Lecture 5

Homework #5: 1.7.4a, 1,7,4b, 1.7.5b,c, 1.7.6, 1.8.2a-d, 1.8.3a,b, 1.8.5

Recall from last time that: the set of all strings over an alphabet Σ is denoted Σ^* .

A **language** is a set of strings over an alphabet. ex. Σ^* , \emptyset , Σ are languages

languages are sets - and can be manipulated/combined in the usual (and not quite so usual) ways:

- 1) $L_1 \cup L_2$
- 2) \overline{A} = the complement of $A = \Sigma^* A$.
- 3) L_1L_2 = the concatenation of languages. {xy : x \in L₁ and y \in L₂} L^{*} = Kleene star (e is always in L^{*}) L⁺ = LL^{*} = closure of a language L under concatenation

Q: Is there a good/clear way to represent these possibly infinite languages?

Can certainly use the set notation just discussed:

Example.

 ${a,b}^{a}{b}^{+}{a}{a,b}{a}{b}^{*}$

is there a simpler way of stating this? $(a\cup b)^*ab^+a(a\cup b)ab^*$

This is an example of a regular expression

(with which you're probably familiar if you've ever used grep, awk, perl, etc.)

Def. Let Σ be an alphabet. The regular expressions over Σ and the sets they denote are defined by the following:

- 1) \emptyset is a reg expr and denotes the empty set.
- 2) e is a reg expr and denotes the set {e}
- 3) for $a \in \Sigma$, a is a reg expr and denotes $\{a\}$
- 4) if r and s are reg expr denoting the sets R and S, then $(r \cup s)$, (rs), and (r^*) denote $R \cup S$, $R^\circ S$, R^* .

NOTE that the above def is not exactly the definition that's in the text.

Now let's do the reverse: let's find the language (i.e., the set) that is represented by a regular expression.

if r is a reg expr, L(r) is the lang denoted by r.

ex. $(((a^*a)b) \cup b)$ = $L((a^*a)b) \cup L(b)$ = $L(a^*a)L(b) \cup L(b)$ = $L(a^*)L(a)L(b) \cup L(b)$ = $L(a)^*L(a)L(b) \cup L(b)$ = $\{a\}^*\{a\}\{b\} \cup \{b\}$

A language is a **regular language** iff it can be expressed by a regular expression.

Let's now do some class exercises to be sure that everyone is comfortable with regular expressions and the languages they express:

I. Let $\Sigma = \{0, 1\}$. Give the regular expression for each of the following.

{w | w has exactly a single 1}
{w | w has at least one 1}
{w | w contains 001 as a substring}
{w | w is a string of even length}
{w | the length of w is a multiple of 3}
{01, 10}

II. What is the language described by each of the following regular expressions?

 $(0 \cup e)1^*$ \emptyset^* $1^*\emptyset$ $(0 \cup 1)*00(0 \cup 1)*$ $(1 \cup 10)*$

III. Give a regular expression for the set of positive odd integers represented in binary. Then give one for the set of positive odd integers represented in decimal.