Markov Models

Andrea Danyluk
March 17, 2017

With thanks to CS188 slides, as well as content from University of Washington CSE515,

Penn State Stats, Yale University Stats, and others.

Announcements

* Filtering assignment after the break
* Start thinking about final projects

Today’s Lecture

* Finish up a bit of “intro to probability”
* Markov Models

Inference in Ghostbusters

* Aghost is in the grid somewhere

* Sensor readings tell how close a square is to the
ghost

* Sensors noisy, but we know P(Color|Distance)

Ghostbusters

* Say we have two distributions 011 | 011 | 0.11
— P(G): say it’s uniform

— Sensor reading model P(R|G) 011 | 011 | 011

* Say we get a reading at (1,1)

0.11 | 011 | 0.11

* Can calculate the posterior

distribution P(G|r) over all 011 | 011 | 011
locations given the reading at
(1,2) 011 | 011 | 0.11

0.11 | 0.11

* Sensor readings
— On the ghost (1 location): red
—1 or 2 away (5 locations): orange
— 3 or 4 away (3 locations): yellow

* Sensors noisy

‘ P(red | 0) ‘ P(orange | 0) ‘ P(yellow | 0) ‘
\ 07 \ 02 \ 01 \
‘ P(red | 10r2) ‘ P(orange | 1 or2) ‘ P(yellow | 1 or 2) ‘
‘ 0.15 ‘ 0.7 ‘ 0.15 ‘
‘ P(red | 30r4) ‘ P(orange | 3 or4) ‘ P(yellow | 3 or 4) ‘
‘ 0.1 ‘ 0.2 ‘ 0.7 ‘

[Adapted from CS 188 Berkeley]
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P(g|yellow)

P(0 away|yellow)
P(1-2 away|yellow)
P(3-4 away|yellow)
P(yellow)

Ghostbusters
* Say we have two distributions 011 | 011 | 0.11
— P(G): say it’s uniform
— Sensor reading model P(R|G), 011|011 | 011

where R=reading at (1,1)
011 | 011 | 0.11

Can calculate the posterior
distribution P(G|r) over ghost
locations given a reading at
(1,1) 0.05 | 0.05 | 0.24

Intractability of Probabilistic Inference

* Size of full joint probability distribution over n
(Boolean) random variables?
— O(zn)

* Say we add a new random variable to the
Ghostbusters problem: Is the number of
students attending Al today > 15?

* 3 random variables:

— Ghost location
— Sensor reading
— Attendance > 15?

* Say we add a new random variable to the
Ghostbusters problem: Is the number of
students attending Al tadav > 15?

But what does attendance
in Al have to do with
Ghostbusters?

Probabilistic Independence

* It seems reasonable to assert that the number
of students attending Al on any given day is
unrelated to ghosts or sensor readings.

e If P(X|Y)=P(X), we say X is independentof Y: X 1| Y
— Similarly, Y is independent of X.
—P(Y]X) = P(Y), P(X, Y) = P(X)P(Y)

* This means the joint distribution factors into a
product of two simpler distributions.
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* Say we add a random variable to a “test and
disease” problem domain: Does the patient
have a rash? [And say that when a person has
the disease, they tend to get a rash.]

* 3 Boolean variables:

— T: Test positive or negative
— D: Disease positive or negative
— R: Rash positive or negative

* 23 =8 entries in the full joint probability

distribution

Conditional Independence

* This time we can’t reasonably assert that R is
independent of T or D.

* But we can say that R and T are conditionally
independent, given information about D.

¢ P(R|T,D) =P(R|D). Thatis, if | have the disease,
the probability that | expect a rash does not
depend on how the test turns out.
— P(T|R,D) = P(D)
—P(R, T|D) = P(R|D)P(T|D)

* We say T and R are conditionally independent
given D.

Conditional Independence:
Notation

XandY are conditionally independent given Z

X1Y|Z

Model for Ghostbusters

* Reminder: ghost is hidden,

Sensors are noisy Joint Distribution

e T:Top sensor is red
B: Bottom sensor is red q-i-iEF.
G: Ghost is in the top 050 ¢ b g 016
: %Tge)rzle?s' . t -b g 0.24
P | t)=? I_I t  -b -g 004
Plg |t —=b)=? -t b g 004
¢ What happens to -t b -g 024
the joint distribution -t -b g 0.6
when the game gets -t -b -g 006

bigger than two squares?

Joint distribution too large/complex!
[CS 188 Berkeley]

Model for Ghostbusters cont’d

* T:Top sensoris red

B: Bottom sensor is red Joint Distribution

G: Ghost is in the top
* Each sensor depends only on mm
where the ghost is & b g0l
*+ Sensors are conditionally l 0.50 l ¢ b -g 016
independent given the gh( t -b g 0.24
position e b g 004
* Givens:
P(g) = 0.5 I I -t b g 004
P(t]g)=0.8 -t b -g 024
P(t I| -g)=04 -t -b g 006
P(b | g)=0.4
Plb | ~g)=08 -t -b -g 006

P(T,B,G) = P(T| G)P(B| G)P(G)

CS 188 Berkeley]

Bayesian Network

* Concise representation for a joint probability
distribution

* Explicitly represents dependencies among
random variables
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Ghostbusters Example

[__[ro) | —
g 0.5
c___[ee) | e |
g 0.4
~, "8 0.8

g 0.8
-g 0.4

Space and Time

* Bayesian networks are generally much more
compact than the full joint probability
distribution
— Joint distribution: O(2")

— Bayes net: O(n2%), where k is the max # parents a
node can have

Reasoning over Time

* Often, we want to reason about a sequence of
observations

— Speech recognition
— Robot localization
— Medical monitoring
* Need to introduce time into our models
* Basic approach: Hidden Markov Models
(HMMs)
* More general: dynamic Bayesian networks

[CS 188 Berkeley]

Markov Models

* A Markov Model is a chain-structured
Bayesian network

P(X,) P(X %)
* Value of X at a given time is called the state
¢ Parameters:
* Initial probabilities

* transition probabilities specify how the state
evolves over time

Joint Distribution of a Markov Model

000

P(X,) P(X,|X,1)

* Joint distribution:
P(Xl,XZ,..Xn)=P(X1)P(x2 | X1) P(X3 | Xz)---P(Xn | Xn.1)

* But can we really call this a joint distribution?
P (X1, X0 X0 ) =P (X [ Xq e X1 )P (X [ XqeeX5)- P(X, | X1 ) P(X,)

Conditional Independence

* Each time step only depends directly on the
previous

— First order Markov property
— Past and future independent given the present

* Note that the chain is just a (growing)
Bayesian net

[CS 188 Berkeley]
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Example Markov Chain: Weather

¢ Weather: W = {rain, sun}

Rain Rain 0.9
Rain Sun 0.1
Sun Rain 0.1
Sun Sun 0.9
[CS 188 Berkeley]
Example

« Initial distribution: 1.0 rain
* What is the probability distribution after 1 step?

fw,___lpwy | w, lw____[pwiw, |
Rain 1.0 Rain Rain 0.9
Sun 0.0 Rain Sun 0.1

Sun Rain 0.1

Sun Sun 0.9

* P(W,=Sun) = P(W,=Sun|W,=Sun)P(W,=Sun) +
P(W,=Sun|W,=Rain)P(W1=Rain) = 0.1

[CS 188 Berkeley]

Example
09 0.1 0.9
0.1
w, __w____eww. |
Rain Rain 0.9
Rain Sun 0.1
Sun Rain 0.1
Sun Sun 0.9
[CS 188 Berkeley]
Example
w,___[pw) | w, ___w____pwiw. |
Rain 1.0 Rain Rain 0.9
Sun 0.0 Rain Sun 0.1
Sun Rain 0.1
Sun Sun 0.9

More generally, what’s P(W) on some day t?
* P(wy) =2 i P(W | W )Py ;)

* P(w,) known
[CS 188 Berkeley]

Forward simulation

Example cont’d

* From initial observation of sun:
Sun 1.0 09 082 .. 05
Rain 0.0 0.1 0.18 .. 0.5

If we simulate the chain long enough,
uncertainty accumulates

[CS 188 Berkeley]
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