
Laboratory 9: Implementing a Curve Class

Objective. To consider the various issues associated with developing a new
class.

Discussion. The element package, as distributed, does not have any objects
that support the drawing of smooth curves or splines . In this lab we will develop
a new class, called a Curve that implements B�ezier curves. We will accomplish
this in two steps. First we will construct a bare-bones class with only a few
methods. We will then provide all the methods required by the Drawable in-
terface and develop a full-edged Drawable object that could be included as
an extension to the element graphic package. This process is similar to the
incremental construction of most objects in Java.

Procedure.

Initially, you are to build a small class, Curve, that has three constructors,
drawing methods called drawOn, fillOn, and clearOn, as well as a toString

method that would be called if a Curve was printed to an output stream.

1. Recall that the code supporting the drawing of B�ezier curves is described
in Section ??. A natural method for representing these curves is a group
of four points:

1cc0

p
p0

1

2. Once you determine how you will support your Curve with instance vari-
ables, you may start development of your class by �lling out the details
of the following class de�nition (you may implement fillOn by calling
drawOn):

public class Curve

{

private Pt p0,c0,c1,p1;

public Curve(Curve c)

// post: constructs curve with the same control points as c

public void drawOn(DrawingWindow d)

// post: draws the curve on window d

public void fillOn(DrawingWindow d)

// post: draws (like draw) curve on window d



2

public void clearOn(DrawingWindow d)

// post: erases curve from window d

private Pt bez(Pt p0, Pt c0, Pt c1, Pt p1, double t)

// pre: p0, p1 are endpoints; c0, c1 are control points

// 0 <= t <= 1

// post: returns the point along Bezier curve determined

// by p0, c0, c1, p1, and t

public String toString()

// post: constructs a string representation of curve

}

3. Write a program that tests the functionality of the Curve class. You
should be able to draw a Curve in the DrawingWindow with the Curve's
drawOn method, but it should be impossible to use the DrawingWindow's
draw method, which takes a Drawable object.

4. Once you have veri�ed that your Curve is drawing correctly, implement
the remaining features of the Drawable interface:

public Object clone()

// post: returns a carbon copy of this curve

public int height()

// post: returns the height of the curve

public int width()

// post: returns the width of the curve

public int left()

// post: returns the left coordinate of the bounding box

public int right()

// post: returns the right coordinate of the bounding box

public int top()

// post: returns the top coordinate of the bounding box

public int bottom()

// post: returns the bottom coordinate of the bounding box

public Pt center()

// post: returns the center of the bounding box

public void center(Pt c)

// post: re-center the curve at point c



3

5. Demonstrate that your class is, indeed, a drawable class by indicating that
it implements the Drawable interface. Test your code by drawing a curve
in the DrawingWindow with the DrawingWindow's draw method.

Thought questions. Consider the following questions as you complete the lab:

1. What changes in the interface would be necessary to allow the adjustment
of the various control points of a Curve?

2. Suppose you could �ll in a triangle. How would you �ll in a Curve?

3. The drawing of a Curve takes considerably longer than drawing a Line.
How would you measure the time needed?

4. Suppose you wished to make a new MultiCurve object, which is a series
of Curves spliced together with smooth joins. What constraints would be
put on the individual curves?


