 2 add }). The Token class reads
procedures and stores the procedure’s Tokens in a List. The Reader
class has a constructor that takes a List as a parameter and returns a
Reader that iteratively returns Tokens from its list. Can you augment
your PostScript interpreter to handle the definition of functions like area,
below?

/pi 3.141592653 def

/area { dup mul pi mul } def
1.6 area

9 area pstack

quit

Such a PostScript program defines a new procedure called area that com-
putes 7r2 where r is the value found on the top of the stack when the
procedure is called. The result of running this code would be

SymbolTable

254.469004893
8.042477191680002

4. How might you implement the if operator? The if operator takes a
boolean and a token (usually a procedure) and executes the token if the
boolean is true. This would allow the definition of the absolute value
function (given a less than operator, 1t):

/abs { 0 1t { -1 mul } if } def
3 abs
-3 abs
eq pstack
The result is true.

5. What does the following do?

/count { dup 1 ne { dup 1 sub count } if } def
10 count pstack

Notes:

Laboratory: The Web Crawler

Objective. To crawl over web pages in a breadth-first manner.

Discussion. Web crawling devices are a fact of life. These programs automati-
cally venture out on the Web and internalize documents. Their actions are based
on the links between pages. The data structures involved in keeping track of the
progress of an avid web crawler are quite complex: imagine, for example, how
difficult it must be for such a device to keep from chasing loops of references
between pages.

In this lab we will build a web crawler that determines the distance from
one page to another. If page A references page B, the distance from A to B is
1. Notice that page B may not have any links on it, so the distance from B to
A may not be defined.

Here is an approach to determining the distance from page A to arbitrary
page B:

e Start a list of pages to consider. This list has two columns: the page, and
its distance from A. We can, for example, put page A on this list, and
assign it a distance of zero. If we ever see page B on this list, the problem
is solved: just print out the distance associated with B.

e Remove the first page on our list: call it page X with distance d from page
A. If X has the same URL as B, B must be distance d from A. Otherwise,
consider any link off of page X: either it points to a page we’ve already
seen on our list (it has a distance d or less), or it is a new page. If it’s
a new page we haven’t encountered, add it to the end of our list and
associate with it a distance d + 1—it’s a link farther from A than page X.
We consider all the links off of page X before considering a new page from
our list.

If the list is a FIFO, this process is a breadth-first traversal, and the distance
associated with B is the shortest distance possible. We can essentially think of
the Web as a large maze that we’re exploring.

Procedure. Necessary for this lab is a class HTML. It defines a reference to a
textual (HTML) web page. The constructor takes a URL that identifies which
page you're interested in:

HTML page = new HTML("http://www.yahoo.com");

Only pages that appear to have valid HTML code can actually be inspected
(other types of pages will appear empty). Once the reference is made to the
page, you can get its content with the method content:

System.out.println(page.content());

Two methods allow you to get the URL’s associated with each link on a page:
hasNext and nextURL. The hasNext method returns true if there are more links
you have not yet considered. The nextURL method returns a URL (a String)
that is pointed to by this page. Here’s a typical loop that prints all the links
associated with a page:

HTML

int i = 0;

while (page.hasNext())

{
System.out.println(i+": "+page.nextURL());
i++;

}

For the sake of speed, the HTML method downloads 10K of information. For
simple pages, this covers at least the first visible page on the screen, and it might
be argued that the most important links to other pages probably appear within
this short start (many crawlers, for example, limit their investigations to the
first part of a document). You can change the size of the document considered
in the constructor:

HTML page = new HTML("http://www.yahoo.com",20%1024);

You should probably keep this within a reasonable range, to limit the total
impact on memory.

Write a program that will tell us the maximum number of links (found on
the first page of a document) that are necessary to get from your home page to
any other page within your personal web. You can identify these pages because
they all begin with the same prefix. We might think of this as a crude estimate
of the “depth” or “diameter” of a site.

Thought Questions. Consider the following questions as you complete the
lab:

1. How do your results change when you change the buffer size for the page
to 2K? 50K? Under what conditions would a large buffer change cause the
diameter of a web to decrease? Under what conditions would this change
cause the diameter of a web to increase?

Notes:

Laboratory: Computing the “Best Of”

Objective. To efficiently select the largest k values of n.

Discussion. One method to select the largest k values in a sequence of n is to
sort the n values and to look only at the first k. (In Chapter ??, we will learn
of another technique: insert each of the n values into a max-heap and extract
the first k values.) Such techniques have two important drawbacks:

e The data structure that keeps track of the values must be able to hold
n >> k values. This may not be possible if, for example, there are more
data than may be held easily in memory.

e The process requires O(nlogn) time. It should be possible to accomplish
this in O(n) time.

One way to reduce these overheads is to keep track of, at all times, the best k
values found. As the n values are passed through the structure, they are only
remembered if they are potentially one of the largest k values.

Procedure. In this lab we will implement a BestOf OrderedStructure. The
constructor for your Best0f structure should take a value k, which is an upper
bound on the number of values that will be remembered. The default construc-
tor should remember the top 10.

An add method takes an Object and adds the element (if reasonable) in the
correct location. The get (i) method should return the ith largest value en-
countered so far. The size method should return the number of values currently
stored in the structure. This value should be between 0 and k, inclusive. The
iterator method should return an Iterator over all the values. The clear
method should remove all values from the structure.

Here are the steps that are necessary to construct and test this data struc-
ture:

1. Consider the underlying structure carefully. Because the main consider-
ations of this structure are size and speed, it would be most efficient to
implement this using a fixed-size array. We will assume that here.

2. Implement the add method. This method should take the value and, like a
pass of insertion sort, it should find the correct location for the new value.
If the array is full and the value is no greater than any of the values,
nothing changes. Otherwise, the value is inserted in the correct location,
possibly dropping a smaller value.

3. Implement the get (i), size, and clear methods.

4. Implement the iterator method. A special AbstractIterator need not
be constructed; instead, values can be added to a linear structure and the
result of that structure’s iterator method is returned.

To test your structure, you can generate a sequence of integers between 0 and
n — 1. By the end, only values n — k...n — 1 should be remembered.

Thought Questions. Consider the following questions as you complete the
lab:

1. What is the (big-O) complexity of one call to the add method? What is
the complexity of making n calls to add?

2. What are the advantages and disadvantages of keeping the array sorted at
all times? Would it be more efficient to, say, only keep the smallest value
in the first slot of the array?

3. Suppose that f(n) is defined to be n/2 if n is even, and 3n + 1 if n is
odd. Tt is known that for small values of n (less than 10%°) the sequence
of values generated by repeated application of f starting at n eventually
reaches 1. Consider all the sequences generated from n < 10,000. What
are the maximum values encountered?

4. The BestO0f structure can be made more general by providing a third con-
structor that takes k and a Comparator. The comparisons in the BestOf
class can now be recast as calls to the compare method of a Comparator.
When a Comparator is not provided, an instance of the structure pack-
age’s NaturalComparator is used, instead. Such an implementation allows
the BestOf class to order non-Comparable values, and Comparable values
in alternative orders.

Notes:

Laboratory: Playing Gardner’s Hex-a-Pawn

Objective. To use trees to develop a game-playing strategy.

Discussion. In this lab we will write a simulator for the game Hex-a-Pawn.
This game was developed in the early sixties by Martin Gardner. Three white
and three black pawns are placed on a 3 x 3 chessboard. On alternate moves
they may be either moved forward one square, or they may capture an opponent
on the diagonal. The game ends when a pawn is promoted to the opposite rank,
or if a player loses all his pieces, or if no legal move is possible.

In his article in the March 1962 Scientific American, Gardner discussed a
method for teaching a computer to play this simple game using a relatively small
number of training matches. The process involved keeping track of the different
states of the board and the potential for success (a win) from each board state.
When a move lead directly to a loss, the computer forgot the move, thereby
causing it to avoid that particular loss in the future. This pruning of moves
could, of course, cause an intermediate state to lead indirectly to a loss, in
which case the computer would be forced to prune out an intermediate move.

Gardner’s original “computer” was constructed from matchboxes that con-
tained colored beads. Each bead corresponded to a potential move, and the
pruning involved disposing of the last bead played. In a modern system, we can
use nodes of a tree stored in a computer to maintain the necessary information
about each board state. The degree of each node is determined by the number
of possible moves.

Procedure. During the course of this project you are to

1. Construct a tree of Hex-a-Pawn board positions. Each node of the tree is
called a GameTree. The structure of the class is of your own design, but
it is likely to be similar to the BinaryTree implementation.

2. Construct three classes of Players that play the game of Hex-a-Pawn.
These three classes may interact in pairs to play a series of games.

Available for your use are three Javafiles:

HexBoard This class describes the state of a board. The default board is the 3x3
starting position. You can ask a board to print itself out (toString) or to
return the HexMoves (moves) that are possible from this position. You can
also ask a HexBoard if the current position is a win for a particular color—
HexBoard.WHITE or HexBoard.BLACK. A static utility method, opponent,
takes a color and returns the opposite color. The main method of this
class demonstrates how HexBoards are manipulated.

HexMove This class describes a valid move. The components of the Vector re-
turned from the HexBoard.moves contains objects of type HexMove. Given
a HexBoard and a HexMove one can construct the resulting HexBoard using
a HexBoard constructor.

HexBoard

HexMove

Player When one is interested in constructing players that play Hex-a-Pawn,
the Player interface describes the form of the play method that must
be provided. The play method takes a GameTree node and an opposing
Player. It checks for a loss, plays the game according to the GameTree,
and then turns control over to the opposing player.

Player Road these class files carefully. You should not expect to modify them.
There are many approaches to experimenting with Hex-a-Pawn. One series
of experiments might be the following:

1. Compile HexBoard.java and run it as a program. Play a few games
against the computer. You may wish to modify the size of the board.
Very little is known about the games larger than 3 x 3.

2. Implement a GameTree class. This class should have a constructor that,
given a HexBoard and a color (a char, HexBoard .WHITE or HexBoard.BLACK),
generates the tree of all boards reachable from the specified board posi-
tion during normal game play. Alternate levels of the tree represent boards
that are considered by alternate players. Leaves are winning positions for
the player at hand. The references to other GameTree nodes are suggested
by the individual moves returned from the moves method. A complete
game tree for 3 x 3 boards has 370 nodes.

3. Implement the first of three players. It should be called HumanPlayer. If it
hasn’t already lost (i.e., if the opponent hasn’t won), this player prints the
board, presents the moves, and allows a human (through a ReadStream)
to select a move. The play is then handed off to the opponent.

4. The second player, RandPlayer, should play randomly. Make sure you
check for a loss before attempting a move.

5. The third player, called CompPlayer, should attempt to have the CompPlayer
object modify the game tree to remove losing moves.

Clearly, Players may be made to play against each other in any combination.

Thought Questions. Consider the following questions as you complete the
lab:

1. How many board positions are there for the 3 x 4 board? Can you deter-
mine how many moves there are for a 3 x 5 board?

2. If you implement the learning machine, pit two machines against each
other. Gardner called the computer to move first H.I.M., and the machine
to move second H.E.R. Will HI.M. or H.E.R. ultimately win more fre-
quently? Explain your reasoning in a short write-up. What happens for
larger boards?

3. In Gardner’s original description of the game, each matchbox represented
a board state and its reflection. What modifications to HexBoard and
HexMove would be necessary to support this collapsing of the game tree?

Laboratory: Simulating Business

Objective. To determine if it is better to have single or multiple service lines.

Discussion. When we are waiting in a fast food line, or we are queued up at a
bank, there are usually two different methods of managing customers:

1. Have a single line for people waiting for service. Every customer waits in
a single line. When a teller becomes free, the customer at the head of the
queue moves to the teller. If there are multiple tellers free, one is picked
randomly.

2. Have multiple lines—one for each teller. When customers come in the
door they attempt to pick the line that has the shortest wait. This usu-
ally involves standing in the line with the fewest customers. If there are
multiple choices, the appropriate line is selected randomly.

It is not clear which of these two methods of queuing customers is most effi-
cient. In the single-queue technique, tellers appear to be constantly busy and
no customer is served before any customer that arrives later. In the multiple-
queue technique, however, customers can take the responsibility of evaluating
the queues themselves.

Note, by the way, that some industries (airlines, for example) have a mixture
of both of these situations. First class customers enter in one line, while coach
customers enter in another.

Procedure. In this lab, you are to construct a simulation of these two service
mechanisms. For each simulation you should generate a sequence of customers
that arrive at random intervals. These customers demand a small range of
services, determined by a randomly selected service time. The simulation is
driven by an event queue, whose elements are ranked by the event time. The
type of event might be a customer arrival, a teller freeing up, etc.

For the single line simulation, have the customers all line up in a single
queue. When a customer is needed, a single customer (if any) is removed from
the customer queue, and the teller is scheduled to be free at a time that is
determined by the service time. You must figure out how to deal with tellers
that are idle—how do they wait until a customer arrives?

For the multiple line simulation, the customers line up at their arrival time,
in one of the shortest teller queues. When a teller is free, it selects the next
customer from its dedicated queue (if any). A single event queue is used to drive
the simulation.

To compare the possibilities of these two simulations, it is useful to run the
same random customers through both types of queues. Think carefully about
how this might be accomplished.

Thought Questions. Consider the following questions as you complete the
lab:

1. Run several simulations of both types of queues. Which queue strategy
seems to process all the customers fastest?

2. Is their a difference between the average wait time for customers between
the two techniques?

3. Suppose you simulated the ability to jump between lines in a multiple line
simulation. When a line has two or more customers than another line,
customers move from the end one line to another until the lines are fairly
even. You see this behavior frequently at grocery stores. Does this change
the type of underlying structure you use to keep customers in line?

4. Suppose lines were dedicated to serving customers of varying lengths of
service times. Would this improve the average wait time for a customer?

Notes:

Laboratory: Improving the BinarySearchTree

Objective. To understand that improve an implementation.

Discussion. As we have seen in the implementation of the BinarySearchTree
class, the insertion of values is relative to the root of the tree. One of the
situations that must be handled carefully is the case where more than one node
can have the same key. If equal keys are allowed in the binary search tree, then
we must be careful to have them inserted on one side of the root. This behavior
increases the complexity of the code, and when there are many duplicate keys,
it is possible that the tree’s depth can be increased considerably.

Procedure. An alternative approach is to have all the nodes with similar keys
stored in the same location. When the tree is constructed in this manner, then
there is no need to worry about keeping similar keys together—they're always
together.

In this lab, we will implement a BinaryMultiTree—a BinarySearchTree-
like structure that stores a multiset (a set of values with potential duplicates).
We are not so concerned with the set features, but we are demanding that
different values are kept in sorted order in the structure. In particular, the
traversal of the BinaryMultiTree should return the values in order.

In this implementation, a BinaryTree is used to keep track of a List of
values that are equal when compared with the compare method of the ordering
Comparator. From the perspective of the structure, there is no distinguishing
the members of the list. Externally, the interface to the BinaryMultiTree
is exactly the same as the BinarySearchTree, but the various methods work
with values stored in Lists, as opposed to working with the values directly.
For example, when we look at a value stored in a node, we find a List. A
getFirst of this List class picks out an example that is suitable, for example,
for comparison purposes.

Here are some things to think about during your implementation:

1. The size method does not return the number of nodes; it returns the
number of values stored in all the nodes. The bookkeeping is much the
same as it was before, but size is an upper bound on the actual size of
the search tree.

2. The add method compares values to the heads of lists found at each node
along the way. A new node is created if the value is not found in the tree;
the value is inserted in a newly created List in the BinaryTreeNode.
When an equal key is found, the search for a location stops, and the value
is added to the List. A carefully considered locate method will help
considerably here.

3. The contains method is quite simple: it returns true if the getFirst of
any of the Lists produces a similar value.

4. The get method returns one of the matching values, if found. It should

probably be the same value that would be returned if a remove were
executed in the same situation.

The iterator method returns an Iterator that traverses all the values
of the BinarySearchTree. When a list of equal values is encountered,
they are all considered before a larger value is returned.

When you are finished, test your code by storing a large list of names of peo-
ple, ordered only by last name (you will note that this is a common tech-
nique used by stores that keep accounts: “Smith?” “Yes!” “Are you Paul or
John?”). You should be able to roughly sort the names by inserting them into
a BinaryMultiTree and then iterating across its elements.

Thought Questions. Consider the following questions as you complete the

lab:

1.

Recall: What is the problem with having equal keys stored on either side
of an equal-valued root?

Does it matter what type of List is used? What kinds of operations are
to be efficient in this List?

What is the essential difference between implementing the tree as de-
scribed and, say, just directly storing linked lists of equivalent nodes in
the BinarySearchTree?

An improved version of this structure might use a Comparator for pri-
mary and secondary keys. The primary comparison is used to identify the
correct location for the value in the BinaryMultiTree, and the secondary
key could be used to order the keys that appear equal using the primary
key. Those values that are equal using the primary key are kept within an
OrderedStructure that keeps track of its elements using the secondary
key Comparator.

Notes:

Laboratory: The Soundex Name Lookup System

Objective. To use a Map structure to keep track of similar sounding names.

Discussion. The United States National Archives is responsible for keeping
track of the census records that, according to the Constitution, must be gathered
every 10 years. After a significant amount of time has passed (70 or more years),
the census records are made public. Such records are of considerable historical
interest and a great many researchers spend time looking for lost ancestors
among these records.

To help researchers find individuals, the censuses are often indexed using
a phonetic system called Soundex. This system takes a name and produces a
short string called the Soundex key. The rules for producing the Soundex key
of a name are precisely:

1. The entire name is translated into a series of digit characters:

Digit | Letter of name
’1> | b, p, f, v
)2, C7 S? k7 g?j? q’ X7Z
'3 | d, t
40 |]
’57 | m,n
’6° | T
>7° | all other letters

For example, 0°Niell would be translated into the string 757744.

2. All double digits are reduced to single digits. Thus, 757744 would become
7574.

3. The first digit is replaced with the first letter of the original name, in
uppercase. Thus, 7574 would become 0574.

4. All 7’s are removed. Thus, 0574 becomes 054.

5. The string is truncated to four characters. If the resulting string is shorter
than four characters, it is packed with enough >0’ characters to bring the
length to four. The result for 0’°Niell would be 0540. Notice that, for
the most part, the nonzero characters represent the significant sounded
letters of the beginning of the name.

Other names translate to Soundex keys as follows:

Bailey becomes B400
Ballie becomes B400
Knuth becomes K530
Scharstein becomes S623
Lee becomes LO000

Procedure. You are to write a system that takes a list of names (the UNIX
spelling dictionary is a good place to find names) and generates an ordered map
whose entries are indexed by the Soundex key. The values are the actual names
that generated the key. The input to the program is a series of names, and the
output is the Soundex key associated with the name, along with all the names
that have that same Soundex key, in alphabetical order.

Pick a data structure that provides performance: the response to the query
should be nearly instantaneous, even with a map of several thousand names.

Thought Questions. Consider the following questions as you complete the
lab:

1. What is the Soundex system attempting to do when it encodes many
letters into one digit? For example, why are d and t both encoded as >3°7

2. Why does the Soundex system ignore any more than the first four sounds
in a name?

Notes:

Laboratory: Converting Between Units

Objective. To perform the transitive closure of a graph.

Discussion. An interesting utility available on UNIX systems is the units
program. With this program you can convert between one unit and another.
For example, if you were converting between feet and yards, you might have the
following interaction with the units program:

You have: yard
You want: inch
Multiply by 36.0

The program performs its calculations based on a database of values which has
entries that appear as follows:

1 yard 3 foot
1 foot 12 inch
1 yard 39.37 inch

Notice that there is no direct conversion between yards and inches.

In this lab you are to write a program that computes the relations between
units. When the program starts, it reads in a database of values that describe the
ratios between units. Each unit becomes a node of a graph, and the conversions
are directed edges between related units. Note that the edges of the graph must
be directed because the factor that converts inches to yards is the reciprocal of
the factor that converts yards to inches.

In order to deduce conversions between distantly related units, it will be
necessary for you to construct the closure of the graph. The labels associated
with adjacent edges are multiplied together to label the direct edge.

Once your program reads the unit conversion database, the program should
prompt for the source units and the destination units. It should then print out
the conversion factor used to multiply the source units by to get the destination
units. If the units do not appear to be related, you should print out a message
that indicates that fact. Prompting continues until the user enters a blank line
for the source units.

Thought Questions. Consider the following questions as you complete the
lab:

1. There are two approaches to this problem: (1) construct the closure of the
graph, or (2) perform a search from the source unit node to the destination
unit node. What are the trade-offs to the two approaches?

2. What does it mean if the graph is composed of several disconnected com-
ponents?

Notes:

