
Lecture 29

Disconnect between the Turing Machine representation and actual
computers: sequential tape memory vs RAM.

Today we consider a Turing Machine model that is more like an actual
computer: Random Access Turing Machine.

Infinite number of words in memory, numbered T[0], T[1], . . .
Finite number of registers, R0, R1, … Rk
Program counter κ.

Each register and each word of memory (tape square) can hold an
arbitrary integer.

Machine acts as dictated by a fixed program – analogous to (fixed)
transition function.

The program is a sequence of instructions selected from the following
table:

Instruction                                       Semantics
read j R0 = T[Rj]
write j T[Rj] = R0
store j Rj = R0
load j R0 = Rj
load =c R0 = c
add j R0 = R0 + Rj
add =c R0 = R0 + c
sub j R0 = R0-Rj
sub =c R0 = R0– c
jump s κ = s
jpos s if R0 > 0, then κ = s
jzero s if R0 == 0, then κ = s
halt κ = 0

Note that:
Initial register values are 0.
Program counter starts at 1.
R0 is special – the accumulator.
Instructions go up by 1, unless otherwise specified by a jump.



Example.
x = 0;
while (x < 10) {

<stuff>
x++;

}

can be written as the following sequence, assuming that x is stored
in register 1:

1. load 1
2. sub =10
3. jzero 9
4. <stuff>
5. load 1
6. add =1
7. store 1
8. jump 2

More formally,

Def. A Random Access Turing Machine is a pair M = (k, Π), where

k > 0 is the number of registers, and

Π = (π1, π 2, …, π n) is the program (i.e., a finite sequence of
instructions.

How do we handle i/o in a Random Access Turing Machine?  In the
spirit of standard Turing Machines: input is a sequence of symbols
in memory.

We will assume that symbols are encoded by integers, and that the
blank symbol always has value 0.

So, if Σ = {#, a, b}, then we might assign #=0, a=1, b=2.
Then the input abba would be represented in the first four

words of memory as 1,2,2,1.

A configuration of a Random Access TM is a k+2-tuple, where k is
the number of registers of the machine.  More specifically,



(κ, R0, R1, R2, …, Rk-1, T), where

k is the current value of the program counter,
R0 – Rk-1are the values of the k registers, and
T describes the contents of memory.

T is a list of the words in memory that are non-zero.  That is, it is a
set of elements from N × (Z – {0}).  The first item in each pair gives
the memory address; the second item gives the value stored there.

Need notions of deciding a language; semi-deciding a language;
computing a function:

In deciding a language, we’ll say that M accepts if it reaches a halt
configuration with R0 = 1; it rejects if it reaches a halt configuration
with R0 = 0.  (A halt configuration is one in which the program
counter is 0.)

It’s not surprising that the Random Access Turing Machine is at least
as powerful as a standard Turing Machine.

Let M = (K, Σ, δ, s, H) be a standard Turing Machine.
We can simulate M with M1, a Random Access Turing Machine:

We’ll use one register of M1 to keep track of M’s read/write head on
the tape.
Each state’s transitions can be simulated by a sequence of
instructions.

For example, let Σ = {#, a, b, >}, and let
δ (q, #) = (p, →)
δ (q, a) = (p, ←)
δ (q, b) = (r, #)
δ (q, >) = (s, →), where > is the left edge marker.

We assign each symbol in the alphabet a numeric value:
# = 0, a = 1, b = 2, > = 3

The transitions above can then be simulated by the instructions:

If T[n] == 0, then n = n+1; goto p;
If T[n] == 1, n = n-1; goto p;



If T[n] == 2, then T[n] = 0, goto r;
If T[n] == 3, then n = n + 1; goto s;

In these instructions n is the contents of R1, for example.
goto p means go to the beginning of the instruction sequence for
state p.

What’s somewhat more surprising (and somewhat more difficult to
show) is that any Random Access Turing Machine can be simulated
by a regular Turing Machine.

Let M be a Random Access Turing Machine.  We’ll design M1 to
simulate M.

M1 will have k+3 tapes, where k is the number of registers of M:
Tape 1 holds input.
Tape 2 holds words of RAM with non-zero values:

#(0,v0)(1,v1)….(i,vi)#, where vi is contents of ith word of RAM.
Each i is represented in binary.

Next k tapes hold contents of k registers.
Last tape is for scratch work.

Instruction numbers will be encoded in state: Each instruction has
one set of states for simulation.  When done with one, move to the
next appropriate set of states.  That is, if M has p instructions, then
K1, K2, …, Kp are p distinct sets of states used in their simulation.

For example, if the instruction is “read j”, search on tape 2 for (j,
…);
If find it, then copy onto the tape representing R0; if not found, copy
0 into R0.


