

Implementing an Inference Procedure

We’ve discussed rules of inference for propositional logic.

It would be useful from a computational point of view if we had an inference procedure
that carried out more simply – say, in a single operation – the variety of processes
involved in reasoning with the inference rules given.

Fortunately, there is such a procedure: Resolution

Resolution

Recall the following rules of inference:

Unit resolution
α ∨ β, ¬ β
α

Resolution
α ∨ β, ¬ β ∨ γ
α ∨ γ

We will base an inference procedure on the application of these rules of inference –
ignoring the other rules.

Before we can do so, however, we have to be certain that the sentences (axioms) in our
knowledge base are expressed in a form to which these rules can be applied: clause form.

Clause Form

A sentence in clause form is one
- Without ∧
- Without ⇒
- In which negation applies to single terms only

For example,
(a ∨ b)
(c ∨ d ∨ e)
(f ∨ ¬g)

Converting to Clause Form

In order to convert a sentence in propositional logic to clause form, one can follow these
steps:

- Convert a ⇒ b to (¬a ∨ b)

- Apply deMorgan’s Laws so that any ¬ refers only to a single term:

¬ (a ∧ b) = (¬a ∨ ¬b)
¬ (a ∨ b) = (¬a ∧ ¬b)
¬¬a = a

- Apply distributive law to convert to conjunctive normal form (i.e., a conjunction of

disjuctions)
(a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c)

- Make a separate clause for each conjunct.

(a ∨ c)
(b ∨ c)

Example. Converting the Work/Sleep Knowledge Base (KB)

Sun ∨ Mon ∨ Tues ∨ Wed ∨ Thurs ⇒ Work
¬ (Sun ∨ Mon ∨ Tues ∨ Wed ∨ Thurs) ∨ Work
(¬Sun ∧ ¬Mon ∧ ¬Tues ∧ ¬Wed ∧ ¬Thurs) ∨ Work
(¬Sun ∨ Work) ∧ (¬Mon ∨ Work) ∧ (¬Tues ∨ Work) ∧ (¬Wed ∨ Work) ∧ (¬Thurs ∨
Work)
(¬Sun ∨ Work)
(¬Mon ∨ Work)
etc.

Party ∧ Work ⇒ ¬Sleep
¬ (Party ∧ Work) ∨ ¬Sleep
(¬Party ∨ ¬Work) ∨ ¬Sleep
¬Party ∨ ¬Work ∨ ¬Sleep

Resolution: Proof by Refutation (Contradiction)

To prove that a sentence S is true, we will assume the opposite, and show that that leads
to a contradiction with the knowledge base.

High-level view of the algorithm:

1. Negate S and convert the result to clause form. Add it to the KB.
2. Repeat until either a contradiction is found or no progress can be made:

- Select two clauses. Call these the parent clauses.
- Resolve the parent clauses. Call the resulting clause the resolvent.
- If the resolvent is empty, then a contradiction has been found. If it is not, then

add it to the KB.

Example. Applying resolution to the Work/Sleep problem.

Our set of axioms (i.e., our knowledge base) is:
(¬Sun ∨ Work)
(¬Mon ∨ Work)
(¬Tues ∨ Work)
(¬Wed ∨ Work)
(¬Thurs ∨ Work)
(¬Thurs ∨ Party)
(¬Fri ∨ Party)
(¬Sat ∨ Party)
¬Party ∨ ¬Work ∨ ¬Sleep
Thurs

To prove ¬Sleep, we add Sleep to the KB.

Thurs, (¬Thurs ∨ Work)
Work add Work to KB

Thurs, (¬Thurs ∨ Party)
Party add Party to KB

Work, ¬Party ∨ ¬Work ∨ ¬Sleep
¬Party ∨ ¬Sleep add ¬Party ∨ ¬Sleep to KB

Party, ¬Party ∨ ¬Sleep
¬Sleep add ¬Sleep to KB

¬Sleep, Sleep CONTRADICTION

Completeness of Resolution Proof by Contradiction

The algorithm given above is complete.

On the other hand, if we applied resolution in a “forward” direction (i.e, if we did not do
a proof by contradiction), it would often work – but would not be complete!

Consider beginning with an empty KB. Say you want to prove P ∨ ¬P
You can do this with a resolution proof by contradiction. But you cannot do it in a
“forward” manner because there is nothing with which to resolve anything.

Is there anything faster?

Yes – if we restrict the expressiveness of our language.

