
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXX 20XX 1

Cutting Plane Training for Linear Support Vector
Machines

Nicholas A. Arnosti and Jugal K. Kalita

Abstract—Support Vector Machines (SVMs) have been shown to achieve high performance on classification tasks across many
domains, and a great deal of work has been dedicated to developing computationally efficient training algorithms for linear SVMs. One
approach [1] approximately minimizes risk through use of cutting planes, and is improved by [2], [3]. We build upon this work, presenting
a modification to the algorithm developed by [2]. We demonstrate empirically that our changes can reduce cutting-plane training time
by up to 40%, and discuss how changes in data sets and parameter settings affect the effectiveness of our method.

Index Terms—Linear support vector machine, Cutting plane SVM.

!

1 INTRODUCTION

ALTHOUGH SVMs have been shown to perform
well on many classification tasks, their training re-

quires solving an optimization problem whose complex-
ity grows with the number of training examples. Some
tasks require a large number of examples to achieve
optimal performance, and traditional SVM solvers are
often prohibitively slow in these cases. For this reason,
it is important to develop training algorithms whose
asymptotic time complexity scales more reasonably.

Given a set of examples of the form (xi, yi), where each
xi is a vector of feature values taken from the space X ,
and yi is a class label taken from the set Y , classifier
learning algorithms aim to find a function g : X → Y
such that for unseen examples (x, y) ∈ X × Y, g(x) =
y. Throughout this paper, n is the number of training
examples, p the number of features for each example
and X = Rp, and k = |Y|, the number of distinct classes.

For binary classification, Y = {−1,+1}, and the SVM
finds a function of the form g(xi) = sgn(wTxi + b) for
fixed w ∈ Rp, b ∈ R [4]. For linearly separable data sets,
the goal is to find the choice of w which maximizes the
margin between the two classes. This is equivalent to
minimizing wTw subject to yi(wTxi + b) ≥ 1 ∀i.

Most data sets are not linearly separable, so it is
necessary to introduce error terms (“slack variables”) ξi
for each training example. The objective function to be
minimized has two terms: one penalizing for training
errors and the other penalizing for a narrow margin
between classes (to avoid over-fitting). Using an L1-loss
function, this is captured by the following optimization

• Nicholas Arnosti graduated from Williams College, MA, in June 2011. He
is now pursuing a Ph.D. in Operations Research at Stanford University.
(e-mail: narnosti@stanford.edu).

• Jugal K. Kalita is with the Department of Computer Science, University of
Colorado, Colorado Springs, CO 80918 USA. (e-mail: jkalita@uccs.edu).

problem [5]:

minimize: 1
2w

Tw + C
n

∑n
i=1 ξi (1)

subject to: yi(wTxi + b) ≥ 1− ξi , ξi ≥ 0 ∀i,

where C ∈ R+ is known as the regularization constant
and determines the relative importance of the two ob-
jectives. For simplicity, this paper will not include the
bias term b, as it can be “absorbed” into the vector w by
adding a feature of weight 1 to each vector xi.

For multiclass classification, the learned model con-
sists of one vector wy for each class label, and the
decision function given input x is ŷ = argmaxy∈Y(w

T
y x).

Commonly, the weight vectors wy are optimized indi-
vidually by breaking the task into a series of binary
problems. Examples of such approaches include one-
against-all. one-against-one [6], and error-correcting output
coding [7]. Other approaches, such as those presented
by [8] and [9], optimize the vectors wy simultaneously
rather than independently.

In all of the above formulations, the number of slack
variables scales linearly with n, the number of training
examples. Minimizing the objective function requires
optimizing each of these variables, which generally takes
time at least quadratic in n. As a result, traditional SVM
formulations are unsuitable for large data sets. Recent
work [1], [2], [10], [11], [12] has focused on finding
close-to-optimal and relatively efficient solutions to the
primal problem. This paper extends the cutting plane
approach presented in [2] in an effort to further reduce
SVM training time. Section 2 describes previous cutting
plane training algorithms. Section 3 introduces our mod-
ified cutting plane algorithm, and Section 4 presents an
empirical analysis of the effect of our changes. We close
with a summary and discussion of future work.

2 PREVIOUS WORK
Joachims [1] presents a structural formulation of the
primal (1), which reduces the number of slack variables



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXX 20XX 2

from n to one, and allows him to quickly find good
approximations to the optimal objective value. Teo et
al. [10] generalize Joachims’ [1] cutting plane approach,
and Franc and Sonnenburg [2] improve upon this work.
Throughout this paper, we will call Joachims’ algorithm
the Cutting Plane Algorithm (CPA), and refer to the
work presented by [2] as the Optimized Cutting Plane
Algorithm (OCA). Both algorithms aim to solve the
following reformulation of the SVM primal (1):

minimize F (w) =
1

2
wTw + CR(w), (2)

where R(w) =
1

n

n∑

i=1

max{0, 1− yiw
Txi}.

In [1], it is proven that that (1) and (2) are mathematically
equivalent, meaning that a vector w∗ is a solution to one
if and only if it is a solution to the other.

The risk function R(w) consists of a sum of n non-
differentiable terms, making it difficult to find the point
w∗ which minimizes F (w). Instead, CPA and OCA cre-
ate a series of approximations Rt(w) (where t represents
the number of iterations) of the actual risk R(w). At
each iteration, these algorithms find the point wt which
minimizes the simplified objective function Ft:

wt = argminw{Ft(w) =
1

2
wTw + CRt(w)}. (3)

The approximation Rt(w) is constructed using linear
approximations of the risk R (“cutting planes”). Because
R is a convex function, for any point w′ and any sub-
gradient a′ of R at this point, the linear approximation
R(w′) + 〈a′,w −w′〉 provides a lower bound for R(w).
For notational simplicity, we define

b′ = R(w′)− 〈a′,w′〉 (4)

so that R(w) ≥ 〈a′,w〉+b′. Given a collection of functions
Pi(w) = 〈ai,w〉+ bi, Rt(w) is their pointwise maximum
subject to a non-negativity constraint:

Rt(w) = max(0,max1≤i≤t{Pi(w)}). (5)

It follows that for all w, Ft(w) ≤ F (w), so by definition
of wt and w∗ we have that Ft(wt) ≤ Ft(w∗) ≤ F (w∗) ≤
F (wt). It is natural to terminate the algorithm when
Ft(wt) is within some relative tolerance ε of F (wt), as
this ensures that F (wt) is within that tolerance of the
true optimum F (w∗). A concise description of CPA is
presented in Algorithm 1.

Although there are many subgradients of R at a given
point w′, for all cutting-plane algorithms discussed in
this paper, the following subgradient is used:

a′ = − 1

n

n∑

i=1

πiyixi, where (6)

πi =

{
1 if yi〈w′,xi〉 ≤ 1
0 otherwise.

Joachims [1] proves that the number of iterations
required to reach ε-precision depends only on ε and the

regularization constant C (he bounds the growth at a rate
of O(C/ε)) and not on the number of training examples
n. From this, he concludes that CPA runs in O(np) time.
Further details and analysis of CPA can be found in [13].

Franc and Sonnenburg [2] note several ways in which
CPA is sub-optimal. Most notably, while the under-
estimate Ft(wt) increases monotonically with respect to
t, the over-estimate F (wt) fluctuates significantly, which
can lead to slow convergence. To solve this problem, a
new value wb

t is defined:

wb
t = argminµ≥0F (µwt + (1− µ)wb

t−1). (7)

OCA uses F (wb
t), rather than F (wt) to bound F (w∗)

from above. The process of solving equation (7) is re-
ferred to as the line search. For notational convenience,
we define f(µ) = F (µwt + (1 − µ)wb

t−1). Note that
f(0) = F (wb

t−1), so choosing the value of µ which
minimizes f(µ) ensures that F (wb

t) ≤ F (wb
t−1). Thus,

the sequence {F (wb
t)}t≥1 decreases monotonically.

Note that CPA can be considered a special case of OCA
which, rather than conducting the line search, simply
sets µ = 1. While this means that each iteration of
CPA is faster than the corresponding OCA iteration,
OCA outperforms CPA because the line search “pays”
for itself by reducing the number of iterations required
to converge. The net effect of OCA modifications often
reduces training time by an order of magnitude or more
[2]. OCA is summarized in Algorithm 2. The value λ
used in the algorithm is an internal OCA parameter,
which the authors suggest setting to 0.1.

There are many other descent methods which have
been used to solve the convex optimization problem of
minimizing F (w). Examples that have been developed
for linear SVMs include stochastic subgradient descent
such as Pegasos [12] and SGD [14], dual coordinate
descent implemented in LIBLINEAR [11], and more gen-
eralized cutting plane techniques [10]. Tests presented
by [2], [3] indicate that OCA compares favorably to
many of these approaches. It is noted in [3] that OCA
outperforms Pegasos and the algorithms presented by
[10], while converging at rates comparable to those of
SGD. The authors report that OCA is competitive with
LIBLINEAR for many data sets and parameter settings,
although for large values of C, LIBLINEAR is superior.
Our work seeks to modify and improve OCA.

3 MODIFYING THE OCA LINE SEARCH

Franc and Sonnenburg [2] present a method which
solves equation (7) exactly, and establish that it runs in
O(np+ n log n) time. In this section we propose instead
to use an inexact line search, and offer one such search
algorithm. Our modifications prove beneficial for two
reasons. The first is that our inexact method is compu-
tationally more efficient than the exact approach. The
second is that in some cases, our algorithm converges in
significantly fewer iterations than the search algorithm



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXX 20XX 3

Algorithm 1 Cutting Plane Algorithm (CPA)

t = 0, R0(w) = 0
repeat

Compute wt, the solution of problem (3)

Compute at+1 and bt+1 using equations (6) and (4)
at the point wt.
Define Rt+1(w) = max{Rt(w), 〈at+1,w〉+ bt+1}
t = t+1

until 1− Ft(wt)
F (wt)

< ε

Algorithm 2 Optimized Cutting Plane Algorithm (OCA)

t = 1, R0(w) = 0,wb
0 = 0

repeat
Compute wt, the solution of problem (3)
Compute wb

t according to equation (7)
Compute at+1 and bt+1 using equations (6) and (4)
at the point wc

t = wb
t(1− λ) +wtλ.

Define Rt+1(w) = max{Rt(w), 〈at+1,w〉+ bt+1}
t = t+1

until 1− Ft(wt)
F (wb

t )
< ε

Fig. 1: The basic cutting plane approach to training SVMs, and the improvement upon which our work is focused.

presented by [3]. These two advantages are further dis-
cussed in sections 4.1 and 4.2, respectively.

Franc and Sonnenburg [2] note that f(µ) is of the form

f(µ) =
1

2
Aµ2 +B0µ+ C0 +

n∑

i=1

max{0, Biµ+ Ci}

for constants A > 0, Bi, Ci, i = 0 . . . n. Hence, the
subdifferential ∂f(µ) is a sum of an increasing linear
function and up to n step functions which have threshold
values at the points ki = −Ci/Bi (or are identically zero
if Bi = 0). Because ∂f(µ) increases monotonically, it is
possible to solve for the value µ∗ satisfying 0 ∈ ∂f(µ∗)
by computing and sorting the threshold values ki. Algo-
rithm 3 precisely describes this process. The multi-class
implementation is similar, and discussed in detail by [3].
In this paper, we refer to the implementation of OCA that
uses Algorithm 3 to determine wb

t as OCA-E.
Rather than solving equation (7) analytically, we

present an algorithm that evaluates f(µ) at several val-
ues of µ and uses this information to make an intelligent
choice for wb

t . This task is facilitated by the observation
in [2], [3] that f is a convex function with no extra-
neous local minima. Our algorithm uses three values,
low < mid < high to define a search window for the
optimal value of µ. As long as f(high) < f(mid), the
convexity of f implies that the optimal value of µ is
greater than mid, so the search window is shifted “to the
right” (i.e. to larger values of µ). If f(low) < f(mid), then
the optimal value of µ is less than mid, so the window
is shifted towards smaller values of µ.

Once f(low) > f(mid) and f(high) > f(mid), it is
certain that the optimal value of µ lies between low
and high. At this point, the algorithm selects mid as
its value of µ, rather than searching more carefully
within the interval (low, high). We made this choice
upon observing that additional search rarely changed the
selected value of µ in a meaningful way, but often carried
a significant computational cost. Algorithm 4 provides a
precise description of our “three point” line search. In
this paper, we use OCA-T to refer to an implementation
of OCA that uses Algorithm 4 to determine wb

t .
One crucial component of OCA-T is the step size δ. If

it is large, the search is coarse, leading to poorer choices
of µ and slower convergence (measured by number of
iterations). A small step size, meanwhile, may require
f(µ) to be evaluated at many points if the initial search
window is far from the optimal choice. This causes each
iteration to take more time. To balance these competing
factors, OCA-T uses a variable step size. Initially, δ is
small. Each time the search window shifts, δ increases,
to ensure that starting far from the optimal value does
not dramatically slow the algorithm.

Our implementation somewhat arbitrarily initializes
δ to 0.02 and doubles it each time the search window
shifts. Although the theoretical properties of OCA-T are
not sensitive to these choices, one might expect that they
would impact the algorithm’s empirical performance.
While carefully tuning δ and its rate of growth might
have improved the numbers reported in the following
section, we avoided doing this for two reasons.

The first is that parameters values that optimize per-
formance on our baseline data sets are unlikely to be
the same as those that would optimize performance on
new data sets. Thus, results from trials using carefully
tuned values for δ would likely be overly optimistic. The
fact that OCA-T outperforms OCA-E without tuning δ
means that the results in the following section are likely
to generalize to untested domains.

The second reason for not experimenting further with
the parameter δ is that a cursory investigation suggested
that the performance of OCA-T is not highly sensitive
to how δ is initialized and at what rate it is increased.
When collecting data for this report, we ran limited tests
using versions of OCA-T with different initial δ values
(up to about 0.1) and grown rates (between 1 and 3).
With the exception of growth rates very close to one, all
implementations performed comparably.

4 EXPERIMENTAL RESULTS
Tests were run on five data sets, all avail-
able from the LIBSVM data sets website
(www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/).
Relevant information about these data sets is displayed
in Figure 3. The first four are the primary data sets used



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXX 20XX 4

Algorithm 3 Exact Line Search Algorithm

Compute A,Bi, Ci, 0 ≤ i ≤ n
if max ∂f(0) > 0 then

return 0
else

Sort the set K = {ki = −Ci/Bi | ki > 0}
Define s1 < s2 < . . . < s|K| so that {si}|K|

i=1 = K
for i = 1 : |K| do

if 0 ∈ ∂f(si) then
return si

else if ∂f(si−1) < 0 < ∂f(si) then
return the value in the interval (si−1, si) where
∂f(µ) = 0.

end if
end for

end if

Algorithm 4 Three Point Line Search Algorithm

δ = 0.02, low = µ′ − δ, mid = µ′, high = µ′ + δ
while f(high) < f(mid) do /* shift right */
δ = 2δ
low = mid
mid = high
high = high+ δ

end while
while f(low) < f(mid) do /* shift left */
δ = 2δ
high = mid
mid = low
low = low− δ

end while
µ′ = mid /* save for next iteration */
return mid

Fig. 2: Two approaches for the OCA line search (7). We propose Algorithm 4 as an alternative to Algorithm 3.

for comparison. The fifth, POKER, is highly linearly
inseparable but serves as an illustrative example in
Section 4.2. All tests used a 2.66 GHz Intel Core with 32
GB of memory running Ubuntu 10.

Figures 4 and 5 show comparative performance of
OCA-T and OCA-E across the four primary data sets
for a variety of parameter values. In most cases, OCA-
T requires more iterations before convergence, but the
difference is rarely more than 5%. As expected, OCA-T
reduces the amount of time spent on the line search (by
over 75% on all data sets except NEWS20). As a result,
on COVTYPE, MNIST, and RCV1, OCA-T trains more
quickly than OCA-E. On NEWS20, OCA-T does not
significantly reduce time spent on the line search, and
OCA-T and OCA-E perform comparably. The relative
performances of OCA-T and OCA-E seem to be indepen-
dent of ε, but vary with C. For parameter settings which
minimized test set error, OCA-T reduced training time
of COVTYPE, MNIST, RCV1, and NEWS20 by 40.5%,
12.2%, 9.7%, and -1.6%, respectively.

Because OCA-E and OCA-T have identical termination
criteria, their classification performance is equivalent.
For all data sets and parameter settings, error rates on
the test set for the two algorithms were within 0.0025
(and frequently quite closer). Figure 6 shows percent
error on test sets for each data set as C and ε vary.

Name Train/Test Size Features #Class
COVTYPE 581,012/115,826 54 7
MNIST 60,000/10,000 780 10
RCV1 518,571/15,564 47,236 53
NEWS20 15,935/3,993 62,061 20
POKER 25,010/1,000,000 10 10

Fig. 3: The data sets used for this report, selected from
the LIBSVM site. Each has large numbers of examples
and/or features, and COVTYPE, MNIST, RCV1, and
NEWS20 appear frequently in the literature.

Accuracy was highly dependent on the choice of C, but
C = 1 gave consistently good performance. Interestingly,
classification accuracy did not appear to depend signif-
icantly on ε.

4.1 Data Set Dimensionality

Clearly, OCA-T is most helpful when a relatively large
percentage of OCA-E training time is dedicated to the
line search. But when is this the case? The exact line
search computes each of the points ki where the subd-
ifferential ∂f(µ) is an interval, then sorts these values
and considers them in sorted order. While time spent
computing ki depends on the number of features p,
the process is dominated by the sorting step [2], which
takes time depending only on n. Accordingly, for data
sets with a large number of training examples, the time
spent on the line search should not be greatly impacted
by the number of features p. Other portions of the
algorithm, however, take time which scales linearly with
p. Therefore, we expect the fraction of training time spent
on the line search to increase as the number of features
decreases.

Empirical results confirm this expectation: on RCV1,
which has over 47,000 features, the exact line search con-
sumed 12% of OCA-E training time. On MNIST, which
incorporates 780 features, 22% of the total time was
devoted to the line search. COVTYPE, meanwhile, uses
only 54 features, and the line search consumes 61% of the
total time. To investigate this further we created reduced
training sets from RCV1 and MNIST, each containing
all of the original examples but eliminating many of
the original features. The results of running OCA-E and
OCA-T (using C = 1, ε = 0.01) on these training sets
are shown in Figure 7. These tests confirm that as the
number of features decreases, the line search becomes an
increasingly significant portion of the training process.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXX 20XX 5

COVTYPE MNIST RCV1 NEWS20
0.5000 35.70 7.20 7.86 14.70
0.1000 35.75 7.23 7.83 14.78
0.0500 35.74 7.23 7.83 14.80
0.0100 35.73 7.22 7.82 14.73
0.0050 35.73 7.08 7.95 14.70
0.0010 35.99 7.13 7.68 14.75
0.0005 36.16 6.97 7.86 15.28

(a) Percent error as ε varies, C = 1

COVTYPE MNIST RCV1 NEWS20
10−4 37.72 11.72 26.20 94.99
10−3 35.83 8.53 18.01 94.99
10−2 35.77 7.22 10.79 20.19
10−1 35.80 7.10 7.90 17.34
100 35.73 7.22 7.82 14.73
101 35.72 7.61 9.84 15.75
102 35.74 7.78 11.91 16.25

(b) Percent error as C varies, ε = 0.01

Fig. 6: Percent error on an unseen test set for varying parameter values. Figure 6a shows that error is static as ε
varies, suggesting that equation (2) need not be well-approximated to learn a good model. Figure 6b indicates that
accuracy is highly dependent on the choice of C, with optimal performance obtained at or near the default value
C = 1 in all cases.

4.2 The Downside of Greed

When seeking an approximate solution to the primal
optimization problem (2), both CPA and OCA use a
greedy approach: each iteration attempts to reduce the
objective value by as much as possible. Since the ultimate
goal is to find an objective value within a tolerance ε
of the optimal value, this is a reasonable approach. It
should be noted, however, that the choice of wb

t has
a notable impact on values of wb

i for i > t. A slightly
“worse” choice of wb

t during the current iteration may
result in better options in the future, and lead to faster
convergence.

This begs the question of whether it is possible to
identify values of µ which will be particularly good or
bad for future convergence. In general, this is difficult,
but there is one value of µ which has a clear drawback:
if µ = 0, wb

t = wb
t−1. If this occurs for many iterations in

a row, the algorithm has spent a significant amount of
time without improving its best so-far solution.

This concern is illustrated in dramatic fashion on the
POKER data set. When run on POKER using the default
value C = 1, OCA-E determined that µ = 0 was optimal
for each of the first 1451 iterations, leading to very slow
convergence. OCA-T, by contrast, is designed so that it



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXX 20XX 6

chooses small but nonzero values of µ. While the first
several iterations of OCA-T do not reduce F (wb

t) by
quite as much as the first iterations of OCA-E do, the
final result is that OCA-T converges to within 1% of
optimal after 258 iterations and 22 seconds, compared
to 1454 iterations and 219 seconds for OCA-E.

While POKER is not well-suited to classification using
linear SVMs, we argue that the observations above still
illustrate the superiority of OCA-T over OCA-E. One
reason for this is that regardless of the separability of the
data set in question, one would hope to achieve the best
result possible in relatively few iterations, which OCA-
E clearly does not. More importantly, similar behavior
was observed when working with other data sets. For
example, when trained on the COVTYPE data set with
parameters C = 100, ε = .01, OCA-E required 744
iterations to converge, while OCA-T needed only 622.
Upon investigation we found that for 490 of the 744
OCA-E iterations (or 66%), the value µ = 0 was selected.
Generally speaking, the observations in this section in-
dicate that the shortcomings of the greedy approaches
used by all cutting plane algorithms described in this
paper may be significant. An immediate consequence of
this fact is that that even when OCA-E spends relatively
little time on the line search, approximation techniques
such as OCA-T may offer significant benefits.

5 CONCLUSION AND FUTURE WORK
In this paper, we have observed that the exact line search
used to compute the best-so-far solution wb

t at each
iteration of the OCA algorithm can be computationally
costly. Our modifications reduce time spent solving the
reduced optimization problem by approximately 77%
on COVTYPE, MNIST, and RCV1. This modification
reduces training time using optimal parameter settings
by approximately 41%, 12%, and 10%, respectively. On
the very sparse data set NEWS20, OCA-T performs
comparably to the original OCA-E. In general, the ad-
vantages of OCA-T are most significant on data sets
with fewer features, since these are the situations when
the line search dominates the OCA-E training process.
This suggests that OCA-T would compare even more

Data Set Features Search % Speedup

MNIST

780 22.3 1.12
473 30.4 1.27
337 44.3 1.42
139 64.3 1.83

RCV1

47,236 11.7 1.11
4,373 36.3 1.42
676 49.3 1.56
186 62.7 1.94

Fig. 7: For both MNIST and RCV1, as the number of fea-
tures decreases, the percentage of OCA-E training time
spent on the exact line search increases. Correspondingly,
the speedup offered by OCA-T increases.

favorably to OCA-E after performing feature selection
on the unfiltered data sets used in this report.

Even on high-dimensional data sets, however, OCA-T
can offer advantages. While performance on the 47,236-
feature RCV1 is one such example, even more note-
worthy are the cases where OCA-T converges in fewer
iterations than OCA-E. The somewhat surprising result
that an inexact search can produce faster convergence
than an exact one is explained primarily by the fact that
OCA-T avoids selecting µ = 0. This finding suggests that
the greedy approach of reducing the objective function
by as much as possible at each iteration can yield far-
from-optimal performance. An open question for future
investigation is which greedy choices are problematic
and whether there are better search methods than the
approaches that have so far been employed.

Acknowledgement
This research was conducted with partial support from
NSF grant ARRA 0851783. Nick Arnosti was a research
intern at UCCS, funded by this grant, during the summer
of 2010.

REFERENCES
[1] T. Joachims, “Training linear SVMs in linear time,” in ACM

SIGKDD, 2006, pp. 217–226.
[2] V. Franc and S. Sonnenburg, “Optimized cutting plane algorithm

for support vector machines,” in ICML, 2008, pp. 320–327.
[3] ——, “Optimized cutting plane algorithm for large-scale risk

minimization,” J. of Mach. Learn. Res., vol. 10, pp. 2157–2192, 2009.
[4] E. Mayoraz and E. Alpaydin, “Support vector machines for

multi-class classification,” in LNCS, Engineering Applications of Bio-
Inspired Artificial Neural Networks. Springer, 1999, pp. 833–842.

[5] C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data mining and knowledge discovery, vol. 2, no. 2,
pp. 121–167, 1998.

[6] C. Hsu and C. Lin, “A comparison of methods for multiclass
support vector machines,” IEEE Transactions on Neural Networks,
vol. 13, no. 2, pp. 415–425, 2002.

[7] T. Dietterich and G. Bakiri, “Solving multiclass learning problems
via error-correcting output codes,” J. of AI Res., vol. 2, no. 263, p.
286, 1995.

[8] J. Weston and C. Watkins, “Support vector machines for multi-
class pattern recognition,” in 7th European Symp. on Artificial
Neural Networks, vol. 4, no. 6, 1999, pp. 219–224.

[9] K. Crammer and Y. Singer, “On the algorithmic implementation of
multiclass kernel-based vector machines,” J. of Mach. Learn. Res.,
vol. 2, pp. 265–292, 2002.

[10] C. H. Teo, A. Smola, S. V. Vishwanathan, and Q. V. Le, “A scalable
modular convex solver for regularized risk minimization,” in
ACM SIGKDD, 2007, pp. 727–736.

[11] S. Keerthi, S. Sundararajan, K. Chang, C. Hsieh, and C. Lin, “A
sequential dual method for large scale multi-class linear SVMs,”
in ACM SIGKDD, 2008, pp. 408–416.

[12] S. Shalev-Shwartz and N. Srebro, “Svm optimization: inverse
dependence on training set size,” in ICML, 2008, pp. 928–935.

[13] T. Joachims, T. Finley, and C. Yu, “Cutting-plane training of
structural SVMs,” Machine Learning, vol. 77, no. 1, pp. 27–59, 2009.

[14] A. Bordes, L. Bottou, and P. Gallinari, “Sgd-qn: Careful quasi-
newton stochastic gradient descent,” J. Mach. Learn. Res., vol. 10,
pp. 1737–1754, December 2009.

[15] C. Lin, C. Chang, and C. Hsu, “A practical guide
to support vector classification,” National Taiwan U.,
www.csie.ntu.edu.tw/̃cjlin/papers/guide/guide.pdf, 2003.

[16] H. Lei and V. Govindaraju, “Half-against-half multi-class support
vector machines,” in LNCS, Multiple Classifier Systems. Springer,
2005, pp. 156–164.


