
Lecture 28

Homework #28: 4.5.1 a, 4.5.1 b, 4.5.2, 4.5.3

Nondeterministic Turing Machines: provide a choice of actions for certain
combinations of state and symbol.

Def. A nondeterministic TM is a quintuple (K, Σ, Δ, s, H), where

K, Σ, s, and H are defined as they are for the standard TM and

Δ is a finite subset of
((K-H) × Σ) × (K × (Σ-{>} ∪ {←,→}))

For the moment, let’s view NTMs only as acceptors, not as deciders or
computers.

We'll see that they add nothing over standard deterministic TMs.

Def. A string w is accepted by a NTM M if some computation of M on w
halts.

Ex. L = {w : w has a substring with > 1 occurrence in w}

step 1. guess the substring
step 2. scan w for a copy of the substring
step 3. halt only if you find a match

Ex. L = all numbers that have an integer positive square root

guess the int pos sq rt; square it and check against input



Ex. L = all 2nd degree polynomials that have roots > 0

i.e., polynomials ax2 + bx + c such that
ax2 + bx + c = 0 has positive valued solutions.

input:

# a b c #$ $

$ is used rather than # for reasons that will be 
clear soon.

step 1. guess 2 solutions
step 2. compute the function on both guessed solns
step 3. compare the 2 computations to 0

halt iff the 2 solutions are 0.

Lemma. For every NTM M1, we can construct a standard TM M2 such
that for any string w not containing #

(a) if M1 halts on input w, then M2 halts on input w.
(b) if M1 doesn't halt on input w, then M2 doesn't halt on 
input w.

Proof.   

We'll first construct a 3-tape deterministic TM (which we know can be
simulated by a standard TM!)

We know that for any state and tape symbol of M1, there is a finite
number of choices for "next move."  These can be numbered 1, 2, . . .
Let r be the maximum number of choices for any tape-symbol pair.
Then any finite sequence of choices can be represented by a sequence of
the digits 1-r.  (Note that not all such sequences will represent valid
choices of moves, since there may be fewer than r choices in some
situations.)



M2 will have 3 tapes:

(1) will hold the input

(2) on (2), M2 will generate sequences of digits 1-r in a systematic
manner

(3) on (3), M2 will simulate M1 on the input, using the sequence of
steps on tape (2)

if M1 enters a halt state, then M2 will eventually halt as well;
if no sequence of moves leads to a halt state in M1, then M2 will

just continue to generate move sequences infinitely.

Theorem.  Any language accepted by a NTM is accepted by a
deterministic TM.

Now, what does all of this mean with respect to deciding and computing?

Def. Let M = (K, Σ, Δ, s, {y, n}) be a nondeterministic TM.  We say that M
decides a language L ⊆ (∑ - {>, #})* if the following two conditions hold
for all w ∈ (∑ – { >, #})*:

a. There is a natural number N, depending on M and w, such that there is
no configuration C satisfying (s, >#w) N C.

b. w ∈ L iff (s, >#w) * (y, uav) for some u, v ∈ ∑*, a ∈ ∑.

The first of these conditions specifies that the TM always halts.
The second says that we say yes as long as one of the computations says
yes.

We say that a NDTM M = (K, Σ, Δ, s, {h}) computes a function
f: (∑ – { >, #})* → (∑ – { >, #})* if the following two conditions hold for
all w ∈ (∑ – { >, #})*:

a. There is an N, depending on M and w, such that there is no
configuration C satisfying (s, >#w) N C.

b. (s, >#w) * (h, uav) iff ua =  >#, and v = f(w).


