Lecture 24
Homework #24: 4.1.1 - 4.1.5, 4.1.7 (hand in 4.1.4, 4.1.7)

Note that there are many typos in Chapter 4 in my copy of the text.
Corrected in yours?

And now finally....

Today we begin to talk about yet another model of computation: the
Turing Machine. The most interesting property of the Turing Machine is
that there is no known model that is more powerful. That is, we will
argue that any way of formalizing the idea of an algorithm is equivalent to
the idea of a Turing Machine. But this will happen much later. First, we’ll
spend some time defining and understanding Turing Machines.

read/write head

h qo /91
Hinite control

q3 q2

Operation of a Turing machine:
Depending upon the current state and the tape symbol currently scanned:

1. Set the finite control to a new state.
2. Either

write a symbol in the tape square currently being scanned or
move the read/write head 1 square to the left or to the right.

Note that the tape is infinite to the right.

If the machine attempts to move off the left end of the tape, it runs into
the left end marker, >, which pushes the r/w head one square to the
right.

Input is placed at the left end of the tape.

Special halt states signal that a computation is over. These are not
necessarily like final states. They simply indicate that computation has
stopped - but say nothing about the outcome of the computation.

Notation:
blank symbol will be denoted #; (note that the symbol in the text is
different)
movement of the tape head will be denoted < and — for left and

right, respectively.

Formally:
A Turing Machine (TM) is a quintuple (K, 2, 8, s, H), where

K is a finite set of states;

Y is an alphabet, containing # and >, but not < and —;

s € K is the initial state;

H C K is the set of halt states;

d is a function from (K-H) x = to (K) x (Z U {<, —}) such that,

(a) forall g eK-H, if 8(q, >)=(p,b), then b= —.
(b) Forallge K-Hand a € 3, if 8§(g,a)=(p,b) then b = >.

if 8(q, a) = (p, b), then M, when in state g and scanning a, enters
state p, and either writes b, if b is a symbol, or moves 1 square left or
right, if b is < or —.

operation is deterministic - only stops when M enters a halting state.

Example 1. Changes all a's to b's.
M= (K, = 8,s, H), where

K= {qO! h}
> =1{a, b, # >}
S=4q0

H = {h}

d given by the following table:

g o 5(qg,0)

g0 a (a0, b)
g b (a0, =)
qQ # (h, #)

qa > (a0, =)

*Unless told otherwise, assume that the tape head is placed initially on
the first tape square immediately to the right of >

Example 2. Adds 2 pos integers in unary.
M= (K, 9, s, H), where
K ={ao, a1, a2, h}

{I, #, >}

do

{h}

2
S
H

d given by the following table:

g o d(g,0)

qo | (ao, =)

qo # (a1, 1)

aqr | (a1, =)

qr # (az, <)

qQ | (h, #)

aqz # (h, #) [note that this won't happen]

all transitions on > go to (qog, —)

Note that while we define a set of halting states, the TM need not enter a
halting state on all input. It might run indefinitely.

Now, (as always) we need to formalize the notion of computation and
discuss terminology:

A configuration of a TM M = (K, %, §, s, H) is a member of:
Kx>Z*x (Z*(= - {#}) U {e})

We represent the string to the left of the tape head, including the
symbol scanned by the tape head, and the string to the right of the tape
head.

for right of tape head, list only "significant" symbols.
We'll write (q, wa, u) as (g, wau) abbreviated notation.
A halted configuration is one in which the state is a member of H.

The relation yields in one step between configurations is defined as
follows:

LetM = (K, Z, 9§, s, H) be a TM and
let (9, w;a,u;) and (qg,, w.a,u,) be configurations of M.

Then
(as, wiasug) |— (g2, woa,u,)

iff, for some b e > U {< , =}, 8(q,, a;) = (g, b) and either
1. beX w, =w,, u, =uU,, and a, = b, or

2. b =<, w,; =w,a,, and either
(a) u,=ajuy, ifa;, =#oru, =e,or
(b) u,=e,ifa;,=#andu, =¢, or

3. b=—,w, =w;a,;, and either
(a) u; =ayu, or
(b) u; =u,=eanda, =#.

Other terms: reflexive transitive closure of |—
computation.
length of a computation.

