
Lecture 34

By definition any given Turing Machine runs a fixed program. We have
discussed the fact that the program might be an interpreter than runs
other programs. Today we see how that works.

Universal Turing Machine:
• has a fixed program permanently embedded in its finite
control
• the fixed program can mimic the action of an arbitrary TM (i.e.,
it’s an interpreter)
• program is written on one tape and mimicked on another (so
there are two tapes)

U's finite
control

T's program

T's tape

tape 1

tape 2

The fixed program in U is really just an interpreter:

(1) Given: T's current state and input symbol
 Find: quintuple in description of T that applies

(q, s, q', s', d), where
q = current state
s = current symbol
q' = next state
s' = symbol to write
d = direction to move

*Note extension to standard TM. Why is this ok?

(2) Record: state q'
 Simulate on tape 2: write s'; move tape 2's read/write head

 Record: new symbol from tape 2

Universal machine U expects a particular format for the description of T's
program:

will use binary alphabet to represent
• quintuples of T
• T's tape symbols

(1) How many bits are needed for each quintuple?
n states: need log n bits to encode

let k =  log n
2 tape moves (L and R): 1 more bit to encode
each tape square: 1 bit

⇒ 2k + 3 bits needed to encode each quintuple

(2) How to separate quintuples?
⇒ use special symbol X

(3) Boundary markers for program?
⇒ special symbol Y

U's interpreter program:
(only part of it, actually)

Phase I

locate next quintuple to be executed - i.e., find q & s

where will q and s be stored?
• could use 3rd tape -or-
• use (k+1)-bit segment immediately to left of the left

Y-marker

Algorithm.
• start with read/write head on left Y-marker
• scan to left

change 0 to A
change 1 to B

 until blank
• scan to right

if A, change to 0
else if B, change to 1
move right and search for match
if you've moved past an X, need to start this cycle

again (i.e., you've moved to the next quintuple
 without having matched)

• to guarantee skipping over a non-matching quintuple,
 change 0's to A and 1's to B.

#

go to next phase of
program interp

0/A

L R

R

L R

R

0/A
1/B

#

1/B

X

0/A
1/B B/1

A/0

Y

*Note difference in TM representation

Phase II

Algorithm.
• record new state q' in workspace
• move head on tape 2
• record new symbol

at start:
q and s from quintuple are A's and B's;

but
q' and s' and d are still binary

r/w head on left-hand Y-marker

Algorithm at next level of detail.
• scan right to binary squares
• copy to workspace (in terms of A's and B's)
• encounter s'; copy to workspace
• scan right and pick up d; no more room in workspace; so

"remember" d
• pick up s'

convert to 0/1 and write on tape 2
• move tape 2's r/w head
• read next s from tape 2

In the following TM
squares = tape 2
underlines = tape 2

from
phase I

L

R

L

R

R

R

LL

L

RR

R

0/A

#

Y

1/B

#

0/A
1/A

0/B
1/B

Y

Y A/

B/

0

1

A/

B/

0

1

0

1

/0

/1

Y

Now -- how do things get started?
r/w head #1 over left-hand Y-marker
r/w head #2 over initial cell of tape 2
initialize workspace

