Preface

“I shall be telling this with a sigh
Somewhere ages and ages hence:

Two roads diverged in a wood, and I-
I took the one less traveled by,

And that has made all the difference.”

—Robert Frost

GENTLE READER, it gives us great pleasure to bring this book to you. This work
is the product of two decades of discussions about the art of programming, as
well as the art of teaching programming. We feel the result is a positive step
toward introducing our craft to students with all levels of interest in computer
science. Teaching, as we do, at liberal arts institutions, it is interesting that
frequently the best students in introductory classes dabble in programming as
passersby. Our special hope is that this book conveys to those individuals what
makes us computer scientists.

Pedagogy. At the time of this writing, the academic community is considering
many fundamental questions; their answers will dictate the immediate future of
computer science education.

Is Java an appropriate teaching language? We believe it is. Historically,
it has been unusual that a single language has determined the direction of
both academics and industry. Today, Java! plays an important role in bringing
relatively modern programming design concepts to both the classroom and the
office. To the extent that this is true, it is easy to see that concepts learned in the
classroom can become lifelong skills for young programmers. Most importantly,
though, we see that Java is an effective pedagogical tool that should be used to
teach students the successful programming strategies that have been developed
over the past several decades.

Should object-oriented languages be taught early in the professional life of
a programmer? We guardedly answer yes. Java is a powerful object-oriented
language, and many of the features of Java are important to understanding
how effective programming can be done in light of, say, portable computing and
the Internet. Yet, when considering the limited time students have to learn
basic material, it behooves the teacher to limit features to the most potent and
palatable few. This book does just that.

Why not use graphics to motivate students? Indeed: why not! We have
used graphical examples in our classes for many years, and have been quite
successful. Now that a rich graphical environment is widely available within

1 Java is a trademark of Sun Microsystems Corporation.



Preface

a language suitable for teaching, we are all the more likely to be successful.
We must not, however, be distracted from teaching students the fundamental
principles of programming that are so often overlooked.

To help instructors develop a stable environment (in light of the sifting sands

of Java), we developed the element package—a free, open, clean, well-defined
environment that supports a simple toolbox for object-oriented graphics. It
may be downloaded from http://www.mhhe.com/javaelements, the McGraw-
Hill web site. Avoiding direct use of the AWT (Abstract Windowing Tool-
kit) has enabled us to insulate the sprouting programmer from a system whose
motivation in design is not necessarily ease of use in the classroom. When the
student is ready to make the transition to using the AWT, we have sought to
maintain as consistent a viewpoint on graphics as possible. This package also
provides textual input and output facilities that (we believe) are necessary in
one’s first programming environment.
Using the Text. The path through the text involves a number of important
steps. First, we introduce the use of objects almost immediately. The design of
objects occurs relatively late in the book. At that time, we believe the student
will have the maturity necessary to construct larger projects.

Recursion is introduced relatively early and can be avoided, but our experi-
ence is that students enjoy the naive novelty of the use of recursion to solve all
sorts of problems. At one time, recursion was considered wasteful of machine
resources, but now it is an important programming tool at nearly every level of
programming.

We have had to select a particular order for Chapters 5 (strings) through 8
(classes), but there is nothing particularly important to approaching this mate-
rial in this order. For example, we introduce strings before arrays, but nothing
within the chapters obviates approaching the material in the reverse order. In
particular, some instructors looking for an “objects-first” approach will find
they can get a significant jump on the development of classes by addressing the
material of Chapter 8 first.

The later chapters should be considered hooks into subsequent parts of
the computer science curriculum—recursive data structures (here, lists) are,
of course, a useful introduction to the subtleties of data structure design. They
provide, in fact, an alternative implementation to the one discussed in the follow-
on book, Java Structures. The chapter on threads is provided for those students
interested in programming multiple-agent programs. Concurrency is an increas-
ingly potent tool for solving problems, and Java makes that possible within the
first semester. Finally, our chapter on machines is a light introduction to three
architectures—the Java Virtual Machine, the Turing Machine, and the P-RAM.
Each is a virtual machine that has had a significant effect on the course of
computer science.

We have worked hard to build in a number of resources for students to test
their progress.

e Within the running text of each chapter are a number of exercises. These
are the type of problem often written in the corner of a board during



xi

lecture, and are meant to test progress as you read along. Some exercises
are solved immediately, and some are left completely to the reader. Timing
is, we believe, everything.

e Near the end of each chapter we include problems. Earlier problems are
usually more easily solved than the later problems. The final problems in
each chapter may be potentially very difficult to solve at this level. They
are proposed to demonstrate that not everything interesting can be solved
by a semester of programming. Most have been recently considered by one
of the authors in a context other than this text. Answers (or distillations
of answers (or hints)) to the starred (x) problems are found in Appendix A
(for Answers).

e At the very end of each chapter are more formally presented laboratory
projects. Many institutions teach this course with an attendant lab sec-
tion; these labs are important forms of mental exercise, and incorporate
the material of the preceding chapter or chapters. Resources associated
with these labs are also available on-line at the McGraw-Hill web site.

e Finally, we include, in Appendix C (for Contest), some of our favorite
programming problems. We believe that solutions to these problems can
be developed by thoughtful, first-time programmers. With time, we expect
that a student’s solution to these problems will become more informed.
These problems are the type often considered in programming contests,
and we cast them in that light here.

Successful students of this text will have become programmers. The practice

of programming is only a matter of development. As with players of games like
chess or go, there should be some pride in simply having learned the rules in the
process of having played a few experimental games. From then on, the process
involves a considerable amount of continued experimentation. We hope we’ve
provided the motivation to write lots of Java programs. The process, it seems,
rarely ends. We write programs as frequently as possible and we hope we never
drop the possibility of honing our skills.
Following Along. A number of features of this book make it unique. First,
all the software in this book was extracted from on-line code. Thus, we can
be reasonably sure that everything we say here is “as true as possible.” We've
placed two different icons in the margin (see right) to highlight the details of the
text. The “meshing gears” icon is used to highlight working programs that can
be found at our web site. The “compass” icon identifies important principles of
program design we have sprinkled throughout the text. For example, we suggest
that

Principle 1 A useful principle is not fact, but a guide.

The observant reader realizes that even with a compass, true north is slightly
elusive. We hope our principles set you in the right direction.




xii

Preface

Acknowledgments. The process of bringing a book to life is unlike any other.
We found our best conversations on Java were held at the many informal restau-
rants in and about Ambherst. The establishments mentioned in this text have
literally given us the energy to attack a sticky problem, and we recommend
them to you. Our collegial working environments—Department of Mathematics
and Computer Science at Amherst and the Department of Computer Science
at Williams—have provided a fruitful medium for discussing nearly every de-
tail of this text. David Jacobs (Clemson), John Rager (Ambherst), Jim Roberts
(CMU), Dale Skrien (Colby), Roman Swiniarski (San Diego State), Deborah
Trytten (University of Oklahoma), reviewed our text. Their comments have
made this a more accurate and accessible text, and we thank them for sharing
their time. Discussions with John Rager, Lyle McGeoch (Amherst), and An-
drea Danyluk (Williams) have directly shaped this text. Lyle, in fact, authored
the original console windowing model; we thank him for his insights there. Our
editors, Betsy Jones, Kelley Butcher, and Christine Parker have been extraor-
dinarily patient with this work. We are indebted to Betsy Blumenthal for her
careful proofreading of these pages. Gino Cieslik designed our cover. Finally,
we would thank our families—Leeta, Mary, Megan, Kate, Duane “Ryan”—for
their love and enduring support.

Enjoy!

Duane A. Bailey, Williams
Duane W. Bailey, Amherst



