
Lecture 8

Homework #8: 2.2.6, 2.2.7, 2.2.9, 2.2.10.  Give an NFA that accepts
the language (a ∪ b)*ab+a(a ∪ b)ab*, and then find and equivalent
DFA.

Last time: introduced nondeterministic finite automata.

Now, let's show that NFAs = DFAs.  [Began this last time, seeing
how transitions on strings of length >1 could be eliminated by
“stretching” the automaton.]

We'll say that two finite automata M1 and M2 are equivalent iff
L(M1) = L(M2).

Thm. For each NFA, there is an equivalent DFA.
Proof will proceed by construction.  That is, we will show how 
to turn an NFA into a DFA.

To do this, we need to:
(1) eliminate transitions on e.
(2) eliminate transitions on strings of length > 1.
(3) add transitions to have actions for all symbols in a given 
state.
(4) eliminate multiple transitions from 1 state.

(2) is easy - just "stretch" the NFA by adding states.

Example.
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(of course, we'd need to prove that the "stretched" NFA is equiv to
the original, but it's fairly obvious)

Basically, if (q,u,q1) ∈ Δ, and |u| > 1, then we can write u = u1u2...un.
To "stretch" the NFA, we add transitions to Δ:

(q,u1,p1), (p1,u2,p2), ..., (p n-1,un,q
1).

Let's call the initial NFA M = (K, Σ, Δ, s, F), and
the stretched NFA M1 = (K1, Σ, Δ1, s1, F1).

Now, for the remainder of the proof:
We will view the NFA as follows: at any point in time, it

can be in many states at once.

Example cont'd. On input ab, it can be in any of {q0, q1, q2, q4}
We can view this as a single state in a DFA.
The idea is that we're building "multi-states".

Now, what are subsequent states?
Anything that can be reached from one of these on a given

input symbol.

So, if the next symbol were "a": {q0, q1, p, q3}

Basically, the DFA is simulating all moves of the NFA
simultaneously.

Now let's look at transitions on e - these need to be considered
specially.



Define the states that are reachable from a state q on no input:
E(q) = {p ∈  K1: (q,e) * (p,e)}

or

E(q) = {p ∈ K1: (q,w) * (p,w)}

In our Example.
E(q0) = {q0, q1}
E(q1) = {q1}
E(q2) = {q2}
E(q3) = {q3, q4}
E(q4) = {q4}
E(p) = {p}

Before giving the formal construction, let’s take these ideas and
complete the construction of a DFA from the NFA above:

S" = {q0, q1}

δ"(S", a) = E(q0) ∪ E(p) = {q0, q1, p} = t1
δ"(S", b) = E(q0) ∪ E(q2) = {q0, q1, q2} = t2

δ"(t1, a) = E(q0) ∪ E(p) = {q0, q1, p} = t1
δ"(t1, b) = E(q0) ∪ E(q2) ∪ E(q4)= {q0, q1, q2, q4} = t3 (FINAL
STATE)

δ"(t2, a) = E(q0) ∪ E(p) ∪ E(q3) = {q0, q1, p, q3, q4} = t4 (FINAL)
δ"(t2, b) = E(q0) ∪ E(q2) = {q0, q1, q2} = t2

δ"(t3, a) = E(q0) ∪ E(p) ∪ E(q3) = {q0, q1, p, q3, q4} = t4
δ"(t3, b) = E(q0) ∪ E(q2) = {q0, q1, q2} = t2

δ"(t4, a) = E(q0) ∪ E(p) ∪ E(q3) = {q0, q1, p, q3, q4} = t4
δ"(t4, b) = E(q0) ∪ E(q2) ∪ E(q4) = {q0, q1, q2, q4} = t3
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Now, let's state the construction of the DFA more formally:
We construct a DFA M" = (K", Σ, δ", s", F"), where

K" = 2K' (power set - i.e., the set of all sets of states in M1)

s" = E(s1)

F" = {Q ⊆ K1: Q ∩ F1 ≠ ∅}

δ"(Q,σ) = ∪{E(p): p ∈ K1, (q,σ,p) ∈ Δ1, q ∈ Q}
(a transition records all moves on a symbol, including 

adjacent e-transitions)

In our Example. s" = {q0, q1}

Now, we need to prove that
I. This is a deterministic FA
II. It is equivalent to M1

I. This part is easy - by our definition of δ, M" is deterministic.

II. Claim: for any w ∈ Σ*, and q, p ∈ K1

(q,w) *M1 (p,e) iff (E(q),w) *M" (P,e), p ∈ P.

We will prove this by induction on the length of w:



Basis. |w| = 0, so w = e.

so we need to show
(q,e) *M1 (p,e) iff (E(q),e) *M" (P,e), p ∈ P.

(⇐) Since M" is deterministic, E(q) = P, and p ∈ P,
so (q,e) *M1 (p,e), by the definition of E(q).

(⇒) if (q,e) *M1 (p,e), then p ∈ E(q), according to the 
definition of E, but then (E(q),e) *M" (E(q),e) = (P,e),

p ∈ P.

Induction Step. Assume that the claim is true for all w, |w| ≤ k, k ≥ 0.

Show that it also holds for w, |w| = k + 1.

Let w = va, v ∈ Σ*, a ∈ Σ.

(⇒) Suppose that (q,w) *M1 (p,e), which we can rewrite as
(q,va) *M1 (p,e)

= (q, va)*M1 (r1, a)M1 (r2, e) *M1 (p,e)

Now, what can we say about the pieces of this computation?

First, rather than considering (q, va)*M1 (r1, a), let's think 
about (q, v)*M1 (r1, e).  The induction hypothesis tells us

that
(E(q),v) *M" (R1,e), r1 ∈ R1.

Second, since (r1, a)M1 (r2, e)
(r1, a, r2) is in Δ1

so E(r2) ⊆ δ"(R1, a), by definition.

Third, since (r2, e) *M1 (p,e), p ∈ E(r2).

Putting these all together:

p ∈ E(r2) ⊆ δ"(R1, a), so (R1,a)  (P,e), p ∈ P.



So

(E(q), va)*M" (R1,a) (P,e), p ∈ P.

so

(E(q), va)*M"  (P,e), p ∈ P.

The other direction is easier - we won't do it in class.


