
 
Implementing an Inference Procedure 

 
We’ve discussed rules of inference for propositional logic. 
 
It would be useful from a computational point of view if we had an inference procedure 
that carried out more simply – say, in a single operation – the variety of processes 
involved in reasoning with the inference rules given. 
 
Fortunately, there is such a procedure: Resolution 
 
 

Resolution 
 
Recall the following rules of inference: 
 
Unit resolution 
α ∨ β, ¬ β 
α 
 
Resolution 
α ∨ β, ¬ β ∨ γ 
α ∨ γ 
 
We will base an inference procedure on the application of these rules of inference – 
ignoring the other rules. 
 
Before we can do so, however, we have to be certain that the sentences (axioms) in our 
knowledge base are expressed in a form to which these rules can be applied: clause form. 
 

 
Clause Form 

 
A sentence in clause form is one 
- Without ∧ 
- Without ⇒ 
- In which negation applies to single terms only 
 
For example, 
(a ∨ b) 
(c ∨ d ∨ e) 
(f ∨ ¬g) 
 
 

Converting to Clause Form 
 



In order to convert a sentence in propositional logic to clause form, one can follow these 
steps: 
 
- Convert a ⇒ b to  (¬a ∨ b) 
 
- Apply deMorgan’s Laws so that any ¬ refers only to a single term: 

¬ (a ∧ b) = (¬a ∨ ¬b) 
¬ (a ∨ b) = (¬a ∧ ¬b) 
¬¬a = a 

 
- Apply distributive law to convert to conjunctive normal form (i.e., a conjunction of 

disjuctions) 
(a ∧ b) ∨ c = (a ∨ c) ∧  (b ∨ c) 

 
- Make a separate clause for each conjunct. 

(a ∨ c) 
(b ∨ c) 

 
 
Example.  Converting the Work/Sleep Knowledge Base (KB) 
 
Sun ∨ Mon ∨ Tues ∨ Wed ∨ Thurs ⇒ Work 
¬ (Sun ∨ Mon ∨ Tues ∨ Wed ∨ Thurs) ∨ Work 
(¬Sun ∧ ¬Mon ∧ ¬Tues ∧ ¬Wed ∧ ¬Thurs) ∨ Work 
(¬Sun ∨ Work) ∧ (¬Mon ∨ Work) ∧ (¬Tues ∨ Work) ∧ (¬Wed ∨ Work) ∧ (¬Thurs ∨ 
Work) 
(¬Sun ∨ Work) 
(¬Mon ∨ Work) 
etc. 
 
Party ∧ Work ⇒ ¬Sleep 
¬ (Party ∧ Work) ∨ ¬Sleep 
(¬Party ∨ ¬Work) ∨ ¬Sleep 
¬Party ∨ ¬Work ∨ ¬Sleep 
 
 

Resolution: Proof by Refutation (Contradiction) 
 
To prove that a sentence S is true, we will assume the opposite, and show that that leads 
to a contradiction with the knowledge base. 
 
High-level view of the algorithm: 
 
1. Negate S and convert the result to clause form.  Add it to the KB. 
2. Repeat until either a contradiction is found or no progress can be made: 



- Select two clauses.  Call these the parent clauses. 
- Resolve the parent clauses.  Call the resulting clause the resolvent. 
- If the resolvent is empty, then a contradiction has been found.  If it is not, then 

add it to the KB. 
 
 
Example.  Applying resolution to the Work/Sleep problem. 

 
Our set of axioms (i.e., our knowledge base) is: 
(¬Sun ∨ Work) 
(¬Mon ∨ Work) 
(¬Tues ∨ Work) 
(¬Wed ∨ Work) 
(¬Thurs ∨ Work) 
(¬Thurs ∨ Party) 
(¬Fri ∨ Party) 
(¬Sat ∨ Party) 
¬Party ∨ ¬Work ∨ ¬Sleep 
Thurs 
 
To prove ¬Sleep, we add Sleep to the KB. 
 
Thurs, (¬Thurs ∨ Work) 
Work     add Work to KB 
 
Thurs, (¬Thurs ∨ Party) 
Party     add Party to KB 
 
Work, ¬Party ∨ ¬Work ∨ ¬Sleep 
¬Party ∨ ¬Sleep   add ¬Party ∨ ¬Sleep to KB 
 
Party, ¬Party ∨ ¬Sleep 
¬Sleep     add ¬Sleep to KB 
 
¬Sleep, Sleep  CONTRADICTION 
 
 
 

Completeness of Resolution Proof by Contradiction 
 
The algorithm given above is complete. 
 
On the other hand, if we applied resolution in a “forward” direction (i.e, if we did not do 
a proof by contradiction), it would often work – but would not be complete! 
 



Consider beginning with an empty KB.  Say you want to prove P ∨ ¬P 
You can do this with a resolution proof by contradiction.  But you cannot do it in a 
“forward” manner because there is nothing with which to resolve anything. 
 
 

Is there anything faster? 
 
Yes – if we restrict the expressiveness of our language. 
 
 
 


