This week we will switch gears and look at a popular non-parametric technique for classifier learning: top-down induction of decision trees.

1 Decision Trees and the C4.5 Algorithm

We will focus our attention on a particular decision tree learning algorithm: C4.5, which builds decision tree by recursively selecting attributes on which to split. The criterion used for selecting an attribute is information gain.

1.1 Reading

There are many good sources of information on decision trees and the C4.5 algorithm. You might want to quickly skim Alpaydin, Sections 9.1-9.3 first. Then I recommend Mitchell, Chapter 3, which should be your primary source for this topic. If you’re interested in other sources, you can also look at the following:

- Russell and Norvig, Section 18.3;
- Ross Quinlan’s paper “Induction of Decision Trees”, which appeared in Volume 1 of the journal *Machine Learning*;

1.2 C4.5

You won’t be doing any implementation of your own this week. But you might find it useful to run C4.5 to get a sense of what it does and how well it works. You should begin by copying weka.jar, which you can find in

```
~andrea/shared/cs374/
```

This is a wonderful resource that includes implementations of many popular machine learning algorithms. To use it, simply type

```
java -jar weka.jar
```

This will start up a GUI. Click on the button that’s labelled “Explorer”. This will open another window that will allow you to select machine learning algorithms and datasets on which you can test them.

Begin by selecting a data set. You can do this by clicking on “Open file...” and then selecting an “aarf” file of your choice. (I’ve put some new data in the 374 directory, in the same place where you’ll find Weka.) Once you’ve selected a data file, click on “Classify” and then “Choose”. In the “Trees” directory, click on J48 (which is really C4.5). Then click on “Start”. The output of the classifier will appear in the right half of the window.

If you have any trouble working with Weka, let me know. If you find that it’s too big to copy, I can point you to the actual C4.5 implementation that was written by Quinlan.
1.3 Exercises

1. (From Dietterich) Consider the following decision tree:

(a) Draw the decision boundaries defined by this tree. Each leaf is labeled with a letter. Write this letter in the corresponding region of instance space.

(b) Give another decision tree that is syntactically different but defines the same decision boundaries.

2. (From an exercise by Terran Lane) Consider a two-category classification task with the following training data:

<table>
<thead>
<tr>
<th>attr1</th>
<th>attr2</th>
<th>attr3</th>
<th>attr4</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>c</td>
<td>-1</td>
<td>c1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>c</td>
<td>-1</td>
<td>c1</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>c</td>
<td>1</td>
<td>c1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>c</td>
<td>1</td>
<td>c1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>c</td>
<td>1</td>
<td>c2</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>-1</td>
<td>c2</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>a</td>
<td>-1</td>
<td>c2</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>c</td>
<td>-1</td>
<td>c2</td>
</tr>
</tbody>
</table>

Construct a complete (unpruned) decision tree for this data using information gain as your splitting criterion. Please show all entropy calculations.

3. (Modified from Russell and Norvig) In the recursive construction of decision trees, it sometimes happens that a mixed set of positive and negative examples remains at a leaf node, even after all the attributes have been used.

Suppose that you have learned a decision tree for a particular two-class problem, where 1 represents the positive class and 0 represents the negative class. Furthermore, assume that you have p positive examples and n negative examples at the leaf.

(a) Show that the solution which picks the majority classification, minimizes the absolute error over the set of examples at the leaf.
(b) Show that the class probability \(p/(p+n) \) minimizes the sum of squared errors.

4. This exercise will have you consider an interesting property of the entropy function.

 For all parts of this exercise, you should assume a binary classification task, where all attributes are binary as well.

 (a) Show that the entropy function is concave. (You may substitute \(\ln \) for \(\log_2 \) for this exercise, as you will need to find the second derivative of the entropy function.)

 (b) Suppose that a binary-valued attribute splits a set of examples \(E \) into subsets \(E_1 \) and \(E_2 \), and that the subsets have \(p_1 \) and \(p_2 \) positive examples and \(n_1 \) and \(n_2 \) negative examples, respectively. Show that the attribute has 0 information gain if the ratios \(p_1/(p_1+n_1) \) and \(p_2/(p_2+n_2) \) are the same.

 (c) A function \(f(x) \) is concave on an interval \([a, b]\) if for any two points \(x_1 \) and \(x_2 \) in \([a, b]\) and any \(\lambda \), where \(0 < \lambda < 1 \),

 \[
 f(\lambda x_1 + (1 - \lambda)x_2) \geq \lambda f(x_1) + (1 - \lambda)f(x_2)
 \]

 That is, the value at the midpoint of every interval in the domain exceeds the average of its values at the ends of the interval.

 Use this to show that every attribute has non-negative information gain.

 (d) What does part c imply about the information content of the data and about the process of constructing a decision tree?

2 Difficult Data

Of course, no learning algorithm is perfect. Decision tree learning algorithms have difficulty handling certain types of “hard” data.

2.1 Reading

Read “Skewing: An Efficient Alternative to Lookahead for Decision Tree Induction” by Page and Ray, which appeared in IJCAI-03.

2.2 Exercise

Summarize (and be prepared to discuss) the algorithm and results described in the paper.