Implementing an Inference Procedure

We've discussed rules of inference for propositional logic.

It would be useful from a computational point of view if we had an inference procedure that carried out more simply – say, in a single operation – the variety of processes involved in reasoning with the inference rules given.

Fortunately, there is such a procedure: Resolution

Resolution

Recall the following rules of inference:

Unit resolution $\alpha \lor \beta, \neg \beta$ α

Resolution $\frac{\alpha \lor \beta, \neg \beta \lor \gamma}{\alpha \lor \gamma}$

We will base an inference procedure on the application of these rules of inference – ignoring the other rules.

Before we can do so, however, we have to be certain that the sentences (axioms) in our knowledge base are expressed in a form to which these rules can be applied: **clause form**.

Clause Form

A sentence in clause form is one

- Without ∧
- Without \Rightarrow
- In which negation applies to single terms only

For example, ($a \lor b$) ($c \lor d \lor e$)

(f ∨ ¬ g)

Converting to Clause Form

In order to convert a sentence in propositional logic to clause form, one can follow these steps:

- Convert $a \Rightarrow b$ to $(\neg a \lor b)$
- Apply deMorgan's Laws so that any ¬ refers only to a single term:
 ¬ (a ∧ b) = (¬a ∨ ¬b)
 ¬ (a ∨ b) = (¬a ∧ ¬b)
 ¬ ¬a = a
- Apply distributive law to convert to conjunctive normal form (i.e., a conjunction of disjuctions)
 (a \lambda b) \vee c = (a \vee c) \lambda (b \vee c)
- Make a separate clause for each conjunct.
 (a v c)
 (b v c)

Example. Converting the Work/Sleep Knowledge Base (KB)

Sun v Mon v Tues v Wed v Thurs \Rightarrow Work \neg (Sun v Mon v Tues v Wed v Thurs) v Work $(\neg Sun \land \neg Mon \land \neg Tues \land \neg Wed \land \neg Thurs) v$ Work $(\neg Sun v Work) \land (\neg Mon v Work) \land (\neg Tues v Work) \land (\neg Wed v Work) \land (\neg Thurs v Work)$ $(\neg Sun v Work)$ $(\neg Mon v Work)$ etc. Party \land Work $\Rightarrow \neg$ Sleep

 $\neg (Party \land Work) \lor \neg Sleep$ $(\neg Party \lor \neg Work) \lor \neg Sleep$ $\neg Party \lor \neg Work) \lor \neg Sleep$

Resolution: Proof by Refutation (Contradiction)

To prove that a sentence S is true, we will assume the opposite, and show that that leads to a contradiction with the knowledge base.

High-level view of the algorithm:

- 1. Negate S and convert the result to clause form. Add it to the KB.
- 2. Repeat until either a contradiction is found or no progress can be made:

- Select two clauses. Call these the parent clauses.
- Resolve the parent clauses. Call the resulting clause the resolvent.
- If the resolvent is empty, then a contradiction has been found. If it is not, then add it to the KB.

Example. Applying resolution to the Work/Sleep problem.

Our set of axioms (i.e., our knowledge base) is: $(\neg Sun \lor Work)$ $(\neg Mon \lor Work)$ $(\neg \text{Tues } \lor \text{Work})$ $(\neg Wed \lor Work)$ (¬Thurs v Work) $(\neg$ Thurs v Party) (¬Fri v Party) $(\neg Sat \lor Party)$ ¬Party v ¬Work v ¬Sleep Thurs To prove \neg Sleep, we add Sleep to the KB. Thurs, (¬Thurs v Work) Work add Work to KB Thurs, $(\neg$ Thurs \lor Party) Party add Party to KB

Work, ¬Party v ¬Work v ¬Sleep ¬Party v ¬Sleep add ¬Party v ¬Sleep to KB

Party, ¬Party v ¬Sleep ¬Sleep

add ¬Sleep to KB

¬Sleep, Sleep CONTRADICTION

Completeness of Resolution Proof by Contradiction

The algorithm given above is **complete**.

On the other hand, if we applied resolution in a "forward" direction (i.e, if we did not do a proof by contradiction), it would often work – but would not be complete!

Consider beginning with an empty KB. Say you want to prove $P \lor \neg P$ You can do this with a resolution proof by contradiction. But you cannot do it in a "forward" manner because there is nothing with which to resolve anything.

Is there anything faster?

Yes – if we **restrict** the expressiveness of our language.