Lecture 9

Homework #9: 2.3.1, 2.3.2, 2.3.3, 2.3 5, 2.3.6 a &f, 2.3.10

For 2.3.3, give both the construction and the proof of correctness.

[Note that this might become Homework #10, depending on how

much we can or can’t cover today.]

Thm. For each NFA, there is an equivalent DFA.

Proof continued from last class...

(q;W) |_*M1 (p;e) iff (E(Q),W) |_*M" (PJe)7 pE p.

Induction Step. Assume that the claim is true for all w, Iwl <k, k = O.
Show that it also holds for w, Iwl = k + 1.

Letw=va,vez* aez.

(=) Suppose that (q,w) |—*M! (p,e), which we can rewrite as
(qua) |_*M1 (pae)

= (g, va)|—*t (1), a) |—t (12, e) |—*M! (p,e)
Now, what can we say about the pieces of this computation?

First, rather than considering (q, va) |[—"m! (r', a), let's think

about (q, v) |[—*m! (r', e). The induction hypothesis tells us
that

(E(@),v) |[—" (R'e), r' €R.
Second, since (r', a) |—u! (1, e)

(r', a, r2) is in A'

so E(r?) C 8"(R', a), by definition.
Third, since (r?, e) |[—*m! (p,e), p € E(r?).

Putting these all together:

p €E(r?) Co8"(R', a), so (RY,a) |[—(P,e), p€P.

So

(E(q), va)|—*" (RY,a) |—(P,e), p P.

SO
(E(q), va) |—™" (P,e), pe€P.

The other direction is easier - we won't do it in class.

The proof technique followed above (construction, or simulation, as
the text refers to it), will be a valuable tool:

We'll often want to take finite automata and construct new
finite automata from them. Among other things, this will allow us to
show that regular languages can be combined in various ways and
still remain regular. (don't forget, though we haven't yet shown it,
the languages accepted by finite automata are the regular
languages!)

[Note: we'll also be showing that various combinations of languages
are not regular, but that's an entirely different story. . .]

Thm. The class of languages accepted by finite automata is closed
under

union

concatenation

Kleene star

complementation

intersection

Union

Let L1 and L2 be languages accepted by M1 and M2,
respectively (where M1 and M2 are NFA).
i.e., L1 =L(M1) and L2 = L(M2).

Let's "look at" the NFAs first:

© © ©
%D K2
© ©
M1 M2
©
e >@ @
M1
e @ @
X2
©
M2

Let M1 = (K1, =, Al, s1, F1)
and M2 = (K2, =, A2, s2, F2)

assume that K1 and K2 are disjoint (if not, you can rename the
states of one without affecting its operation)

assume that both use the same alphabet, though the new finite
automaton can be designed for the alphabet that is the union of =1

and =2, if not.

Let a new NFA M = (K, =, A, s, F), where
K =K1 UK2 U {s}
F=F1U F2
A=Al U A2 U {(s,e,sl), (s,e,s2)}

if w e =*, then
(S7W) |_*M (Qae), q €F

iff

(sl,w) |—*! (q,e), g€ F1 or
(SZ7W) |_*M2 (q7e)7 qe F2.

Note: since these constructions are obvious, we won't prove their
correctness, though we are normally required to do so.

Concatenation

Let L1 and L2 be languages accepted by M1 and M2,
respectively (where M1 and M2 are NFA).
i.e., L1 =L(M1) and L2 = L(M2).

Let's "look at" the NFAs again:

M1 M2

O—] . © ©
5D O>>>@©

M1 M2

Let M1 = (K1, =, Al, s1, F1)
and M2 = (K2, %, A2, s2, F2)

assume that K1 and K2 are disjoint (if not, you can rename the
states of one without affecting its operation)

assume that both use the same alphabet, though, as in the previous
case, this is not necessary.

Let a new NFA M = (K, =, A, s, F), where

K =K1 U K2

s=s1

F=F2

A=Al UA2U {(f,e,s2): f€F1}

if w e =*, then
(S,W) |_*M (q7e)7 q eF
iff

(sl,u) |—*w! (ql,e), g1 € F1 and
(s2,v) |—*m2(g2,e), q2 € F2 and
wW=uv,u,v €3*

Kleene Star

Let L be the language accepted by M, where M is an NFA.
So L = L(M).

Let's "look at" the NFA once more:

©
AD ©

M

back to s1

oO—w»

Let M = (K, 3, A, s1, F)

Let a new NFA M' = (K, =, A", s, F'), where
K'=KU {s}
F'=F U {s}
A'= AU {(s,e,s1)} U {(f,e,s1): f € F}
if w e =*, then
W =e or
(S7W) |_*M (q’e)7 q € F'
iff

w=w1l w2 w3...wn, each wi € =*
and

(s1,wl) |—m(ql,e), ql € F and

(s1,w2) |—*m(g2,e), g2 € F and

(Si,Wn) |_*M (q7e)7 q eF
Complementation (=* - L(M1))

Let M1 = (K1, z, 81, s1, F1) NOTE: A DFA!!!
Let M = (K1, =, 81, s, K1 - F1)

Basically, we're just flipping the final and non-final
states.

We've assumed that M1 is a DFA. What if it were an
NFA? Would this still work?

nterse

I

-(=*-L1) U (z*-L2)

Note that L1 N L2 = =*

