
Lecture 26

Homework #26: 4.2.1, 4.2.2, 4.2.3

Convention: Recall from our introduction to Turing Machines that unless
specified otherwise, the input to a TM is placed immediately to the right
of the left end marker, with the tape head on the first symbol of the
input w. Let’s add a blank to the front now. This will help us if we want
to use some of the handy TMs introduced last time. So now the initial
configuration of a TM M on input w is:
(s, >#w)

Def. Let M = (K, Σ, δ, s, H) be a TM, such that H = {y, n} consists of two
distinguished halting states (y and n for “yes” and “no”, respectively).

♦ Any halting configuration whose state component is y is called an
accepting configuration.

♦ A halting configuration whose state component is n is called a
rejecting configuration.

We say that M accepts w ∈ (Σ-{#,>})* iff (s, >#w) yields an accepting
configuration;
We say that M rejects w iff (s, >#w) yields a rejecting configuration.

Let Σ0 ⊆ Σ – {#,>} be an alphabet, called the input alphabet of M (note
that this allows M to have other symbols that it uses in computation).

M decides a language L ⊆ Σ0 * if for any w ∈ Σ0 * the following is true:

If w ∈ L then M accepts w; if w ∉ L then M rejects w.

A language L is called recursive if there is a TM that decides it.

Example. L = {anbncn : n ≥ 0}

Let y be a TM that, on any input, immediately transitions to state y;
Let n be a TM that, on any input, immediately transitions to state n.

L is decided by the following TM

 d a,d b,d
R a dR b dR c dL#

 b,c c,# a,#
 #

y n

An important point: Even if a TM has H = {y, n}, it does not guarantee
that the TM decides a language. It may still fail to halt.

Computing with Turing Machines

Let M = (K, Σ, δ, s, {h});
Let Σ0 ⊆ Σ – {#, >}
Let w ∈ Σ0*

Suppose M halts on w, and that (s, >#w) * (h, >#y) for y ∈ Σ0*.
y is the output of M on input w.

Denote it M(w).

Let f: Σ0* → Σ0*

M computes f if, for all w ∈ Σ0*, M(w) = f(w).

A function f is called recursive, if there is a TM M that computes f.

Example. Consider the function f: {0,1}* → {0,1}*, defined as

f(n) =  0, if n is the binary representation of an even number

1, if n is the binary representation of an odd number

f is computed by the following TM

R# L 0 # L 0,1 #

 #

 1 R 0 L

L 0,1

 #

 R 1 L

A function f: Nk → N is recursive if there is a TM M that computes f.

Note that we can’t, in general, determine whether a TM decides a given
language or computes a given function (because we can’t tell whether it
will halt on all input).

Def. Let M = (K, Σ, δ, s, H) be a TM.
Let Σ0 ⊆ Σ – {#,>} be an alphabet.

M semidecides a language L ⊆ Σ0 * if for any w ∈ Σ0 * the following is
true: M halts on input w iff w ∈ L.

A language L is recursively enumerable iff there is a TM that
semidecides L.

Note that if w ∉ L, the TM does not halt.

We’ll write M(w) =  if M fails to halt on input w.

Thm. If a language is recursive, then it is recursively enumerable.

Thm. If L is a recursive language, then its complement is also recursive.

Pf. If L is decided by a TM M = (K, Σ, δ, s, {y, n}), then its complement is
decided by a TM that is identical to M, except that the roles of the states
y and n are reversed.

