
Lecture 6

Homework #5: 2.1.1, 2.1.2 a-d*, 2.1.3 b & c & d,
2.1.4 a (i)&(ii), b (i),(ii),(iii),(v)

From last time:

Recall that:
an alphabet is a finite set of symbols
a string is a finite sequence of symbols from an alphabet
a language is a set of strings over an alphabet

NOTE:
in genl, will use a, b, c to denote symbols;
x, y, z, u, v, w to denote words;
Σ will often be used to denote an alphabet;
L will often be used to denote a language

Regular languages – class of languages that can be expressed by
regular expressions

Now let's move to the flip-side: the computational models that work
on these strings of data.

Computational models are based on our general notion of
computers:

CPU, memory, I/O

We will start with simple (restricted) models and work our way up.

Finite Automaton
has: a very limited processor

no memory (except for state)
input on a tape
no output other than accept/reject



Deterministic Finite Automaton - operation completely
determined by input:

Finite Control

q0 q1 q2

Read-only input tape

Starts with:
1) tape head on leftmost square

(tape head will move right after reading each input)
2) finite control in some designated state (the start state)

Operation:
1) read input square
2) depending on symbol and current state, go to new state

(completely determined)
3) advance read head to next square
4) when read head reaches end, check state - certain states 
are designated as "accept" states



Formal description of a DFA:
A DFA is a quintuple M = (K, Σ, δ, s, F), where

K is a finite set of states;
Σ is an alphabet;
s ∈ K is the start state
F ⊆ K is the set of final states

δ: K x Σ -> K
is the transition function

δ encodes rules for moving from 1 state to another.
δ(q,σ) = q2 means

in state q, when reading σ, go to state q2.

Example.

K = {q0, q1}
Σ = {a, b}
s = q0
F = {q0}

q σ δ(q,σ)
q0 a q0
q0 b q1
q1 a q1
q1 b q0

Say we have the string abba ⇒ accept

What kind of strings get accepted?  Those with an even number of
b's (including e).

Def. the language accepted by a machine is the set of strings it
accepts.

L(M) is the set of all strings accepted by M.



Another representation makes certain properties of the automaton
clearer: state diagram

states = nodes
transitions = directed arcs

q0 q1

a

b

b

a

Note the way that initial and final (start and accept) states are
labeled.

Now consider another example.

K = {s, q}
Σ = {0, 1}
s is the start state
F = {s}

q σ δ(q,σ)
s 1 q
s 0 s
q 1 q
q 0 s

What kinds of strings does this DFA accept?



Now consider one more example.  What does the following DFA
accept?

Exercise.
Give deterministic finite automata to recognize integers and

reals.

Notation (definitions) for the transitions (computations) in these
machines:

Let (q, w) represent the current configuration of a DFA, where w
is the string from the tape head to the end of the tape (all symbols
upon which the DFA has not yet acted).



Finite Control

q0 q1 q2

Read-only input tape

a a a abb

Current config is: (q2, abaa)

Define a relation M between 2 configurations that holds iff
M can pass from 1 config to the other in 1 step.

(q,w) M (q1,w1) iff δ(q,σ) = q1 and w = σw1, σ∈ Σ.

M* is the relexive transitive closure of M. ("yields")

(q,w) M* (q1,w1) after some number of steps (possibly 0)

Note that the state diagram represents the M relation.


