COGS 222 Take-Home Lab #10 Kirby & Danyluk
Spring 2007

Due: beginning of class, Thursday, May 10"

You may work with a partner on this lab, if you like. No more than two people to a
group, please. If you'd like to work with someone but don't have a particular person in
mind, you can email the class. Just send your mail to cogs222@cs.williams.edu.

This lab will provide you with the opportunity to consider emergent behaviors. For this
lab, you will program a bee simulation using StarLogo. As described by the authors,
"StarLogo is a programmable modeling environment for exploring the workings of
decentralized systems — systems that are organized without an organizer, coordinated
without a coordinator." In other words, it is a programming environment for exploring
complex group behaviors that arise as a result of very simple individual behaviors.

There are two parts to this lab. First, you will complete a tutorial on StarLogo. Second,
you will write a simulation of your own.

Obtaining StarL.ogo

If you plan to work in TCL 216 or 217 or if you have an Apple computer, running
MacOS X 10.2.6 or higher with Java 1.4 or higher installed, the easiest way to obtain
StarLogo is by going to Prof. Danyluk's course web page. Click on the link for
"StarLogo for COGS 222", which you'll find on the "Labs" page. The actual file to
which the link points is a gzipped tar file. If you're working on a Mac, clicking on the
link will download the file. You should then be able to just double click on the
downloaded file to expand it into the StarLLogo folder.

In the StarLogo folder, you'll find the StarLLogo application, as well as Documentation
and Sample Projects folders.

StarLogo is available (free of charge) for many different platforms. Just go to the
following website:

http://education.mit.edu/starlogo/

Warning! The bee simulation you will do for Part 2 of this assignment was inspired by a
sample program that comes with the StarL.ogo package. I've deleted it from the version
that I've made available. Don't download StarLogo from the MIT site unless you can
resist the temptation to look at their bee simulation program.



Part 1. Tutorial.

Naturally, you'll want to begin by learning how to use StarLogo. Fortunately, the authors
of the program have put together a great tutorial. To start learning, double-click on
"StarLogoDocumentation.htm" in the "Documentation" folder.

Next, click on "Getting Started". Definitely read the first three sections (Introduction,
The Cast of Characters, The StarLogo Interface). Feel free to explore the rest, but you

can now begin the tutorial.

To get to the tutorial, click on "Tutorial" at the top of the window. This will walk you
through a termite nest-building simulation.

Part 2. Bee Simulation.

Now you're ready to program your own simulation. You will explore how bees build
honeycomb through a series of very simple behaviors. Start by reading a high-level
description of this project, which appears as one of the Sample Projects suggested by
StarLogo. To get to the description, go to item 5 in the "Getting Started" description.
This provides a link to "Sample Projects". "Bees" is the first project listed in the Biology
section.

Your simulation should begin with n bees roughly in the center of the patch area. You
needn't create a slider for selecting the number of bees as the project description suggests.
You can simply hard code a number into the simulation (and edit the actual simulation
code to try different numbers of bees). If you feel comfortable with the process of
creating a button, however, you'll find it pretty easy to create a slider. The main
difference is that you'll need to specify the name of a variable that will refer to the
number selected by the user. Then in the program you write, you'll always refer to the
variable name whenever you would have refered to the number of bees.

As you know from the tutorial, creating n bees (turtles?) will place them on top of each
other in the very center of the patch space. To spread them out a bit, ask the bees to
change to a random heading and jump a random amount (up to, say, a distance of 5).

Then the building behavior can proceed. Each bee should affect the patch on which it
stands by leaving some small amount of a chemical. The bee should then move. The
movement of the bee, however, is affected by the total amount of chemical on the patch.
The more there is, the more significant the turn of the bee; the more there is, the farther
the bee flies.

Since bees are leaving chemical on patches, each patch needs to know how much
chemical is on it. To associate a variable (say, chemical) with each patch, you need to
place the line



patches-own [chemical]

in either the Turtle Procedures or Observer Procedures. This associates chemical with
each patch. Now each time a bee wants to refer to the chemical below it (i.e., on the patch
where it's sitting), simply use the term chemical in the bee's procedure.

There are many ways a bee can place some chemical on a patch. I simply said that the
amount of chemical is a number, starting at 0. Each time a bee places some chemical on
a patch, the patch's chemical content is increased by 1. You can use the arithmetic
operators +, -, * (i.e., times), and /. To set a variable to a new value, you need to use the
"set" command, as in

set chemical ...

After a bee places chemical on its patch, it needs to move. I made it turn to the right
some amount dependent on the amount of chemical. I also added a bit of randomness
(which makes the simulation more realistic). Be creative here.

Once the bee has turned, it should move. Again, the amount it goes forward from its new
orientation should depend on the amount of chemical. (I just said it should move a
distance determined by .10 * chemical, but there are more complex and interesting things
you can do.)

Last, but not least, StarLogo provides a great way for you to see the intensity of a
chemical on a patch. To do so, you can use the command

scale-pc yellow chemical 1 100
This says to make patches yellow, where the intensity of the yellow is determined by the
value of the chemical. Color begins to appear as soon as the chemical level reaches 1. At
100, the patch is set to full yellow. (Above values of 100, the patch will turn white.)
There are various ways to use the "scale-pc" command. For example, a bee can issue this
command before moving to a new patch. If you want to get fancy, you can use "diffuse"
to let some of the chemical "bleed" into neighboring patches.
There are many other interesting commands you can try (including a "wait" command, so
that you can slow down your simulation). You can check these out by clicking on the
"Commands" button in the documentation pages.

What to turn in:

We would like you to turn in the working program, as well as paper copy of your
program code. Just one per pair, please.

What follows are instructions for turning in the program from TCL 216 or 217:



First, make sure that the name of your file is something like
yourName.slogo

If there is a Courses icon on your desktop, skip the rest of this paragraph and simply
continue with the rest. From the Go menu at the top of the screen, select Connect to
Server. For the server address, type in cortland (or cortland.cs.williams.edu) and then
connect. Connect as Guest. Select the Courses volume on cortland. The Courses icon
should now appear on your Desktop.

Double click on the Courses icon and find the cogs222 folder. Within that folder, you
will see a DropOff folder. Copy your file into the DropOff folder by dragging it over to
the DropOff icon. You will get a message saying that you do not have permission to see
the results of the operation. Click ok! (The message is simply telling you that you can't
look inside of the folder to see anyone else's work.)

And that's all there is to it!

Before leaving the lab, drag the Courses icon to the trash to disconnect from the server.
You might also want to get rid of StarL.ogo, if you don't plan to use it again.

And, of course, don't forget to log out.



