
 
Learning Decision Trees 

 
What is a decision tree? 
- Specifies tests to perform on (or questions to ask about) attributes of an example 
- Depending on the outcomes/answers, specifies the class to which an example belongs 
 
 
The following is a simple example of a decision tree for determining whether today is a 
good golf day.  There are two classes: Good day to play and Bad day to play. 
 

 
 
Given an example, you determine the class to which it belongs by tracing through the 
decision tree from the top (“root”) to a classification (“leaf”)  That is, for a particular day, 
you can determine whether it is a good or bad golf day by tracing through the decision 
tree. 
 
Objective: learn a tree that is 
 Correct (both on training examples and on unseen examples) 
 Compact (for efficiency, comprehensibility, generality) 
When constructing the tree, select tests on attributes that will best differentiate examples 
from each other. 
 
Why construct a tree?  Our goal is to construct a classifier.  A decision tree is clearly a 
classifier. 
 
Consider this: What’s the relationship between knowledge represented in a decision tree 
and knowledge represented in logic?  How might you describe the information in the tree 
above as logic sentences? 
 
 

Using our intuition to build a tree 
 
Before looking at an algorithm for building a decision tree, let’s first use our intuition to 
build a good decision tree from data. 



 
Consider the following data set: 
 
 
 Tenured Female Has Kids Has Pets Teaches “Systems” Courses 
Tom True False True False True 
Duane True False True True True 
Andrea True True True True False 
Steve True False False False True 
Brent False False False False False 
Morgan False False True True False 
Jeannie False True False True True 
 
What might lead you to derive a tree from this data set that looks like: 
 

 
 
 

High-level view of the learning algorithm 
 
If all examples are from the same class 
 The tree is a leaf with that class name 
Else 
 Pick an attribute for the decision node (i.e., pick a test to make) 
 Construct one edge for each possible value of that attribute (i.e., each possible test 
        outcome) 
 Partition the examples by attribute value (test outcome) 
 Now do the same for each subgroup just created. 
 
 
 

What makes one test node better than another? 
 
Going back to the “golf” example: 
 



Let P be the set of examples with class “Play.” 
Let D be the set of examples with class “Don’t Play.” 
 
Say that  | P | = 10.  That is, say there are 10 examples in the set “Play”. 
And say that | D | = 10.  That is, there are 10 examples in the set “Don’t Play.” 
 
Now say that an attribute test splits the data into two subsets, T1 and T2. 
 
The best such test is one where T1 = P and T2 = D. 
 
The worst test is one where T1 = 1/2 P + 1/2 D and T2 = 1/2 P + 1/2 D 
 
 

Selecting Tests: Using ideas from Information Theory 
 
Suppose that we have a set of training examples.  We’ll call the set T. 
 
Let Ci be the name of a class, where C1, C2, … , Cn are the class labels assigned to 
examples in T. 
 
Let freq(Ci, T) be the number of examples in the training set that belong to class Ci. 
 
Now let | T | be the number of examples in the training set. 
 
Suppose you were to select one example at random from T and announce that the 
example belonged to class Ci.  This announcement would have probability 
 
   freq(Ci, T) 
   -------------- 
   | T |  
 
and the information it conveys is 
 
-log2 ( freq(Ci, T)/|T| ) bits 
 
As the probability goes up, the information conveyed goes to 0.  It’s highest for low 
probabilities. 
 
Here’s one way you might think about this:  Say that I have a bag of 100 marbles.  99 of 
them are blue and one is red.  If I pull out a blue one and announce to you that it’s blue, 
that’s not terribly interesting.  On the other hand, if I tell you it’s red, then that’s more 
interesting. 
 
We can think of the information term as representing the amount of information we need 
to identify an example as being a member of a particular class. 
 



 
Entropy 

 
The following measures the average amount of information needed to identify the class 
of an example in T: 
 
info(T) =  - Σ(freq(Ci, T) / |T|  ) *  log2 ( freq(Ci, T)/|T| ) , 
 
 where the weighted sum is computed over the number of classes in T. 
 
This is called the entropy of T.  You can think of it as a measure of the disorder (or 
impurity) of the set of examples. 
 
[Think about what happens when there are multiple classes and all of the examples in the 
training set belong to just one of those classes.] 
 
So if we compute info(T), we get a measure of the disorder of the examples. 
 
Now, how does this relate to the selection of a test?  (i.e., the selection of the attribute on 
which we will branch in the decision tree). 
 
We will select a split of the examples that lessens the disorder.  That is, we will select a 
test that produces the most “pure” subsets. 
 
 

Information Gain 
 
Let X be an attribute of the examples.  Now say that X has n possible values. 
 
If X were selected as a test, we would create a decision tree node with n branches. 
 
Now say that j is a possible value of X.  Let Tj be the examples that have the value j for 
attribute X. 
 
We can compute the average entropy (disorder) that results from making this split: 
 
infoX(T) = Σ ( |Ti| / |T|  ) *  info(Ti), 
 Where the sum is taken over the n possible values of the attribute X. 
 
We can compute this for every attribute. 
 
Once we have done so, we select the attribute that maximizes the value of 
 
info(T) – infoX(T) 
 



Information Gain measures the expected reduction in entropy caused by partitioning the 
examples according to attribute X. 
 
Gain(T, X) = info(T) – infoX(T) 
 
 
 
An Example. Building the Golf Tree 
 
Say that we would like to build a “golf” decision tree from data.  The training examples 
describe days on which it is either good  to play golf – or not.  The days are described by 
four attributes: outlook, temperature, humidity, and wind. 
 
Say the available training examples are as follows: 
 
 Outlook Humidity Wind Class 
Example 1 Sunny >75 False Don’t Play 
Example 2 Sunny >75 True Don’t Play 
Example 3 Overcast >75 False Play 
Example 4 Rainy >75 False Play 
Example 5 Rainy >75 False Play 
Example 6 Rainy ≤75 True Don’t Play 
Example7 Overcast ≤75 True Play 
Example8 Sunny >75 False Don’t Play 
Example9 Sunny ≤75 False Play 
Example10 Rainy >75 False Play 
Example11 Sunny ≤75 True Play 
Example12 Overcast >75 True Play 
Example13 Overcast ≤75 False Play 
Example14 Rainy >75 True Don’t Play 
 
So |T| , the number of examples in the training set, = 14. 
 
Now, freq(Play, T) = 9 and freq(Don’tPlay, T) = 5. 
 
So info(T) = -((9/14)(log2 9/14) + (5/14)(log2 5/14)) = 0.94 
 
Now let’s consider splitting this set of examples on the outlook attribute. 
 
First, we divide the data into three sets.  One contains all the examples for which the 
outlook is sunny; the next contains all the examples for which it is raining; the third 
contains all the examples for which it is overcast. 
 
Say that the 14 original examples divide as follows: 
 
Sunny: 5 examples, Play = 2, Don’t Play = 3 



Rainy: 5 examples, Play = 3, Don’t Play = 2 
Overcast: 4 examples, Play = 4, Don’t Play = 0. 
 
info(Sunny Set) = - ((2/5 log2 2/5) + (3/5 log2 3/5)) = 0.97 
 
info(Rainy Set) = 0.97 
 
info(Overcast Set) = 0 
 
Now let’s use these to compute the information needed to classify examples that have 
been divided on the outlook attribute: 
 
(5/14)(0.97) + (5/14)(0.97) + (4/14)(0) = 0.69 
 
This gives us an information gain of 0.94 – 0.69 = 0.25 
 
Now we do the same type of analysis for wind and humidity.  We choose the attribute 
that yields the greatest information gain.  It turns out to be “outlook”. 
 
Now we do the same at each newly created tree node.  That is, we treat the sunny group 
as if it is an entire set of examples.  We determine the attribute that best splits those.  We 
then do the same for the rainy group.  We might find that different tests are selected at 
each of these nodes! 
 
 
 


