
4/24/17	

1	

Deep	Learning	

Andrea	Danyluk	
April	21,	2017	

Parts	of	this,	as	well	as	parts	of	the	earlier	neural	net	slides,	were	adapted	from	Tom	Mitchell.	
Other	parts	draw	from	Deep	Learning	by	Goodfellow,	Bengio,	and	Courville	

Announcements	

•  Reading	assignment	(and	paper	response)	for	
Monday:	“Do	ConvoluOonal	Nets	Need	to	Be	
Deep	and	ConvoluOonal?”	

Today’s	Lecture	

•  Deep	Learning	

What	is	Deep	Learning?	
•  Represents	the	world	as	a	nested	hierarchy	of	
concepts	
–  Each	concept	defined	in	relaOon	to	simpler	concepts	
– More	abstract	representaOons	computed	in	terms	of	
less	abstract	ones	

•  An	arOficial	neural	network	with	many	layers	
•  Success	generally	not	due	to	simply	to	the	fact	
that	they	have	many	layers	
– Autoencoding	
–  ConvoluOon	
–  Recurrence	

From	Deep	Learning,	Goodfellow,	Bengio,	Courville,	page	6	

Long	History	
•  FoundaOonal	work	done	in	the	1900s	
–  1940s-1960s:	CyberneOcs	[McCulloch	and	Pi^s	1943,	
Hebb	1949,	Rosenbla^	1958]	

–  1980s-mid	1990s:	ConnecOonism	[Rumelhart	1986]	
–  1990s:	modern	convoluOonal	networks	[LeCun	et	al.	
1998],	LSTM	[Hochreiter	&	Schmidhuber	1997,	MNIST	
and	other	large	datasets]	

•  Recent	success	due	to	
– Availability	of	data	
– Availability	of	compuOng	power	
–  ConOnued	work	on	algorithms	and	theory	in	this	area	

4/24/17	

2	

Architectural	Choices	

As	with	arOficial	neural		networks	generally:	
•  Number	of	layers	
•  Number	and	type	of	hidden	and	output	units	
•  ConnecOvity	

ConvoluOonal	Networks	

•  For	data	that	has	a	known	grid-like	topology	
– Time	series	data	(a	1-D	grid	taking	samples	at	
regular	intervals)	

–  Image	data	(2-D	grid	of	pixels)	

•  Use	convoluOon	in	place	of	general	matrix	
mulOplicaOon*	in	at	least	one	of	their	layers	

•  Most	convoluOonal	networks	also	make	use	of	
pooling	

CHAPTER 9. CONVOLUTIONAL NETWORKS

a b c d

e f g h

i j k l

w x

y z

aw + bx +
ey + fz
aw + bx +
ey + fz

bw + cx +
fy + gz
bw + cx +
fy + gz

cw + dx +
gy + hz
cw + dx +
gy + hz

ew + fx +
iy + jz
ew + fx +
iy + jz

fw + gx +
jy + kz
fw + gx +
jy + kz

gw + hx +
ky + lz
gw + hx +
ky + lz

Input

Kernel

Output

Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
the output to only positions where the kernel lies entirely within the image, called “valid”
convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor.

334

ConvoluOon	in	ConvoluOonal	Net	
Terminology	

•  First	argument	is	the	input	–	for	example,	a	
segment	of	a	2-D	image	

•  Second	argument	is	the	kernel	–	for	example,	
a	2-D	matrix	
– The	entries	in	the	matrix	are	parameters	adapted	
by	the	learning	algorithm	

•  Output	is	someOmes	referred	to	as	the	
feature	map	

Benefits	of	ConvoluOon	
ConvoluOon	leverages	three	ideas	that	can	help	a	
learning	system:	
•  Sparse	interacOons	
– Accomplished	by	making	the	kernel	smaller	than	the	
input	

•  Parameter	sharing	
–  Rather	than	learning	a	separate	set	of	parameters	for	
every	locaOon,	we	learn	only	one	set	

•  Equivariant	representaOons	
–  Parameter	sharing	causes	the	network	layer	to	be	
equivariant	to	translaOon	

Pooling	
A	typical	convoluOonal	net	layer	consists	of	three	
stages	
•  Perform	several	convoluOons	in	parallel	to	
produce	a	set	of	linear	acOvaOons	

•  Run	each	linear	acOvaOon	through	a	nonlinear	
acOvaOon	funcOon	

•  Apply	a	pooling	funcOon	
–  Replaces	the	output	at	a	locaOon	with	a	summary	
staOsOc	of	the	nearby	outputs	

– Helps	to	make	the	representaOon	approximately	
invariant	to	small	translaOons	of	the	input	

4/24/17	

3	

How	Pooling	Helps	with	TranslaOon	
CHAPTER 9. CONVOLUTIONAL NETWORKS

Large response

in pooling unit

Large response

in pooling unit
Large

response

in detector

unit 1

Large

response

in detector

unit 3

Figure 9.9: Example of learned invariances: A pooling unit that pools over multiple features
that are learned with separate parameters can learn to be invariant to transformations of

the input. Here we show how a set of three learned filters and a max pooling unit can learn

to become invariant to rotation. All three filters are intended to detect a hand-written 5.

Each filter attempts to match a slightly different orientation of the 5. When a 5 appears in

the input, the corresponding filter will match it and cause a large activation in a detector

unit. The max pooling unit then has a large activation regardless of which detector unit

was activated. We show here how the network processes two different inputs, resulting

in two different detector units being activated. The effect on the pooling unit is roughly

the same either way. This principle is leveraged by maxout networks (Goodfellow et al.,
2013a) and other convolutional networks. Max pooling over spatial positions is naturally

invariant to translation; this multi-channel approach is only necessary for learning other

transformations.

0.1 1. 0.2

1. 0.2

0.1

0.1

0.0 0.1

Figure 9.10: Pooling with downsampling. Here we use max-pooling with a pool width of
three and a stride between pools of two. This reduces the representation size by a factor

of two, which reduces the computational and statistical burden on the next layer. Note

that the rightmost pooling region has a smaller size, but must be included if we do not

want to ignore some of the detector units.

344

A	Full	ConvoluOonal	Layer	

CHAPTER 9. CONVOLUTIONAL NETWORKS

Convolutional Layer

Input to layer

Convolution stage:

A ne transformffi

Detector stage:

Nonlinearity

e.g., rectified linear

Pooling stage

Next layer

Input to layers

Convolution layer:

A ne transform ffi

Detector layer: Nonlinearity

e.g., rectified linear

Pooling layer

Next layer

Complex layer terminology Simple layer terminology

Figure 9.7: The components of a typical convolutional neural network layer. There are two
commonly used sets of terminology for describing these layers. (Left)In this terminology,
the convolutional net is viewed as a small number of relatively complex layers, with
each layer having many “stages.” In this terminology, there is a one-to-one mapping
between kernel tensors and network layers. In this book we generally use this terminology.
(Right)In this terminology, the convolutional net is viewed as a larger number of simple
layers; every step of processing is regarded as a layer in its own right. This means that
not every “layer” has parameters.

341

A	ConvoluOonal	Network	
Convolutional Neural Nets for Image Recognition

•  specialized architecture: mix different types of units, not
completely connected, motivated by primate visual cortex

•  many shared parameters, stochastic gradient training

•  very successful! now many specialized architectures for
vision, speech, translation, …

[Le Cun, 1992]

QuesOons	

•  What	is	the	smallest	size	kernel	that	could	
reasonably	serve	as	an	edge	detector?	

•  How	are	the	kernel	parameters	learned?	

Recurrent	Networks	
•  Specialized	for	processing	sequences	of	values	

x 1,	x 2,	x 3,	…,	x d	

•  Use	hidden	layer	in	the	network	to	capture	
state	history.	

•  Cycles	in	the	graph	allow	the	present	value	of	
a	variable	to	influence	its	value	at	a	future	
Ome	step.	

Recurrent Networks: Time Series

•  Suppose we want to predict next state of world
–  and it depends on history of unknown length
–  e.g., robot with forward-facing sensors trying to predict next

sensor reading as it moves and turns

•  Idea: use hidden layer in network to capture state history

Recurrent	Networks	

•  Specialized	for	processing	sequences	of	values	
x 1,	x 2,	x 3,	…,	x d	

•  We	refer	to	recurrent	networks	as	operaOng	
on	sequences	of	such	vectors.	

•  Actually,	usually	operate	on	minibatches	of	
such	sequences,	with	a	different	sequence	
length	d	for	each	sequence	in	the	minibatch.	

•  Add	a	special	“end	of	sequence”	symbol,	to	
the	end	of	each	sequence.	

4/24/17	

4	

Unfolding	

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

where we see that the state now contains information about the whole past sequence.

Recurrent neural networks can be built in many different ways. Much as

almost any function can be considered a feedforward neural network, essentially

any function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use equation or a similar equation to10.5

define the values of their hidden units. To indicate that the state is the hidden

units of the network, we now rewrite equation using the variable10.4 h to represent
the state:

h()t = (f h(1)t− ,x()t ;)θ , (10.5)

illustrated in figure , typical RNNs will add extra architectural features such10.2

as output layers that read information out of the state to make predictions.h

When the recurrent network is trained to perform a task that requires predicting

the future from the past, the network typically learns to use h()t as a kind of lossy
summary of the task-relevant aspects of the past sequence of inputs up to t. This
summary is in general necessarily lossy, since it maps an arbitrary length sequence

(x()t ,x(1)t− ,x(2)t− , . . . ,x(2) ,x(1)) to a fixed length vector h()t . Depending on the

training criterion, this summary might selectively keep some aspects of the past

sequence with more precision than other aspects. For example, if the RNN is used

in statistical language modeling, typically to predict the next word given previous

words, it may not be necessary to store all of the information in the input sequence

up to time t, but rather only enough information to predict the rest of the sentence.
The most demanding situation is when we ask h()t to be rich enough to allow
one to approximately recover the input sequence, as in autoencoder frameworks

(chapter).14

ff

hh

xx

h(t−1)h(t−1) h()th()t h(+1)th(+1)t

x(t−1)x(t−1) x()tx()t x(+1)tx(+1)t

h()...h()... h()...h()...

ff

Unfold

ff ff f

Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input x by incorporating it into the state h that is passed forward
through time. (Left)Circuit diagram. The black square indicates a delay of a single time
step. The same network seen as an unfolded computational graph, where each(Right)
node is now associated with one particular time instance.

Equation can be drawn in two different ways. One way to draw the RNN10.5

is with a diagram containing one node for every component that might exist in a

376

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

information flow forward in time (computing outputs and losses) and backward
in time (computing gradients) by explicitly showing the path along which this
information flows.

10.2 Recurrent Neural Networks

Armed with the graph unrolling and parameter sharing ideas of section , we10.1

can design a wide variety of recurrent neural networks.

UU

VV

WW

o(t−1)o(t−1)

hh

oo

yy

LL

xx

o()to()t o(+1)to(+1)t

L(t−1)L(t−1) L()tL()t L(+1)tL(+1)t

y(t−1)y(t−1) y ()ty ()t y (+1)ty (+1)t

h(t−1)h(t−1) h()th()t h(+1)th(+1)t

x(t−1)x(t−1) x()tx()t x(+1)tx(+1)t

WWWW WW WW

h()...h()... h()...h()...

VV VV VV

UU UU UU

Unfold

Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y . When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ŷ = softmax(o) and compares this to the target y. The RNN has input to hidden
connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections
parametrized by a weight matrix W , and hidden-to-output connections parametrized by
a weight matrix V . Equation defines forward propagation in this model.10.8 (Left)The
RNN and its loss drawn with recurrent connections. (Right)The same seen as an time-
unfolded computational graph, where each node is now associated with one particular
time instance.

Some examples of important design patterns for recurrent neural networks
include the following:

378

Shared	Parameters	

•  Relies	on	the	assumpOon	that	the	same	
parameters	can	be	used	for	different	Ome	
steps.	

•  Assumes	the	condiOonal	probability	
distribuOon	over	the	variables	at	Ome	t+1	
given	the	variables	at	Ome	t	is	staOonary.	

The	Challenge	of	Long-Term	
Dependencies	

•  Gradients	propagated	over	many	stages	tend	to	
either	vanish	(most	of	the	Ome)	or	explode	
(rarely,	but	with	much	damage).	

•  ExponenOally	smaller	weights	given	to	long-term	
interacOons.	

•  SoluOons	include:	
– Gradient	clipping.	
– Use	ReLU	(recOfied	linear	unit)	rather	than	sigmoid	or	
tanh.	

–  Long	Short	Term	Memory	(LSTM):	weight	self-loops,	
condiOoned	on	the	context	

An	LSTM	Cell	
CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

at each time step.

×

input input gate forget gate output gate

output

state

self-loop

×

+ ×

Figure 10.16: Block diagram of the LSTM recurrent network “cell.” Cells are connected
recurrently to each other, replacing the usual hidden units of ordinary recurrent networks.
An input feature is computed with a regular artificial neuron unit. Its value can be
accumulated into the state if the sigmoidal input gate allows it. The state unit has a
linear self-loop whose weight is controlled by the forget gate. The output of the cell can
be shut off by the output gate. All the gating units have a sigmoid nonlinearity, while the
input unit can have any squashing nonlinearity. The state unit can also be used as an
extra input to the gating units. The black square indicates a delay of a single time step.

Leaky units allow the network to accumulate information (such as evidence
for a particular feature or category) over a long duration. However, once that

information has been used, it might be useful for the neural network to forget the
old state. For example, if a sequence is made of sub-sequences and we want a leaky

unit to accumulate evidence inside each sub-subsequence, we need a mechanism to

forget the old state by setting it to zero. Instead of manually deciding when to

clear the state, we want the neural network to learn to decide when to do it. This

409

