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Parts of this, as well as parts of the earlier neural net slides, were adapted from Tom Mitchell
Other parts draw from Deep Learning by Goodfellow, Bengio, and Courville
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Announcements

* Reading assignment (and paper response) for
Monday: “Do Convolutional Nets Need to Be
Deep and Convolutional?”

Today’s Lecture

* Deep Learning

What is Deep Learning?

* Represents the world as a nested hierarchy of
concepts
— Each concept defined in relation to simpler concepts
— More abstract representations computed in terms of
less abstract ones
* An artificial neural network with many layers
* Success generally not due to simply to the fact
that they have many layers
— Autoencoding
— Convolution
— Recurrence

From Deep Learning, Goodfellow, Bengio, Courville, page 6

Long History

Foundational work done in the 1900s

— 1940s-1960s: Cybernetics [McCulloch and Pitts 1943,
Hebb 1949, Rosenblatt 1958]

— 1980s-mid 1990s: Connectionism [Rumelhart 1986]

— 1990s: modern convolutional networks [LeCun et al.

1998], LSTM [Hochreiter & Schmidhuber 1997, MNIST
and other large datasets]

Recent success due to

— Availability of data

— Availability of computing power

— Continued work on algorithms and theory in this area




Architectural Choices

As with artificial neural networks generally:

* Number of layers

* Number and type of hidden and output units
* Connectivity
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Convolutional Networks

For data that has a known grid-like topology

— Time series data (a 1-D grid taking samples at
regular intervals)

— Image data (2-D grid of pixels)

* Use convolution in place of general matrix
multiplication* in at least one of their layers

* Most convolutional networks also make use of
pooling
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Convolution in Convolutional Net
Terminology
* First argument is the input — for example, a
segment of a 2-D image

* Second argument is the kernel — for example,
a 2-D matrix
— The entries in the matrix are parameters adapted
by the learning algorithm
* QOutput is sometimes referred to as the
feature map

Benefits of Convolution

Convolution leverages three ideas that can help a
learning system:
* Sparse interactions
— Accomplished by making the kernel smaller than the
input
* Parameter sharing

— Rather than learning a separate set of parameters for
every location, we learn only one set

* Equivariant representations

— Parameter sharing causes the network layer to be
equivariant to translation

Pooling

A typical convolutional net layer consists of three

stages

* Perform several convolutions in parallel to
produce a set of linear activations

* Run each linear activation through a nonlinear
activation function

* Apply a pooling function
— Replaces the output at a location with a summary

statistic of the nearby outputs

— Helps to make the representation approximately
invariant to small translations of the input
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How Pooling Helps with Translation
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* What is the smallest size kernel that could
reasonably serve as an edge detector?

* How are the kernel parameters learned?

Recurrent Networks

* Specialized for processing sequences of values
xLx? x3 .., x4

* Use hidden layer in the network to capture
state history.

* Cycles in the graph allow the present value of
a variable to influence its value at a future
time step. [
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Recurrent Networks

Specialized for processing sequences of values
xLx? xd ., xd

* We refer to recurrent networks as operating
on sequences of such vectors.

* Actually, usually operate on minibatches of
such sequences, with a different sequence
length d for each sequence in the minibatch.

* Add a special “end of sequence” symbol, to
the end of each sequence.
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Shared Parameters

* Relies on the assumption that the same
parameters can be used for different time
steps.

* Assumes the conditional probability
distribution over the variables at time t+1
given the variables at time t is stationary.

The Challenge of Long-Term
Dependencies

* Gradients propagated over many stages tend to
either vanish (most of the time) or explode
(rarely, but with much damage).

* Exponentially smaller weights given to long-term
interactions.

* Solutions include:

— Gradient clipping.

— Use ReLU (rectified linear unit) rather than sigmoid or
tanh.

— Long Short Term Memory (LSTM): weight self-loops,
conditioned on the context

An LSTM Cell




