
Lecture 25                

Homework #25: 4.1.8, 4.1.9, 4.1.10

We’d like to be able to create more complex Turing Machines than
those we’ve seen so far.

Let’s think about creating a library of simple/useful Turing
Machines.  We can then use these as subroutines in bigger, more
interesting, more complex Turing Machines.

We begin by defining some basic (useful) machines.  We can then
start talking about how we can combine them.

Most basic:  Symbol-writ ing  and head-moving machines .

1. There are |Σ| -1 symbol-writing machines.  Each writes a 
specified symbol in the current tape square and then halts.
We do not have a symbol-writing machine for the special left-
end-of-tape marker.

The TM to write the symbol a is Ma = (K, Σ, δ, s, H),
where δ(s,b) = (h,a) for all b ∈  Σ − { > }.
K = {s, h}, H = {h}

We'll call Ma "a".

2. There are two basic head moving machines, one that goes left 
and halts and another that goes right and halts.

M← = (K, Σ, δ, s, H),
where δ(s,b) = (h, ←) for all b ∈  Σ − { > }.
K = {s, h}, H = {h}

We'll call M←  "L" and M → "R".



Now that we have some very simple useful machines to work with,
we can think about how to combine them to make bigger Turing
Machines.  That is, we can think about the mechanics of doing the
combining.

• Let M1 be a TM.

• Let M2 be another TM that "calls" M1 as a subroutine.

Operation:
• M2 does some stuff, including making sure that input is ready for
M1 (can think of it as sending the right parameters to M1).

# #

other M2 stuff input to M1

r/w head positioned for M1

M1's vision of the tape

• Now M1 does its thing.

• Control goes back to M2.

* One more thing we need to assume is that the machines we're
combining don't share states.  But this is easy because states can be
renamed.

Now we can consider the way we’ll describe combined machines:

> M1 → M2

means start M1 and run it till it halts; then run M2 from the 
position where you just finished.



M1 M2

M3

a

b

means run M1.  When M1 finishes, if the symbol being scanned
is a, then run M2; if it’s b, run M3.

Let M1 = (K1, Σ, δ1, s1, H1)
M2 = (K2, Σ, δ2, s2, H2)
M3 = (K3, Σ, δ3, s3, H3)

M, the composite TM, is (K, Σ, δ, s, H), where

K = K1 ∪  K2 ∪  K3
s = s1
H = H2 ∪  H3
For each σ ∈  Σ and q ∈  K-H, δ(q,σ) is defined as follows:
(1) δ(q,σ) = δ1(q,σ), if q ∈  K1-H1.
(2) δ(q,σ) = δ2(q,σ), if q ∈  K2-H2.
(3) δ(q,σ) = δ3(q,σ), if q ∈  K3-H3.
(4) δ(q,a) = (s2,a), if q ∈  H1.
(5) δ(q,b) = (s3,b), if q ∈  H1.
(6) δ(q,b) = (h,b), otherwise, h ∈  H.

And now for some more  examples of interesting basic machines :

Ex. Move right until blank: R#

   if Σ = {a, b, c}, then R# is

R

a

b

c
Note that this will always move to the right at least once.



And here are more ways to represent complex machines.  The first
three are different ways to do the following: move left; if the
symbol being scanned is not #, then move left again.  Note that I’m
using #’ to denote “not #”

L L

a

b

c

L

L

#'L

L

a,b,c

LL

L L

The last two are different ways to say “move left twice.”

And now some more TMs that can be used as building blocks for more
complex machines:

Move right/left to x
[We've already seen R#]

L

R

L

#'
finds 1st # to left of current position

# finds 1st non-blank to right of current position

# finds 1st non-blank to left of current position


