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Markov	Models	

Andrea	Danyluk	
March	17,	2017	

With	thanks	to	CS188	slides,	as	well	as	content	from	University	of	Washington	CSE515,	
Penn	State	Stats,	Yale	University	Stats,	and	others.		

Announcements	

•  Filtering	assignment	aKer	the	break	
•  Start	thinking	about	final	projects	
	

Today’s	Lecture	

•  Finish	up	a	bit	of	“intro	to	probability”	
•  Markov	Models	

Inference	in	Ghostbusters	
•  A	ghost	is	in	the	grid	somewhere	
•  Sensor	readings	tell	how	close	a	square	is	to	the	
ghost	

•  Sensors	noisy,	but	we	know	P(Color|Distance)	

Ghostbusters	

•  Say	we	have	two	distribu[ons	
–  P(G):	say	it’s	uniform	
–  Sensor	reading	model	P(R|G)	

•  Say	we	get	a	reading	at	(1,1)	
•  Can	calculate	the	posterior	
distribu[on	P(G|r)	over	all	
loca[ons	given	the	reading	at	
(1,1)	
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•  Sensor	readings	
– On	the	ghost	(1	loca[on):	red	
– 1	or	2	away	(5	loca[ons):	orange	
– 3	or	4	away	(3	loca[ons):	yellow	

•  Sensors	noisy	

[Adapted	from	CS	188	Berkeley]	

P(red	|	0)	 P(orange	|	0)	 P(yellow	|	0)	

0.7	 0.2	 0.1	

P(red	|	1	or	2)	 P(orange	|	1	or	2)	 P(yellow	|	1	or	2)	

0.15	 0.7	 0.15	

P(red	|	3	or	4)	 P(orange	|	3	or	4)	 P(yellow	|	3	or	4)	

0.1	 0.2	 0.7	
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P(g|yellow)	 		
P(0	away|yellow)		
P(1-2	away|yellow)		
P(3-4	away|yellow)		
P(yellow)	
		 	 	 		

Ghostbusters	

•  Say	we	have	two	distribu[ons	
–  P(G):	say	it’s	uniform	
–  Sensor	reading	model	P(R|G),	
	where	R=reading	at	(1,1)	

•  Can	calculate	the	posterior	
distribu[on	P(G|r)	over	ghost	
loca[ons	given	a	reading	at	
(1,1)	
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Intractability	of	Probabilis[c	Inference	

•  Size	of	full	joint	probability	distribu[on	over	n	
(Boolean)	random	variables?	
– O(2n)	

•  Say	we	add	a	new	random	variable	to	the	
Ghostbusters	problem:	Is	the	number	of	
students	agending	AI	today	>	15?	

•  3	random	variables:	
– Ghost	loca[on	
– Sensor	reading	
– Agendance	>	15?	

•  Say	we	add	a	new	random	variable	to	the	
Ghostbusters	problem:	Is	the	number	of	
students	agending	AI	today	>	15?	

•  3	random	variables:	
– Ghost	loca[on	
– Sensor	reading	
– Agendance	>	15?	

Probabilis[c	Independence	

•  It	seems	reasonable	to	assert	that	the	number	
of	students	agending	AI	on	any	given	day	is	
unrelated	to	ghosts	or	sensor	readings.	

•  If	P(X|Y)=P(X),	we	say	X	is	independent	of	Y:		
– Similarly,	Y	is	independent	of	X.	
– P(Y|X)	=	P(Y),	P(X,	Y)	=	P(X)P(Y)	

•  This	means	the	joint	distribu[on	factors	into	a	
product	of	two	simpler	distribu[ons.	
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•  Say	we	add	a	random	variable	to	a	“test	and	
disease”	problem	domain:	Does	the	pa[ent	
have	a	rash?		[And	say	that	when	a	person	has	
the	disease,	they	tend	to	get	a	rash.]	

•  3	Boolean	variables:	
– T:	Test	posi[ve	or	nega[ve	
– D:	Disease	posi[ve	or	nega[ve	
– R:	Rash	posi[ve	or	nega[ve	

•  23	=	8	entries	in	the	full	joint	probability	
distribu[on	

Condi[onal	Independence	
•  This	[me	we	can’t	reasonably	assert	that	R	is	
independent	of	T	or	D.	

•  But	we	can	say	that	R	and	T	are	condi[onally	
independent,	given	informa[on	about	D.	

•  P(R|T,D)	=	P(R|D).		That	is,	if	I	have	the	disease,	
the	probability	that	I	expect	a	rash	does	not	
depend	on	how	the	test	turns	out.	
–  P(T|R,D)	=	P(D)	
–  P(R,	T|D)	=	P(R|D)P(T|D)	

•  We	say	T	and	R	are	condi[onally	independent	
given	D.	

Condi[onal	Independence:	
Nota[on	

X	and	Y	are	condi[onally	independent	given	Z	

Model	for	Ghostbusters	
•  Reminder:	ghost	is	hidden,	

sensors	are	noisy	
•  T:	Top	sensor	is	red	
	B:	Bogom	sensor	is	red	
	G:	Ghost	is	in	the	top	

•  Queries:	
P(g)	=	?	
P(g	|	t)	=	?	
P(g	|	t,	¬b)	=	?	

•  What	happens	to		
	the	joint	distribu[on		
	when	the	game	gets	

	 	bigger	than	two	squares?	

T	 B	 G	 P(T,B,G)	

t	 b	 g	 0.16	

t	 b	 ¬g	 0.16	

t	 ¬b	 g	 0.24	

t	 ¬b	 ¬g	 0.04	

¬t	 b	 g	 0.04	

¬t	 b	 ¬g	 0.24	

¬t	 ¬b	 g	 0.06	

¬t	 ¬b	 ¬g	 0.06	

0.50	

Joint	Distribu[on	

Joint	distribu3on	too	large/complex!	
[CS	188	Berkeley]	

Model	for	Ghostbusters	cont’d	
•  T:	Top	sensor	is	red	
	B:	Bogom	sensor	is	red	
	G:	Ghost	is	in	the	top	

•  Each	sensor	depends	only	on	
where	the	ghost	is	

•  Sensors	are	condi[onally	
independent	given	the	ghost	
posi[on	

•  Givens:	
P(g)	=	0.5	
P(t	|	g)	=	0.8	
P(t	|	¬g)	=	0.4	
P(b	|	g)	=	0.4	
P(b	|	¬g)	=	0.8	

T	 B	 G	 P(T,B,G)	

t	 b	 g	 0.16	

t	 b	 ¬g	 0.16	

t	 ¬b	 g	 0.24	

t	 ¬b	 ¬g	 0.04	

¬t	 b	 g	 0.04	

¬t	 b	 ¬g	 0.24	

¬t	 ¬b	 g	 0.06	

¬t	 ¬b	 ¬g	 0.06	

0.50	

Joint	Distribu[on	

P(T,B,G)	=	P(T|G)P(B|G)P(G)	
[CS	188	Berkeley]	

Bayesian	Network	

•  Concise	representa[on	for	a	joint	probability	
distribu[on	

•  Explicitly	represents	dependencies	among	
random	variables	
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Ghostbusters	Example	

G	

B	T	

P(G)	

g	 0.5	

G	 P(t)	

g	 0.8	

¬g	 0.4	

G	 P(b)	

g	 0.4	

¬g	 0.8	

Space	and	Time	

•  Bayesian	networks	are	generally	much	more	
compact	than	the	full	joint	probability	
distribu[on	
–  Joint	distribu[on:	O(2n)	
– Bayes	net:	O(n2k),	where	k	is	the	max	#	parents	a	
node	can	have	

Reasoning	over	Time	

•  OKen,	we	want	to	reason	about	a	sequence	of	
observa[ons	
– Speech	recogni[on	
– Robot	localiza[on	
– Medical	monitoring	

•  Need	to	introduce	[me	into	our	models	
•  Basic	approach:	Hidden	Markov	Models	
(HMMs)	

•  More	general:	dynamic	Bayesian	networks	
[CS	188	Berkeley]	

Markov	Models	

•  A	Markov	Model	is	a	chain-structured	
Bayesian	network	

•  Value	of	X	at	a	given	[me	is	called	the	state	
•  Parameters:		
•  Ini[al	probabili[es	
•  transi[on	probabili[es	specify	how	the	state	
evolves	over	[me	

X1	 X2	 X3	

P(X1)	 P(Xt|Xt-1)	

Joint	Distribu[on	of	a	Markov	Model	

•  Joint	distribu[on:	
P(x1,x2,..xn)=P(x1)P(x2|x1)	P(x3|x2)…P(xn|xn-1)	
	

•  But	can	we	really	call	this	a	joint	distribu[on?	
P(x1,x2,..xn)=P(xn|x1…xn-1)P(xn-1|x1…xn-2)…P(x2|x1)P(x1)	

X1	 X2	 X3	

P(X1)	 P(Xt|Xt-1)	

Condi[onal	Independence	

•  Each	[me	step	only	depends	directly	on	the	
previous	
– First	order	Markov	property	
– Past	and	future	independent	given	the	present	

•  Note	that	the	chain	is	just	a	(growing)	
Bayesian	net	

[CS	188	Berkeley]	
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Example	Markov	Chain:	Weather	

•  Weather:	W	=	{rain,	sun}	

W1	 W2	

Wt-1	 Wt	 P(Wt|Wt-1)	

Rain	 Rain	 0.9	

Rain	 Sun	 0.1	

Sun	 Rain	 0.1	

Sun	 Sun	 0.9	

[CS	188	Berkeley]	

Example		

rain	 sun	

Wt-1	 Wt	 P(Wt|Wt-1)	

Rain	 Rain	 0.9	

Rain	 Sun	 0.1	

Sun	 Rain	 0.1	

Sun	 Sun	 0.9	

[CS	188	Berkeley]	

0.9	 0.9	0.1	

0.1	

sun	 sun	

rain	 rain	

0.9	

0.9	

0.1	

0.1	

Example	
•  Ini[al	distribu[on:	1.0	rain	
•  What	is	the	probability	distribu[on	aKer	1	step?	

Wt-1	 Wt	 P(Wt|Wt-1)	

Rain	 Rain	 0.9	

Rain	 Sun	 0.1	

Sun	 Rain	 0.1	

Sun	 Sun	 0.9	

W1	 P(W1)	

Rain	 1.0	

Sun	 0.0	

•  P(W2=Sun)	=	P(W2=Sun|W1=Sun)P(W1=Sun)	+	
																												P(W2=Sun|W1=Rain)P(W1=Rain)	=	0.1	

[CS	188	Berkeley]	

Example	
W1	 W2	 W3	

Wt-1	 Wt	 P(Wt|Wt-1)	

Rain	 Rain	 0.9	

Rain	 Sun	 0.1	

Sun	 Rain	 0.1	

Sun	 Sun	 0.9	

W1	 P(W1)	

Rain	 1.0	

Sun	 0.0	

More	generally,	what’s	P(W)	on	some	day	t?	
•  P(wt)	=	Σ	wt-1P(wt|wt-1)P(wt-1)	
•  P(w1)	known	
[CS	188	Berkeley]	

Forward	simula[on	

Example	cont’d	

•  From	ini[al	observa[on	of	sun:	
Sun 	1.0 	 	0.9 	0.82 	... 	 	0.5	
Rain		0.0 	 	0.1 	0.18 	… 		 	0.5	
	
If	we	simulate	the	chain	long	enough,	
uncertainty	accumulates	

[CS	188	Berkeley]	


