
Lecture 32

Homework #32: 5.4.1, 5.4.2 – turn in 5.4.1 b, 5.4.2 a and d

We have a number of different ways to show that a language is decidable.
We can:
- Directly present a Turing Machine that decides the language. Here we

can select from any of the “complex” models that use multiple tapes,
etc. We can also use simple Turing Machines to construct more
complicated machines.

- Make use of the closure theorem from the previous lecture.

Today we will explore a mechanism by which we can prove that a
language is not decidable. (and no, it’s not another Pumping Theorem…)

The primary technique we will explore is reduction.
To show that L1 is undecidable:

Identify L2 that is undecidable.
Reduce L2 to L1. Show that if L1 were decidable,

 L2 would be as well. (Finding an algorithm for L2

 reduces to finding an algorithm for L1.)

Thm. The following problems about Turing Machines (i.e., algorithms) are
undecidable:

1) Given a Turing machine M and an input string w, does M halt on
input w?

2) For a certain fixed machine, given an input string w, does M halt on
input w?

3) Given a Turing machine M, does M halt on the empty tape?
4) Given a Turing machine M, is there any string at all on which M

halts?
5) Given a Turing machine M, does M halt on every input string?
6) Given 2 machines M1 and M2, do they halt on the same input

strings?
7) Given a Turing machine M, is the language M accepts regular?

context free? decidable?

Proof.

1) This is the Halting Problem. Recall proof from 1st class (which was
essentially a diagonalization proof).

2) Let Lh = {<M,w> : M accepts - i.e., halts on - w}

Now consider M1, a machine that semidecides Lh. That is, it halts
 when given <M,w> such that M halts on w. It does not halt
 otherwise.

If we choose M1 to be the fixed machine, then we can decide Lh.

3) Given M, does M halt on the empty tape?

Let Lh = {<M,w> : M accepts - i.e., halts on - w}

Suppose we could find M0 to decide
{<M> : M accepts e}

We will now show that M0 could be used to decide Lh.

Claim: Given a Turing machine M and input w, there is a systematic
 way to construct Mw that operates as follows: Mw, when started
 with empty tape (s, ##), writes w and then simulates M on w.

Now we can use M0 to decide Lh.

Given M and w, construct Mw.

Deliver <Mw> as input to M0.
if M0 halts with Y on the tape, then M halts on w
if M0 halts with N on the tape, then M does not halt on w.

<M, w>
<M >w M 0 Y

N

hM

4) Given M, is there any string at all on which M halts?

Let Le = {<M> : M halts on e}

Suppose we could construct Many to decide
{<M> : M halts on some string}

We will now show that Many could be used to decide Le.

Claim: Given a Turing machine M, there is a systematic way to
construct Me that operates as follows: Me, when started with any

 input (s, #w#), erases w and then simulates M on e.

Now we can use Many to decide Le.

Given M, construct Me.

Deliver <Me> as input to Many.
if Many halts with Y on the tape, then M halts on something,

which means that M halts on e.
if Many halts with N on the tape, then M does not halt on

anything, which means that M does not halt on e.

<M>
<M >e M any Y

N

5) Same as 4.

6) Given M1 and M2, do they halt on the same input strings?

Let La l l = {<M> : M halts on all input}

Suppose we could find Msame to decide
{<M1, M2> : M1 and M2 halt on the same input strings}

We will now show that Msame could be used to decide La l l.

First create a machine Mi that halts immediately on all input.

Now we can use Msame to decide La l l.

Given M, input <M, Mi> to Msame.

But we know that Lall is undecidable. Therefore, this problem
is undecidabe as well.

7) See text.

