
Lecture 27

Homework #27: 4.3.1 (a), 4.3.3
Misc: Let M be a Turing Machine with a two-way infinite tape.  Define the
relation  formally, as was done for standard Turing Machines.

Today we consider extensions to the standard TM and will learn that
these extensions do not add to the computational power of TMs.

Extension #1. Two-way infinite tape

M = (K, Σ, δ, s, H), all as before.

a configuration is: (q, wau)

w does not begin with #
u does not end with #

note that this machine has no reason to consider the left-end-of-tape
marker

Lemma. Let M1 = (K1, Σ1, δ1, s1, H1) be any TM with a two-way infinite
tape.
Then there is a standard TM M2 = (K2, Σ2, δ2, s2, H2) such that for any w
∈ (Σ1 - {#})*, the following hold:

a) if M1 halts on w, then so does M2

and if (s1, #w)  * (h, uav) [in M1]
then (s2, >#w)  * (h, >#uav) [in M2]

b) if M1 does not halt on w, then M2 does not halt on w.

Proof.  "Fold" M1's tape and treat it like the tape of a standard TM.



0 1 2 3-1-2-3

$ 0 1 2 3
-1 -2 -3

input string starts here

How to carry out the idea:

• the alphabet of M2 will contain every ordered pair (a,b) of
 symbols of Σ.

a = the symbol on the upper track
b = the symbol on the lower track

• we're also going to include some other symbols:
                       _       _

let Σ1 = {a: a ∈ Σ1}

$, the "turnaround" marker (different from >)
                             _                                _        _
So Σ2 = {$} ∪ Σ1 ∪ Σ1 ∪ (Σ1 x Σ1) ∪ (Σ1 x Σ1) ∪ (Σ1 x Σ1)

Operation of M2:

1. Set up the tape; remember, it is starting out in the "usual"
configuration, which is single track.

2. Simulate M1 on the "divided" tape.

3. If M1 would halt, M2 will halt, but only after it returns the tape to
standard output configuration.

Step I.  Need a subroutine TM to set up the tape.  That is, we need to
make it look like a double track tape.
[Note that we're assuming that there are no # in the input.]

Step II. Main part of the simulation of M1.



When simulating M1, M2 needs to be able to distinguish between working
on the upper track of the tape and working on the lower track.

We handle this in M2 by having two states for every one state in M1.

For each state q in M1, M2 will have states <q,1> and <q, 2>.
<q,1> means that the simulation is working on the upper track;
<q, 2> means that the simulation is working on the lower track.

M2 also needs states <h,1> and <h,2> for every h ∈ H1.  These will not
act as real halt states.  Instead, they will behave like “temporary” halt
states.
We need to remember that when the simulation “halts”, M2 will still have
its tape formatted as if it is two-track.  Before we can really halt, we need
to return it to a one-track format.  This is why <h,1> and <h,2> are only
“temporary” halt states.
When M2 enters one of these states, it needs to do one more important
thing.  It marks the symbol currently being scanned.  We don’t want to
lose track of this symbol during the process of converting to one-track
format.

So:

K2 = K1 x {1, 2}

s2= < s1, 1>

δ2 is defined as follows:

Category 1 transitions – those that simulate M1 on the upper track

For all a2,
δ2 (<q, 1>, (a1, a2)) = (<p, 1>, ←), if δ1 (q, a1) = (p, ←)
               (<p, 1>, →), if δ1 (q, a1) = (p, →)

(<p, 1>, <b, a2>), if δ1 (q, a1) = (p, b)

Category 2 transitions – those that simulate M1 on the lower track

For all a1,

δ2 (<q, 2>, (a1, a2)) = (<p, 2>, ←), if δ1 (q, a2) = (p, →)
               (<p, 2>, →), if δ1 (q, a2) = (p, ←)



(<p, 2>, < a1, b>), if δ1 (q, a2) = (p, b)

Category 3 transitions – those that change tracks

δ2 (<q, 1>, $) = (<q, 2>, →)
δ2 (<q, 2>, $) = (<q, 1>, →)

Category 4 transitions – those that change single-track blanks to double-
track blanks

δ2 (<q, 1>, #) = (<q, 1>, (#,#))
δ2 (<q, 2>, #) = (<q, 2>, (#,#))

Category 5 transitions – those that “halt” and record the position of the
tape head
                                                            _

δ2 (<h, 1>, (a1, a2))  = (<h, 1>, (a1, a2)))
                                                                 _

δ2 (<h, 2>, (a1, a2))  = (<h, 2>, (a1, a2)))

Step III. Once the simulation is complete, we need to transform the tape
back into a one-track representation.  This is somewhat tricky, but not
too bad.  Details are left to the reader.

Theorem. Any function that is computed or language that is decided or
semi-decided by a Turing Machine with a two-way infinite tape is also
computed, decided, or semi-decided by a standard Turing Machine.


