
Coinductive big-step operational semantics for type
soundness of Java-like languages ∗

Davide Ancona
DISI, University of Genova, Italy

davide@disi.unige.it

ABSTRACT
We define a coinductive semantics for a simple Java-like lan-
guage by simply interpreting coinductively the rules of a
standard big-step operational semantics.

We prove that such a semantics is sound w.r.t. the usual
small-step operational semantics, and then prove soundness
of a conventional nominal type system w.r.t. the coinduc-
tive semantics. From these two results, soundness of the
type system w.r.t. the small-step semantics can be easily
deduced.

This new proposed approach not only opens up new possi-
bilities for proving type soundness, but also provides useful
insights on the connection between coinductive big-step op-
erational semantics and type systems.

Categories and Subject Descriptors
D.3.1 [Programming languages]: Formal Definitions and
Theory—Semantics; F.3.2 [Logics and meanings of pro-
grams]: Semantics of Programming Languages—Operational
semantics; F.3.3 [Logics and meanings of programs]:
Studies of Program Constructs —Type structure

General Terms
Languages, Theory

Keywords
coinduction, operational semantics, type soundness, Java

1. INTRODUCTION
It is well known that standard inductive big-step oper-

ational semantics are less amenable to prove soundness of
type systems than small-step semantics; several important
motivations for this statement can be found in the related

∗This work has been partially supported by MIUR DISCO
- Distribution, Interaction, Specification, Composition for
Object Systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FTfJP’11, July 26, 2011, Lancaster, UK.
Copyright 2011 ACM 978-1-4503-0893-9/11/07 ...$10.00.

literature [10, 11]. In this paper we show that this draw-
back can be overcome when coinductive big-step semantics
are considered.

This work is mainly inspired on previous work by Ancona
et al. on abstract compilation for object-oriented languages
[7, 3, 6, 5, 4], a novel approach which aims at reconciling
type analysis and symbolic execution, where programs are
compiled into a constraint logic program, and type analysis
corresponds to solving a certain goal w.r.t. the coinductive
semantics of CLP. In particular, the contribution of this pa-
per w.r.t. abstract compilation is investigating new proof
techniques to obtain simpler proofs of soundness for abstract
compilation schemes. Another important source of inspira-
tion is the work by Leroy and Grall, whose main purpose is
seeking new techniques to be easily automatized for prov-
ing the correctness of compilation of high-level functional
languages down to lower-level languages.

After defining the standard small-step semantics of our
reference language (Section 2), in Section 3 we define a coin-
ductive semantics by simply interpreting coinductively the
rules of a standard inductive big-step semantics for the ref-
erence language. We prove that such a semantics is sound
w.r.t. the usual small-step semantics; this is an interesting
result since it allows one to prove soundness of a type system
in terms of the coinductive big-step operational semantics,
and then directly deduce soundness w.r.t. the small-step
semantics. In Section 4 we show this possibility by prov-
ing soundness of a conventional nominal type system w.r.t.
the coinductive big-step operational semantics. Finally, in
Section 5 we outline conclusions and related work.

2. DEFINITION OF THE LANGUAGE
In this section we present our simple Java-like language,

which will be used as reference language throughout the pa-
per, together with its standard call-by-value small-step op-
erational semantics (abbreviated with ISS).

The syntax of the language is defined in Figure 1.
The language is a modest variation of Featherweight Java

(FJ) [9], where the main differences concern the introduc-
tion of conditional expressions and boolean values, and the
omission of type casts.

Standard syntactic restrictions are implicitly imposed in
the figure. Bars denote sequences of n items, where n is the
superscript of the bar and the first index is 1. Sometimes

this notation is abused, as in f
h

= e ′
h
; which is a shorthand

for f1 = e ′1; . . . fh = e ′h;.
A program consists of a sequence of class declarations and

a main expression. Types can only be class names and the
primitive type bool; we assume that the language supports

prog ::= cd
n

e

cd ::= class c1 extends c2 { fd
n

md
k } (c1 6= Object)

fd ::= τ f ;
md ::= τ0 m(τ xn) {e} xi 6= this ∀i = 1..n
τ ::= c | bool
e ::= new c(en) | x | e.f | e0.m(en) | if (e) e1 else e2

| false | true

Assumptions: n, k ≥ 0, inheritance is acyclic, names of
declared classes in a program, methods and fields in a class,
and parameters in a method are distinct.

Figure 1: Syntax of the language

boxing conversions, hence bool is a subtype1 of the prede-
fined class Object, which is the top type.

A class declaration contains field and method declarations;
in contrast with FJ, constructors are not declared, but every
class is equipped with an implicit constructor with param-
eters corresponding to all fields, in the same order as they
are inherited and declared. For instance, the classes defined
below

class P extends Object {bool b; P p;}
class C extends P {C c;}

have the following implicit constructors:

P(bool b,P p) {super(); this.b=b; this.p=p;}
C(bool b,P p,C c) {super(b,p); this.c=c;}

Method declarations are standard; in the body, the tar-
get object can be accessed via the implicit parameter this,
therefore all explicitly declared formal parameters must be
different from this. Expressions include instance creation,
variables, field selection, method invocation, conditional ex-
pressions, and boolean literals.

The definition of the conventional small-step operational
semantics of the language can be found in Figure 2. We
follow the approach of FJ, even though for simplicity we
have preferred to restrict the semantics to the deterministic
call-by-value evaluation strategy.

Values are either the literals false or true, or object ex-
pressions in normal form having shape new c(vn). As hap-
pens for FJ, the semantics of object creation is more liberal
than the expected one; indeed, new c(vn) is always a cor-
rect expression which reduces to itself in zero steps, even
when class c is not declared, or the number of arguments
does not match the number of fields of c. As we will see,
the big-step semantics follows a less liberal semantics, more
in accordance with the standard semantics of mainstream
object-oriented languages.

As usual, the reduction relation → should be indexed
over the collection of all class declarations contained in the
program (called class table), however for brevity we leave
implicit such an index in all judgments defined in the paper.
The reflexive and transitive closure of → is denoted by
∗→ .
The definition of the standard auxiliary functions fields

and meth is standard [2]. For compactness, such functions
provide semantic and type information at once, since they

1Besides mimicking what happens in Java, this assump-
tion ensures the existence of the join operator (least up-
per bound) between types, without introducing union types.
This allows a simpler typing rule for conditional expressions
in the type system defined in Section 4.

are instrumental for the definition of both the semantics and
the type system of the language. Function fields returns the
list of all fields which are either inherited or declared in
the class, in the standard order and with the corresponding
declared types. In the case of the predefined class Object
the returned list is empty (ε); field hiding is not supported,
hence fields is not defined if a class declares a field with the
same name of an inherited one. Function meth performs
standard method look-up: if meth(c,m) = τn xn.e:τ , then
look-up of method m starting from class c returns the corre-
sponding declaration where τn xn are the formal parameters
with their declared types, and e and τ are the body and the
declared returned type, respectively. If meth(c,m) is unde-
fined, then it means that look-up of m from c fails.

In rule (fld), if fi is a field of the class, then the expression
reduces to the corresponding value passed to the implicit
constructor. If the selected field is not in such a list, then
the evaluation of the expression gets stuck.

In rule (inv), if method look-up succeeds starting from the
class of the target object, then the corresponding body is ex-
ecuted, where the implicit parameter this and the formal
parameters are substituted with the target object and the
argument values, respectively. The notation ei[x

n 7→ vn] de-
notes parallel substitution of the distinct variables xn with
values vn in the expression e.

Rules for conditional expressions (ift) and (iff), and for
context closure (ctx) are straightforward. Contexts are the
standard ones corresponding to left-to-right, call-by-value
strategy.

3. A COINDUCTIVE SEMANTICS
In this section we define a call-by-value coinductive big-

step operational semantics (abbreviated with CBS) for our
language.

Such a semantics is obtained by simply interpreting coin-
ductively the definition of values and the rules of a pretty
standard inductive big-step operational semantics (with no
rules for error handling). In Section 4 we prove soundness
of the standard nominal type system of the language w.r.t.
CBS. The claim of soundness we prove is quite simple: if an
expression is well-typed, then it evaluates to a value.

We recall that interpreting recursive definitions or rules
coinductively is equivalent to considering also infinite terms
and proof trees [7, 4, 11, 15]. The CBS judgment uses value
environments (see below), just for uniformity with the type
judgment defined in Section 4. Value environments are not
strictly necessary, since the rule for method invocation can
be equivalently defined with parallel substitution as in ISS;
however, it is not difficult to prove that the two semantics
are equivalent. Values are separated from expressions, since
expressions are always finite terms, whereas values can be
also infinite. Such a separation is further stressed by the fact
that values belong to a different syntactic category, that is,
even finite values are different from expressions.

v, u ::= obj (c, [f
n 7→ v

n]) | false | true (coind. def.)

If the recursive definition above were interpreted inductively,
we would obtain a standard definition of values for our big-
step semantics. It is important to recall that false and true
are expressions of our language, and values in ISS (denoted
by the meta-variable v), whereas false and true are not ex-
pressions, but just the corresponding values in CBS (denoted
by the meta-variable v). Similarly new c(true) is both an
expression and a value in ISS, whereas obj (c, [f 7→ true]) is

v ::= new c(vn) | false | true
C[] ::= 2 | new c(vn,2, ek) | 2.f | 2.m(en) | v .m(vn,2, ek) | if (2) e1 else e2

(fld)
fields(c) = τn f

n
, 1 ≤ i ≤ n

new c(vn).fi → vi

(inv)
meth(c,m) = τn xn.e:τ

new c(vk).m(v ′
n

)→ e[this 7→ new c(vk), xn 7→ v ′
n

]

(ift)
if (true) e1 else e2 → e1

(iff)
if (false) e1 else e2 → e2

(ctx)
e → e′

C[e]→ C[e′]

Figure 2: Call-by-value inductive small-step operational semantics

the corresponding value in CBS (assuming that the only field
of c is f), and is not an expression.

Since the definition above is coinductive, object values
may be also infinite in CBS. For instance, the value v defined
by the equation

v = obj (List , [hd 7→ obj (Elem, []), tl 7→ v])

represents an infinite list; in our language, such a value can
only be returned by an infinite computation. Of course in a
lazy language this value could be returned also by a termi-
nating expression, or in an imperative language a terminat-
ing expression could evaluate into a circular list; however,
the important point here is that type correct expressions
which do not terminate always return a value in CBS: as ex-
plained in case 2 in the second part of this section, without
infinite values the claim of soundness proved in Section 4
would not hold.

CBS is defined in Figure 3. Thicker lines manifest that
rules are interpreted coinductively. An environment Π is a
finite sequence xi

n 7→ v
n, where all variables xi

n are distinct,
denoting a finite function mapping variables to values (∅
denotes the empty environment, dom(Π) the domain of Π).
Environments model stack frames of method invocations.

Rules (var), (fal), and (tru) are straightforward. Eval-
uation of instance creation (new) succeeds only if fields(c)
is defined (that is, if c and its ancestors are declared in the
program and no field is hidden), and returns a list of fields
whose length must coincide with the number of arguments;
then all arguments are evaluated and the obtained values are
associated with the corresponding fields in the object value.
For field selection (fld) the target expression is evaluated;
then evaluation succeeds only if an object value is returned,
and the selected field is present in the object value; in this
case the corresponding associated value is returned. For
method invocation (inv) all expressions denoting the tar-
get object and the arguments are evaluated. If the value
corresponding to the target is an object of class c, method
look-up starting from c succeeds and returns a method dec-
laration with a number of formal parameters coinciding with
the number of passed arguments, then the method body is
evaluated in the environment where this and the formal
parameters are associated with their corresponding values.
If such an evaluation succeeds, then the returned value is
the value of the method invocation. Finally, rules (ift) and
(iff) are straightforward.

Note that CBS of object creation is less liberal than ISS:
as an example, new c() is a value in ISS, whereas the same
expression may not evaluate to a value in CBS; this happens
if either c is not declared in the program, or if c contains at
least one field.

We have already observed that if the definition of values
and the evaluation rules are interpreted inductively, then
we obtain a standard inductive big-step operational seman-
tics. Obviously, if an expression evaluates to a value in the
inductive semantics, then the same value is obtained in the
coinductive one; however, this case concerns terminating ex-
pressions, whereas what we do really care about here is the
behavior of CBS for non terminating expressions. We show
that three different cases may occur. We leave to the reader
the easy check that all expressions e considered in the exam-
ples below do not terminate w.r.t. ISS, that is, there exists

no normal form e ′ s.t. e
∗→ e ′.

Case 1: There exist many values v s.t. ∅ ` e ⇒ v

Let us consider the expression e = new C().m(), where
C is declared as follows:

class C extends Object {bool m() {this.m()}}

Then ∅ ` e ⇒ v for all values v, as shown in the proof tree of
Figure 4. Ellipsis means that such a tree is infinite (hence,
it cannot be a valid proof for an inductive system), although
regular, that is, it can be folded into a finite graph, because
of the repeated finite pattern originated from the judgment
Π ` this.m()⇒ v.

∅ ` new C()⇒ u

Π ` this⇒ u

...

Π ` this.m()⇒ v

Π ` this.m()⇒ v

∅ ` new C().m()⇒ v

Figure 4: Proof tree for ∅ ` e ⇒ v, where u =
obj (C, []), Π = this 7→ u

There are also cases where finitely many values are re-
turned. For instance,

∅ ` if(new C().m()) true else false⇒ true
∅ ` if(new C().m()) true else false⇒ false

and no other values can be returned.
Case 2: There exists a unique value v s.t. ∅ ` e ⇒ v

We consider two possible cases, depending on the fact that
the returned value is finite or infinite. For both cases we as-
sume that C is declared as in case 1. For the former case, the
expression if(new C().m()) true else true trivially evalu-
ates to the unique value true (although with two different
proof trees). For the latter, let us add the following decla-
rations:

class P extends Object {H m(){new H(this.m())}}
class H extends P {H h;}

(var)

Π(x) = v

Π ` x ⇒ v

(fal)

Π ` false⇒ false
(tru)

Π ` true⇒ true

(new)

∀ i = 1..n Π ` ei ⇒ vi fields(c) = τn f
n

Π ` new c(en)⇒ obj (c, [f
n 7→ v

n])

(ift)

Π ` e ⇒ true Π ` e1 ⇒ v

Π ` if (e) e1 else e2 ⇒ v

(iff)

Π ` e ⇒ false Π ` e2 ⇒ v

Π ` if (e) e1 else e2 ⇒ v

(fld)

Π ` e ⇒ obj (c, [f
n 7→ v

n]) 1 ≤ i ≤ n

Π ` e.fi ⇒ vi

(inv)

∀ i = 0..n Π ` ei ⇒ vi this 7→ v0, xn 7→ v
n ` e ⇒ v

v0 = obj (c, [. . .]) meth(c,m) = τn xn.e:τ

Π ` e0.m(en)⇒ v

Figure 3: Call-by-value coinductive big-step operational semantics

Figure 5 shows the unique proof tree for ∅ ` new P().m()⇒
obj (H, [h 7→ v]); ellipsis means that such a tree is infinite, but,
again, it can be folded into a finite graph. Indeed, the proof
tree must verify the following invariant:

Π ` new H(this.m())⇒ v iff
Π ` new H(this.m())⇒ obj (H, [h 7→ v])

Such an invariant does not hold for finite values, but it is
verified by the unique infinite (but regular) value v satisfying
the equation v = obj (H, [h 7→ v]).

Note that if rules are interpreted coinductively, but values
can only be finite, then the claim proved in Section 4, (that
is, any well-typed expression evaluates to a value) does not
hold.
Case 3: There exist no values v s.t. ∅ ` e ⇒ v

The expression if(new C().m()) true.m() else true.m()

does not evaluate to any value; this is a direct consequence
of the fact that no rules are applicable for the expression
true.m() since true does not evaluate to an object value.
The main difference with the previous two cases is that here
the expression to be evaluated cannot be typed in any type
system insensitive to non termination. In the conventional
nominal type system defined in Section 4 all previous exam-
ples except for the last one are well-typed.

Soundness of CBS w.r.t. ISS
We show that CBS as defined in Figure 3 is sound w.r.t.
ISS as defined in Figure 2. More precisely, if ∅ ` e ⇒ v,
then in ISS either e diverges (that is, e does not reduce
to a normal form), or e reduces in zero or more steps to a
value v s.t. ∅ ` v ⇒ v. In other words, we are guaranteed
that the evaluation of an expression will never get stuck
in ISS whenever CBS returns a value for it. CBS can be
considered as a sound approximation (or, equivalently, as a
sound abstraction) of ISS, therefore it plays the analogous
role of a type system; hence, we use the standard technique
that proves the progress and subject reduction properties.
Clearly, CBS cannot play the role of a reference semantics
for the language, because it is non deterministic for some
non terminating expressions, and it is not defined for some
ill-typed non terminating expressions. Yet, such a semantics
is obtained for free by interpreting coinductively a standard
big-step operational semantics, and it is useful for proving
soundness of type systems, as shown in Section 4. Proving
that CBS is sound w.r.t. ISS allows us to factor in two steps
the proof that a given type system T is sound w.r.t. ISS: in
step 1, T is proved to be sound w.r.t. CBS, while in step
2 CBS is proved to be sound w.r.t. ISS. Of course, step 2
needs to be proved only once, and then can be simply reused.
The progress and subject reduction properties can be proved

routinely [2], the former by induction on e, the latter by
induction on the rules defining ISS. Proof by coinduction is
only needed for the substitution lemma.

Theorem 3.1 (Progress). If ∅ ` e ⇒ v, then either
e is a value, or there exists e ′ s.t. e → e ′.

Subject reduction relies on the following restricted form of
substitution lemma which suffices for proving Theorem 3.2.

Lemma 3.1 (Substitution). If xn 7→ v
n ` e ⇒ v, and

for all i = 1..n ∅ ` vi ⇒ vi, then ∅ ` e[xn 7→ vn]⇒ v.

Theorem 3.2 (Subject reduction). If ∅ ` e ⇒ v,
and e → e ′, then ∅ ` e ′ ⇒ v.

Corollary 3.1. If ∅ ` e ⇒ v, e
∗→ e ′, and e ′ is a normal

form, then e ′ is a value, and ∅ ` e ′ ⇒ v.

Proof. By induction on the number n of steps needed
to reduce e to e ′. If n = 0, then e = e ′, and trivially
∅ ` e ′ ⇒ v; furthermore, since e ′ is a normal form, by
progress (Theorem 3.1) e ′ is a value. If n > 0, then there
exists e ′′ s.t. e → e ′′, and e ′′ reduces to e ′ in n − 1 steps.
By subject reduction (Theorem 3.2) ∅ ` e ′′ ⇒ v, then we
conclude by inductive hypothesis.

4. A NOMINAL TYPE SYSTEM
We define a standard nominal type system for our refer-

ence language, and prove that it is sound w.r.t. CBS. The
complete proof with all necessary lemmas can be found in a
companion paper [2].

Then we show that soundness of the type system w.r.t.
ISS can be easily derived from the result of the previous
Section as a simple corollary. Finally, we provide a general
schema to be applied to a language equipped with both CBS
and ISS, for proving soundness of a type systems w.r.t. ISS
in terms of soundness w.r.t. CBS.

Besides functions fields and meth, already used for defin-
ing both ISS and CBS, the typing rules are based on the
following auxiliary functions/operators, whose trivial defini-
tions have been omitted for space limitation [2]. The stan-
dard subtyping relation ≤ between nominal types; the pred-
icate override(c,m, τn, τ) that holds iff meth(c′,m) is un-
defined or meth(c′,m) = τ ′

n
xn.e:τ ′, τ ′

n ≤ τn, and τ ≤ τ ′,
with c′ direct superclass of c; the join operator ∨ which com-
putes the least upper bound ∨(τ1, τ2) of two types τ1 and τ2
(this is always defined since inheritance is single, and bool is
a subtype of the top type Object).

The typing rules, which can be found in Figure 6, are quite
standard. A type environment Γ is a finite sequence xi

n:τn,

∅ ` new P()⇒ obj (P, [])

Π ` this⇒ obj (P, [])

...

Π ` new H(this.m())⇒ v

Π ` this.m()⇒ v

Π ` new H(this.m())⇒ obj (H, [h 7→ v])

∅ ` new P().m()⇒ obj (H, [h 7→ v])

Figure 5: Proof of ∅ ` new P().m()⇒ obj (H, [h 7→ v]), with v = obj (H, [h 7→ v]), Π = this 7→ obj (P, [])

(pro)
∀ i = 1..n ` cdi:� ∅ ` e:τ

` cd
n

e:�
(cla)
∀ i = 1..k c ` mdi:� fields(c) defined

` class c extends c′ { fd
n

md
k }:�

(met)
this:c, xn:τn ` e:τ τ ≤ τ0 override(c,m, τn, τ0)

c ` τ0 m(τn xn) {e}:�

(var)
Γ ` x :τ

Γ(x) = τ (fal)
Γ ` false:bool

(tru)
Γ ` true:bool

(new)
∀ i = 1..n Γ ` ei:τi fields(c) = τ ′

n
f

n ∀ i = 1..n τi ≤ τ ′i
Γ ` new c(en):c

(fld)
Γ ` e:c fields(c) = τn f

n
1 ≤ i ≤ n

Γ ` e.fi:τi

(inv)
∀ i = 0..n Γ ` ei:τi meth(τ0,m) = τ ′

n
xn.e:τ ∀ i = 1..n τi ≤ τ ′i

Γ ` e0.m(en):τ
(if)

Γ ` e:bool Γ ` e1:τ1 Γ ` e2:τ2

Γ ` if (e) e1 else e2:∨(τ1, τ2)

Figure 6: Nominal type system

where all variables xi
n are distinct, denoting a finite func-

tion mapping variables to types (∅ denotes the empty type
environment, dom(Γ) the domain of Γ). Rules (pro), (cla),
and (met) define well-typed programs, classes, and methods,
respectively. The other rules define well-typed expressions
w.r.t. a given type environment.

To prove soundness of the type system w.r.t. CBS, we
first define a relation v ∈ τ between CBS values and nom-
inal types: intuitively, such a relation defines the intended
semantics of types as set of values [5, 6]. Such a relation is
coinductively defined by the following rules:

(top)

v ∈ Object
(bool)

v = false or v = true

v ∈ bool

(obj)

∀ i = 1..n vi ∈ τi c ≤ c′ fields(c) = τn f
n

obj (c, [f
n 7→ v

n]) ∈ c′

The membership relation is easily extended to environments
and type environments:

Π ∈ Γ⇔ dom(Γ) ⊆ dom(Π) and ∀ x ∈ dom(Γ) Π(x) ∈ Γ(x).

Proof of soundness.
In the sequel we assume the implicit hypothesis that all

claims refer to a program where all classes are well-typed.
All omitted lemmas and proofs can be found in a companion
paper [2].

Theorem 4.1. If Γ ` e:τ , and Π ∈ Γ, then there exists v

s.t. Π ` e ⇒ v and v ∈ τ .

The following corollary states the soundness of the type sys-
tem w.r.t. ISS as a direct consequence of Theorem 4.1 and
Corollary 3.1.

Corollary 4.1. If ∅ ` e:τ , e
∗→ e ′, and e ′ is a normal

form, then e ′ is a value.

Proof. By definition ∅ ∈ ∅, therefore by Theorem 4.1
there exists v s.t. ∅ ` e ⇒ v. Finally, by Corollary 3.1 e ′ is
a value.

Such a corollary is sufficient for guaranteeing the soundness
of the type system w.r.t. ISS: a well-typed expression can
never get stuck in ISS. However, by adding the following
property (that can be proved easily), we can also deduce
that the value e ′ is s.t. ∅ ` e ′:τ ′ with τ ′ ≤ τ .

Proposition 4.1. If ∅ ` v ⇒ v, and v ∈ τ , then ∅ ` v :τ ′,
with τ ′ ≤ τ .

We can now prove the generalization of Corollary 4.1.

Corollary 4.2. If ∅ ` e:τ , e
∗→ e ′, and e ′ is a normal

form, then e ′ is a value and ∅ ` e:τ ′ with τ ′ ≤ τ .

Proof. The proof proceeds as for Corollary 4.1. By The-
orem 4.1 we know also that v ∈ τ , and by Corollary 3.1 we
know also that ∅ ` e ′ ⇒ v, hence we can conclude by Propo-
sition 4.1.

Since the proofs of all corollaries are derived from prop-
erties expected to hold in general, we can provide a schema
for proving soundness of type systems in terms of CBS.

ISS is defined by a reduction relation e1 → e2, and a set of
values v (which are a subset of expressions in normal form).

CBS is defined by a judgment Π ` e ⇒ v, where Π is
an environment associating variables with values, and v is a
value (all definitions are expected to be coinductive).

The type system is defined by a judgment Γ ` e:τ , where
Γ is a type environment associating variables with types,
and τ is a type.

Subtyping τ1 ≤ τ2 and membership v ∈ τ (which is easily
extended to environments) are defined.

Primitive properties:

1. If ∅ ` e ⇒ v, then either e is a value, or there exists
e ′ s.t. e → e ′.

2. If ∅ ` e ⇒ v, and e → e ′, then ∅ ` e ′ ⇒ v.

3. If Γ ` e:τ , and Π ∈ Γ, then there exists v s.t. Π ` e ⇒
v and v ∈ τ .

4. If ∅ ` v ⇒ v, and v ∈ τ , then ∅ ` v :τ ′, with τ ′ ≤ τ .

We stress again that primitive properties 1 and 2 involve
ISS and CBS only and, hence, can be proved once for all
and reused for any type system.

Derived properties:

• If ∅ ` e:τ , e
∗→ e ′, and e ′ is a normal form, then e ′ is

a value. Derivable from primitive properties 1,2, and
3.

• If ∅ ` e:τ , e
∗→ e ′, and e ′ is a normal form, then e ′ is a

value and ∅ ` e:τ ′ with τ ′ ≤ τ . Derivable if primitive
property 4 holds as well.

5. CONCLUSION
We have defined a coinductive big-step operational se-

mantics of a simple Java-like language by interpreting coin-
ductively its standard big-step operational semantics. With
such a semantics it is possible to prove soundness of a stan-
dard nominal type system as shown in Section 4.

The pioneer work of Milner and Tofte [12] is one of the first
where coinduction is used for proving consistency of the type
system and the big-step semantics of a simple functional
language; however rules are interpreted inductively, and the
semantics does not capture diverging evaluations.

In their work Leroy and Grall [11] analyze two kinds of
coinductive big-step operational semantics for the call-by-
value λ-calculus, study their relationships with the small-
step and denotational semantics, and their suitability for
compiler correctness proofs. Besides the fact that here we
consider a Java-like language, the main contribution of this
paper w.r.t. Leroy and Grall’s work is showing that by in-
terpreting coinductively a standard big-step operational se-
mantics, soundness of a standard nominal type system can
be proved. We could prove such a result because (1) in our
CBS not only evaluation rules are interpreted coinductively,
but also the definition of values, and (2) the absence of first-
class functions in our language makes the treatment simpler.
Leroy and Grall show that a similar soundness claim does
not hold in their setting; we conjecture that the only rea-
son for that consists in the fact that in their coinductive
semantics values are defined inductively, rather than coin-
ductively. It would be interesting to investigate whether
soundness holds for the λ-calculus when values are defined
coinductively.

Kusmierek and Bono propose a different approach and
prove type soundness w.r.t. an inductive big-step opera-
tional semantics; their proposal is centered on the idea of
tracing the intermediate steps of a program execution with
a partial derivation-search algorithm which deterministically
computes the value and the proof tree of evaluation judg-
ments. Similar approaches, although their corresponding
semantics are not deterministic, are those of Ager [1] and
Stoughton [16].

Nakata and Uustalu [14, 13] define a coinductive trace-
based semantics, whose main aim, however, is formal verifi-
cation of not terminating programs.

Ernst et al. [8] have proved soundness w.r.t. a big-step
operational semantics with a coverage lemma ensuring that
errors do not prevent expressions from evaluating to a re-
sult. To this aim extra rules have to be added for dealing

with runtime errors generation and propagation, and finite
evaluations.

6. REFERENCES
[1] M. S. Ager. From natural semantics to abstract

machines. In LOPSTR, pages 245–261, 2004.
[2] D. Ancona. Coinductive big-step operational

semantics for type soundness of Java-like languages
(extended version). Technical report, DISI, University
of Genova, June 2011.

[3] D. Ancona, A. Corradi, G. Lagorio, and F. Damiani.
Abstract compilation of object-oriented languages into
coinductive CLP(X): can type inference meet
verification? In FoVeOOS 2010, volume 6528, 2011.
Selected paper.

[4] D. Ancona and G. Lagorio. Coinductive type systems
for object-oriented languages. In ECOOP’09, volume
5653, pages 2–26, 2009. Best paper prize.

[5] D. Ancona and G. Lagorio. Coinductive subtyping for
abstract compilation of object-oriented languages into
Horn formulas. In GandALF 2010, volume 25 of
Electronic Proceedings in Theoretical Computer
Science, pages 214–223, 2010.

[6] D. Ancona and G. Lagorio. Complete coinductive
subtyping for abstract compilation of object-oriented
languages. In FTFJP ’10: Proceedings of the 12th
Workshop on Formal Techniques for Java-Like
Programs, ACM Digital Library, 2010.

[7] D. Ancona and G. Lagorio. Idealized coinductive type
systems for imperative object-oriented programs.
RAIRO - Theoretical Informatics and Applications,
45(1):3–33, 2011.

[8] E. Ernst, K. Ostermann, and W.R. Cook. A virtual
class calculus. In POPL, pages 270–282, 2006.

[9] A. Igarashi, B. C. Pierce, and P. Wadler.
Featherweight Java: a minimal core calculus for Java
and GJ. ACM Transactions on Programming
Languages and Systems, 23(3):396–450, 2001.

[10] J. D. M. Kusmierek and V. Bono. Big-step operational
semantics revisited. Fundam. Inform.,
103(1-4):137–172, 2010.

[11] X. Leroy and H. Grall. Coinductive big-step
operational semantics. Information and Computation,
207:284–304, 2009.

[12] R. Milner and M. Tofte. Co-induction in relational
semantics. Theoretical Computer Science,
87(1):209–220, 1990.

[13] K. Nakata and T. Uustalu. Trace-based coinductive
operational semantics for while. In TPHOLs 2009,
pages 375–390, 2009.

[14] K. Nakata and T. Uustalu. A Hoare logic for the
coinductive trace-based big-step semantics of while. In
ESOP 2010, pages 488–506, 2010.

[15] L. Simon, A. Mallya, A. Bansal, and G. Gupta.
Coinductive logic programming. In ICLP 2006, pages
330–345, 2006.

[16] A. Stoughton. An operational semantics framework
supporting the incremental construction of derivation
trees. Electr. Notes Theor. Comput. Sci., 10, 1997.

