
Lecture 35

The generator side of Turing Machines…

Generalized notion of a grammar:
• left-hand-side of a grammar rule can have terminals and non
-terminals (but at least one non-terminal)
• in a derivation, remove the entire left-hand-side and replace
it with the right-hand-side of the rule

terminology:
"grammar" = "rewriting system" = "unrestricted grammar"

Def. A grammar is a quadruple G = (V, Σ, R, S), where

V is an alphabet
Σ ⊆ V is the set of terminal symbols

(V-Σ) are non-terminals
S ∈ (V-Σ) is the start symbol
R (the set of rules) is a finite subset of

(V* (V-Σ) V*) × V*

all other grammar-related terminology still applies here:
yields in one step ⇒
reflexive transitive closure ⇒*

Example. {anbncn : n ≥ 0}

Let G = (V, Σ, R, S), where

V = {S, B, B1, a, b, c}
Σ = {a, b, c}

and R contains:
S → e
S → aSB
B → B1c
cB1 → B1c
aB1 → ab
bB1 → bb

consider the derivation of a3b3c3:

S ⇒ aSB
⇒ aaSBB
⇒ aaaSBBB
⇒ aaaBBB
⇒ aaaB1cB1cB1c
⇒ aaabcB1cB1c
⇒ aaabB1cB1cc
⇒ aaabbB1ccc⇒ aaabbbccc

Thm. A language is generated by a grammar iff it is recursively
enumerable.

(=>) Grammar -> TM is easy. Simulate derivations on the TM.

(<=) TM -> Grammar.

Every Turing Machine can be simulated by a grammar:
• start with any Turing Machine; represent configurations as
strings
• construct a grammar that can derive one of these strings from

another iff the corresponding configurations stand in the "yields" relation
(*) of the TM

Lemma. Let M = (K, Σ, δ, s, H) be any Turing Machine. Then there is a
grammar G such that for any two configurations (q, u, a, v) and
(q', u', a', v') of M,

(q, u, a, v) * (q', u', a', v')

iff

uqav ⇒* u'q'a'v'

Proof (Idea behind proof, that is).

Note
position of state serves as an indicator of where the tape head
is.

in general, only state, scanned symbol, and head position need
to be changed when passing from one configuration to the next.

 helps to deal with blank tape

Let's define G = (V, Σ, R, S) as follows:

V = K ∪ Σ ∪ {, S}

R is defined as follows:

(I.) For any q ∈ K, a ∈ Σ

if δ(q, a) = (p, b), p ∈ K and b ∈ Σ
then R contains

qa → pb

(II.) For any q ∈ K, a ∈ Σ

if δ(q, a) = (p, →)
then R contains

qab → apb for each b ∈ Σ
and qa → ap#

etc. Essentially, steps in a derivation will mimic steps in the computation.

Important: Note that the grammar we have constructed simulates the
corresponding TM exactly. So it is effectively taking a string that would
be accepted by a TM and transforming it to mimic acceptance. This is
not really what we want. We want our grammar to create the string.

Here’s what we need to do it right:

(1) Make sure the TM we’re copying accepts in the special
configuration (h, #); that is, before it actually accepts, it erases
the tape.

(2) Our grammar will effectively behave like the grammar we just
discussed, but will do it backward.

(3) All we need to add are some special beginning and ending rules:

S → h#
s# → e
 → e

