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We describe the design and implementation of SWORD, a scalable resource discovery service for
wide-area distributed systems. In contrast to previous systems, SWORD allows users to describe
desired resources as a topology of interconnected groups with required intra-group, inter-group,
and per-node characteristics, along with the utility that the application derives from specified
ranges of metric values. This design gives users the flexibility to find geographically distributed
resources for applications that are sensitive to both node and network characteristics, and allows
the system to rank acceptable configurations based on their quality for that application.

Rather than evaluating a single implementation of SWORD, we explore a variety of architec-
tural designs that deliver the required functionality in a scalable and highly-available manner.
We discuss the tradeoffs of using a centralized architecture as compared to a fully decentralized
design to perform wide-area resource discovery. To summarize our results, we found that a cen-
tralized architecture based on 4-node server cluster sites at network peering facilities outperforms
a decentralized DHT-based resource discovery infrastructure with respect to query latency for all
but the smallest number of sites. However, although a centralized architecture shows significant
promise in stable environments, we find that our decentralized implementation has acceptable per-
formance and also benefits from the DHT’s self-healing properties in more volatile environments.
We evaluate the advantages and disadvantages of centralized and distributed resource discovery
architectures on 1000 hosts in emulation and on approximately 200 PlanetLab nodes spread across
the Internet.
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1. INTRODUCTION

Large-scale distributed services such as content distribution networks, peer-to-peer
storage, distributed games, and scientific applications have recently received sub-
stantial interest from both researchers and industry. At the same time, shared
distributed platforms such as PlanetLab [Bavier et al. 2004] and the Grid [Foster
et al. 2001] have become popular environments for evaluating and deploying such
services. These platforms are typically comprised of large numbers of heterogeneous
machines connected to the Internet behind links of varying bandwidth and latency.
One difficulty in the practical use of these large-scale infrastructures centers around
locating an appropriate subset of system resources to host a service, computation,
or experiment. The process of locating a set of machines to run a distributed appli-
cation is often called resource discovery. This paper explores the design decisions
that must be made when building a highly available and user-friendly service that
performs resource discovery for users who wish to run applications in wide-area,
heterogeneous environments, specifically focusing on PlanetLab.

The principal challenges to performing resource discovery in federated Internet
systems include the heterogeneity of the underlying resources, dynamically chang-
ing per-node characteristics such as CPU load and free memory, and application
sensitivity to inter-node characteristics such as bandwidth and latency. Each dis-
tributed application also has a different set of resource requirements, which means
that the best set of resources will vary for each application. For example, compute-
intensive applications, such as parallel scientific applications, might be particularly
concerned about available CPU, physical memory, and disk capacity on machines
(or nodes) hosting the application. Network-intensive applications, such as content
distribution networks and security monitoring applications, might be particularly
concerned about placing service instances at particular network locations—near po-
tential users or at well-distributed locations in a topology—and on machines with
low-latency, high-bandwidth links among themselves. Other applications, such as
multiplayer games, might be concerned about per-node CPU resources and inter-
node latency and bandwidth. Additional characteristics may be of interest to all
applications: deploying on nodes with high historical availability may reduce per-
formance degradations due to failures, while deploying on nodes with low resource
variability over time may improve service predictability. Thus, a resource discov-
ery infrastructure designed to support a variety of distributed applications must
accurately track per-node and inter-node characteristics and provide support for a
range of semantics with respect to specifying resource requirements.

In addition to supporting a variety of application resource requirements, there
are a number of other factors to consider when designing a resource discovery ser-
vice for use in distributed environments. To help guide our design decisions and
before discussing the architecture of a specific resource discovery service, we extract
the following key system requirements and goals. First, to be useful for finding re-
sources in large-scale infrastructure-based platforms [Bavier et al. 2004; Foster et al.
2001] and end-user-based platforms [Red Herring Magazine 2004], the system must
scale to thousands of nodes and sites. Second, it must be highly available, as it is
the entry point into the system for service deployers wishing to find nodes to host
their application. Third, since certain node characteristics vary rapidly, the sys-
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tem must support high rates of measurement updates from participating machines.
Fourth, the system must track both static characteristics such as operating system,
processor speed, and network coordinates [Dabek et al. 2004; Ng and Zhang 2002;
2004], as well as more dynamic characteristics such as available CPU, memory,
and disk resources. Fifth, the system must support queries over not just per-node
characteristics such as load and network location, but also over inter-node char-

acteristics such as latency and bandwidth. Lastly, due to the fact that different
applications have widely varying needs and place varying priorities on those needs,
the system must offer an expressive query language that allows specifying ranges of
required resource quantities, as well as information about how much utility is lost
from the selection of imperfect but acceptable nodes. Thus the resource discovery
service we envision combines aspects of distributed measurement, distributed query
processing, and user utility specification and optimization.

A number of recent efforts have explored large-scale resource discovery [Balazin-
ska et al. 2002; Huang and Steenkiste 2003; Czajkowski et al. 2001; Spence and
Harris 2003; Wawrzoniak et al. 2003; van Renesse et al. 2003]. However, to our
knowledge no existing system meets all of the above requirements. In particu-
lar, we believe that resource discovery systems must support specifying required
inter-node characteristics and the relative utility of both per-node and inter-node
characteristics. Further, the system must consider the overall utility of a group
of resources when making decisions and assessing the tradeoffs among competing
potential configurations. One contribution of this work is to present the query se-
mantics of SWORD, a resource discovery infrastructure that allows users to easily
describe desired resources as a topology of interconnected groups with required intra-
group and inter-group characteristics and penalty functions to indicate the utility
of those characteristics to the application. While we cannot prove generality and
indeed there are certain semantics that we cannot capture, we provide examples of
a set of disparate applications that we map to SWORD’s semantics.

A resource discovery system meeting our requirements has the potential to gen-
erate significant load, both in terms of monitoring the target infrastructure, and in
terms of running the NP-hard group finding algorithm required to answer queries
for resources described as interconnected groups. Gathering, storing, and query-
ing the monitoring data requires sufficient storage, network, and CPU resources to
support the measurement update and query rate of the system. The group-finding
algorithm, which is analogous to the classic k-clique complexity problem, requires
substantial CPU resources for each query. The generated load of a resource discov-
ery infrastructure increases dramatically as the number of users submitting queries
and available resources increase, in turn impacting system scalability and perfor-
mance. Thus, the second contribution of this work is an exploration of a variety of
architectures to support SWORD’s design.

In this paper, we consider building SWORD using three different architectures,
and quantify the advantages and disadvantages of each design. Our first approach
is fully distributed, and is based on the intuition that some type of decentralized
architecture is required for scalability, load balancing, and fault tolerance (similar
to a variety of earlier related efforts [Balazinska et al. 2002; Huang and Steenkiste
2003; Spence and Harris 2003; van Renesse et al. 2003]). One of the key disadvan-
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Fig. 1. High-level architecture of SWORD.

tages to any distributed architecture when compared to its centralized counterpart
is the complexity required to maintain consistency among distributed participants,
which often impacts performance. To quantify the overhead caused by this added
complexity in a resource discovery system, our second architecture is fully cen-
tralized. We show that while the distributed architecture offers some advantages
with respect to scalability and fault tolerance, under certain operating conditions
a centralized approach outperforms its distributed counterpart. Additionally, we
find that a third “hybrid” design, which combines aspects of both centralized and
distributed solutions, has the potential to outperform both techniques.

The remainder of this paper is organized as follows. Section 2 presents a high-
level overview of the SWORD architecture and Section 3 describes the details of our
implementation. We describe our evaluation infrastructure and performance results
in Section 4, and in Section 5 we describe qualitative lessons learned from operating
SWORD as a PlanetLab service for the past two years. We present related work in
Section 6 and conclude in Section 7.

2. SYSTEM ARCHITECTURE AND QUERY REPRESENTATION

This section explains our assumptions and terminology, describes SWORD’s high-
level architecture, and describes the query model that drives our design.

2.1 Architectural Overview

SWORD’s architecture consists of three parts, illustrated schematically in Figure 1.
The first component, labeled (i), is a query syntax for specifying desired node char-
acteristics. The SWORD query syntax is described in detail in Section 2.4. The
second component, labeled (ii), is a distributed query processor for finding candi-
date nodes whose characteristics match the specified requirements. Logically, this is
analogous to a database and a query engine. In the case of SWORD, having a single
centralized database does not scale well to high amounts of users and resources1. In
Section 3.1, we explore other approaches that leverage the scalability provided by
distributed hash tables. The third and final component of SWORD, labeled (iii),

1We use the terms resources, nodes, hosts, and machines interchangeably.

ACM Transactions on Internet Technology, Vol. 8, No. 4, November 2008.



Wide-Area Resource Discovery · 5

is the optimizer that finds a utility-maximizing mapping of a subset of the can-
didate nodes returned by the query processor to the groups in the user’s queries,
accounting for desired per-node, intra-group (or inter-node), and inter-group char-
acteristics. The optimizer outputs this mapping, along with the measurements that
led to those nodes’ selection. Section 3.2 presents the design of the optimizer.

SWORD can return many such mappings if desired, ranked from lowest to highest
penalty, but for clarity we describe SWORD as if it outputs only the lowest-penalty
configuration. Note that while we often refer to the “client” or “user” as a human
submitting a query, in reality, the “user” may be an application such as an execution
management system [Albrecht et al. 2006] who is submitting a query on behalf of
a human user. This distinction does not affect the operation of SWORD.

Note that an additional (and unlabeled) component in Figure 1 is the set of
resource monitors used to populate the logical database. SWORD does not dictate
the mechanisms for measuring per-node and inter-node attributes, so we do not
discuss such mechanisms here in detail. In Section 3.3 we describe our deployment
of SWORD on PlanetLab and mention the specific resource monitors that SWORD
uses in that deployment.

2.2 Target Usage Scenarios

One of the key assumptions in our development of SWORD is that application
deployers have some incentive to avoid deploying their application on all nodes
available to them. This incentive may be altruistic, financial, performance-related,
or scientific (e.g., to evaluate an application’s performance and robustness under
various configurations). Hence, SWORD is designed with two usage scenarios in
mind. When used in a “best effort” environment such as PlanetLab, SWORD
matches a user’s specification of desired resource characteristics to the resource
characteristics of nodes at the time the request is made. SWORD returns an ordered
list of sets of nodes, ranked by the closeness of each set’s match to the user’s
desires. The substantial heterogeneity in available node resources and network
characteristics across both space (nodes and network links) and time on shared
platforms such as PlanetLab is quantified elsewhere [Oppenheimer et al. 2006; Rhea
et al. 2005]; SWORD helps users cope with this heterogeneity when they deploy
and operate their distributed applications.

In the second usage scenario, SWORD operates in conjunction with an external
resource allocation or admission control mechanism such as might be the case with
Grid systems [Foster and Kesselman 2003]. Here, the resource allocation system
might augment the measurement database with information about which resources
each user can access, at what cost, and during what time periods. Queries would
then specify a desired period of time for using the requested resources, and candi-
date nodes would be filtered to exclude nodes unavailable to a user for the requested
period. Additionally, the financial cost of each returned configuration is indicated
as a function of the total utility of the resources. Although our deployment of
SWORD thus far has been in a “best effort” environment, we expect to integrate it
with resource allocation tools such as SHARP [Fu et al. 2003] or SNAP [Czajkowski
et al. 2002] in the future to support arbitrated usage scenarios.

In both usage scenarios described above, SWORD assumes that users consult an
out-of-band mechanism for determining what the valid query attributes are for the
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target infrastructure. SWORD places few restrictions on the format and type of
attributes available to the user. We discuss the acceptable formats in detail in Sec-
tion 2.4. SWORD supports queries for any attribute in the logical database, which
includes any values that the target infrastructure has a mechanism for measuring
and reporting. Some example attributes are available operating systems, per-node
measurements such as load and free memory, inter-node measurements such as la-
tency and bandwidth, information about node firewall status, and disk protection
requirements. The live deployment of SWORD on PlanetLab uses a webpage that
lists all available attributes.

2.3 Query Semantics

Two observations guide the design of SWORD’s query representation. First, we
observe that it is common for distributed services to be composed of groups of
nodes that cooperate closely within a group, and, in some cases, more loosely among
groups. One simple example is a “client-server” web application, where the servers
are a group of well-connected high bandwidth, powerful machines, and the clients
are less powerful, geographically distributed machines. A survey of common Grid
applications described in [Kee et al. 2005] mentions that some scientific applications
desire collections of tightly-coupled groups of nodes. In addition to these examples,
consider the following more specific scenarios:

— An Internet search engine consists of a dozen sites distributed worldwide that
are close (in network topology) to various large user populations. Each site is com-
prised of of a number of nodes which together hold a full copy of the search index.
Nodes within a site coordinate in an all-to-all fashion to implement techniques such
as parallelized index searching and cooperative caching. Among sites, a small num-
ber of nodes communicate periodically to share newly-crawled data. This service
desires sufficient per-node storage, low-latency and high-bandwidth network links
among nodes in each site, and at least one high-bandwidth link to connect each
pair of sites.

— A data-intensive scientific application utilizes data stored in several geograph-
ically distributed data warehouses. The application needs a few nodes near each
data source with low-latency and high-bandwidth connections to the data source to
perform filtering and summarization of data from that source, and a large number
of powerful compute nodes with low-latency, high-bandwidth connections among
one another to perform a distributed computation over the data received from the
nodes that perform filtering and summarization.

— A Content Distribution Network such as CoDeeN [Pai et al. 2003] wishes
to place instances of its service on nodes near each of several geographically dis-
tributed user populations, with low-latency, high-bandwidth links among the nodes
for efficient transfer of content between forward and reverse proxies. Moreover, to
support high workloads, the application deployer wants each instance to be not a
single node but rather a “virtual cluster” of several machines, all nearby in network
topology and with low latency, high bandwidth links among them.

With these examples as motivation, resource specifications in SWORD focus on
the notion of groups that capture equivalence classes of nodes. Each group consists
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of nodes with similar per-node and inter-node characteristics, as well as constraints
between pairs of nodes in different groups.

The second observation guiding the design of SWORD’s query semantics is that
applications have varying sensitivities to deviations from specified per-node and
inter-node characteristics. Thus, rather than specifying a single acceptable value
for the amount of free memory desired, for example, we give users the flexibility
to specify a range of acceptable values for free memory, and assign a utility to this
range. To achieve this, users specify absolute requirements on per-node and inter-
node characteristics, stricter preferred per-node and inter-node characteristics, and
the sensitivity of their application to deviations from the preferred values. With
this method, nodes whose value for an attribute fall within the absolute required
range are ranked by their suitability based on their deviation from the preferred
range. The user describes this sensitivity using per-attribute penalty functions,
which can be thought of as the inverse of utility functions. The penalty function is
designed to allow the user to express the application’s sensitivity to each attribute
and the relative importance of preferences for different attributes.

For example, consider the small Internet search engine, with large user popula-
tions in North America and Europe. The service operator requests two groups of
nodes, one in each of those geographic regions. With respect to per-node storage,
the operator requests that all machines selected for the Europe group have at least
1000 MB of free disk space, but that under constraint, machines with at least 300
MB of free disk space are acceptable. Any candidate machine with between 300
and 1000 MB of free disk space is assigned a penalty proportional to the deviation
from 1000 MB. Machines with more than 1000 MB of free disk space are assigned a
zero penalty, and machines with less than 300 MB of free disk space are discarded.
In this example, the acceptable range of values for free memory is [300 MB, infin-
ity]. The preferred range of values in this example, which is always a subset of the
acceptable range, is [1000 MB, infinity]. SWORD responds to this query with a
group of nodes that are the lowest-penalty configuration—defined as the sum over
all groups of each member node’s penalty, taking into account per-node, inter-node,
and inter-group constraints—that meets all of the resource requirements specified
in the query.

2.4 Expressing Queries

SWORD offers two query syntaxes: a “native” XML syntax and the ClassAds
syntax [Raman et al. 1998] used by the Condor workload management tool. Be-
cause the standard ClassAds syntax is somewhat limited and cannot be used to
express inter-node properties, SWORD users can only constrain and rank configu-
rations based on per-node properties when using the ClassAds syntax. When eval-
uating queries expressed using ClassAds syntax, we invoke the ClassAds evaluator
rather than our optimizer. The ClassAds evaluator is computationally simpler than
SWORD’s native optimizer because the ClassAds evaluator only considers per-node
properties; ranking a configuration is therefore linear in the number of nodes in the
configuration. In contrast, inter-node and inter-group constraints make SWORD’s
optimization problem exponential in the number of nodes.

The native SWORD XML syntax for a sample query that might be issued by
the search engine operator appears in Figure 2(a), with the corresponding response
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RequeryInterval 60
Group NA
NumMachines 4
Required Load [0.0, 2.0]
Preferred Load [0.0, 1.0], penalty 100.0
Required FreeDisk [500.0, MAX] (MB)
Preferred FreeDisk [1000.0, MAX], penalty 0.2
Required OS [‘‘Linux’’]
Required AllPairs Latency [0.0, 20.0] (ms)
Preferred AllPairs Latency [0.0, 10.0], penalty 2.0
Required AllPairs BW [0.5, MAX] (Mb/s)
Preferred AllPairs BW [1.0, MAX], penalty 2.0
Required Location [‘‘NorthAmerica’’, 0.0, 50.0] (ms)

Group Europe
NumMachines 4
Required Load [0.0, 2.0]
Preferred Load [0.0, 1.0], penalty 100.0
Required FreeDisk [300.0, MAX] (MB)
Preferred FreeDisk [1000.0, MAX], penalty 100.0
Required OS [‘‘Linux’’]
Required AllPairs Latency [0.0, 20.0] (ms)
Preferred AllPairs Latency [0.0, 10.0], penalty 2.0
Required AllPairs BW [0.5, MAX] (Mb/s)
Preferred AllPairs BW [1.0, MAX], penalty 2.0
Required Location [‘‘Europe’’, 0.0, 50.0] (ms)

InterGroup
Required OnePair BW NA Europe [3.0, MAX] (Mb/s)
Preferred OnePair BW NA Europe [5.0, MAX], penalty 0.5

SWORD Groups
-------------------

Name: Group NA
Max Latency: 20.0 ms
Min Latency: 0.0 ms
Overall Group Cost: 4.1
Group Size: 4
planetlab6.nbgisp.com
planet1.halifax.org
planet02.csc.ncsu.edu
planetlab1.kscy.org

Name: Group Europe
Max Latency: 20.0 ms
Min Latency: 0.0 ms
Overall Group Cost: 2.2
Group Size: 4
planetlab-02.lip6.fr]
planetlab2.dcs.ac.uk]
planetlab-01.lip6.fr]
planetlab2.uni-kl.de

Total cost: 6.3
Total query time: 0.095 s

(a) (b)

Fig. 2. (a) Sample query in native SWORD syntax. The actual implementation of SWORD
uses an XML representation of this information. (b) Sample SWORD response, indicating the IP
addresses and hostnames of the resources found that meet the requested criteria.

shown in Figure 2(b). For clarity of presentation, we have converted the XML
syntax that SWORD takes as input into a more human-readable format that struc-
turally matches SWORD’s actual XML syntax. Figure 3 shows the equivalent
query using ClassAds syntax, minus the inter-node and inter-group constraints and
rankings based on them.

A native SWORD XML query takes the form of an XML document with three
sections. The first section of a SWORD query allows the user to request that the
query be processed as a continuous query rather than as a default one-time-only
query. The RequeryInterval directive specifies the frequency, in seconds, at which
the query should be re-processed. When the user first issues their query, they re-
ceive in response the optimized mapping of available nodes to groups in the query,
the nodes’ resource measurements (this is optional and not shown in Figure 2(b)),
and the penalty associated with the mapping. Every RequeryInterval seconds
after the query was initially issued, SWORD recomputes the new optimal map-
ping and returns to the user the new mapping and the penalty difference between
that mapping and the one originally returned. The user can monitor the stream
of penalty differences returned by SWORD over time. If the difference reaches an
application-specific criteria, perhaps exceeding a predefined threshold or exceeding
a predefined threshold consistently for some period of time, the user can compare
the original and new mappings to decide, for example, which application instances
to migrate to new nodes. In the future we plan to explore the task of optimizing
the new mapping for minimal application disruption; in other words, we will de-
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{ [ name = ‘‘NA’’;
nummachines = 4;
constraint = load <= 2.0 && freedisk >= 500 && os == ‘‘linux’’ &&

netdist(‘‘NorthAmerica’’) < 50;
rank = (100.0 * (load-1 > 0 ? load-1 : 0)) +

(100.0 * (1000-freedisk > 0 ? 1000-freedisk : 0)); ];
[ name = ‘‘Europe’’;
nummachines = 4;
constraint = load <= 2.0 && freedisk >= 300 && os == ‘‘linux’’ &&

netdist(‘‘Europe’’) < 50;
rank = (100.0 * (load-1 > 0 ? load-1 : 0)) +

(100.0 * (1000-freedisk > 0 ? 1000-freedisk : 0)); ];
};

Fig. 3. Sample query using ClassAds syntax.

termine the optimal mapping that migrates the fewest application instances while
still producing a low-penalty configuration.

Recall that one of our design goals was to allow users to define topologies of inter-
connected groups. The second section of the SWORD query defines the groups. It
specifies the number of nodes in each group, as well as the constraints on the per-
node and inter-node attributes within each group. The value of an attribute can
be a static value, e.g., an operating system, an instantaneous measurement, e.g.,
the node’s current free memory measurement, or a statistical property of a base
attribute, e.g., the variance of a node’s load over the past hour. SWORD supports
floating point, string, boolean, and network coordinate datatypes. Network coor-
dinate constraints allow the user to specify that a node must be located within a
desired latency of any other node in SWORD. This feature is useful for deploying
instances of a service near known user populations, as in our search engine and
CDN examples, or near data sources, as in our Grid example. SWORD tracks the
network coordinates of a set of reference nodes in common geographical regions, and
uses the network coordinate distance between the candidate node and the reference
node to determine whether the candidate node is within the desired latency of the
specified region. Note that only the user-specified attributes matter in a SWORD
query. If an attribute is not specifically defined in a query, it is not evaluated or
even considered by the query processor.

The third section of a SWORD query specifies pairwise constraints between in-
dividual members of different groups. These constraints are used to ensure that
at least one pair of nodes that exist in different (and disjoint) groups meet some
desired requirement. For example, suppose a user requests two groups of nodes
that are physically separated into two distinct geographic regions. An inter-group
constraint defined in the third section of the query is then used to request that at
least one network link between the groups has some minimum amount of available
bandwidth. We note that because an arbitrary number of inter-group constraints
may be specified, SWORD is sufficiently flexible to describe any overlay network
graph—in the worst case, every node is its own group, and every edge is represented
by a pairwise constraint between the two nodes that the edge connects.

To further clarify the structure of a SWORD query, consider our earlier example
query shown in Figure 2(a) that shows a request for two groups of resources. The
first group consists of four nodes in the North America (NA) group. The query
requires that the operating system on these nodes be Linux, and that the node be
located within 50 ms, calculated using network coordinates, of a reference SWORD
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(a) (b)

Fig. 4. (a) Floating point attribute penalty function. (b) String attribute penalty function.

node in North America. The query further requires that nodes’ load be less than
2.0, free disk space be at least 500 MB, inter-node latency no more than 20ms,
and inter-node bandwidth no less than 0.5 Mb/s. The Europe group is defined
identically except that free disk space must be at least 300 MB. The “Preferred”
clauses describe penalty functions, which we explain shortly. Also in our sample
query, the third section defining inter-group constraints indicates that the user
wants a pair of nodes such that one node is in the NA group, one node is in
the Europe group, and the bandwidth between the two nodes is at least 3 Mb/s.
Figure 2(b) shows a typical SWORD response to this sample query.

2.5 Penalty functions

Although SWORD is commonly used to simply find nodes meeting user specified
requirements, a key feature of SWORD is its ability to rank node configurations
according to user preferences. These preferences are defined by a “penalty function”
associated with one or more attributes on a per-group basis. To simplify user query
syntax, we allow penalty functions of a restricted shape that we believe is useful
for approximately characterizing applications. In summary, the penalty function is
defined by the “Required” and “Preferred” clauses for an attribute. The resulting
configurations that SWORD returns match all requirements and are ranked based
on their overall penalty or cost. The overall penalty associated with a node is
taken as the sum of the per-attribute penalties associated with that node. The
overall penalty of a group is computed by summing the per-node penalties of all
members, in addition to the inter-node penalties of each link. The overall penalty of
a configuration is the sum of the overall group penalty and the inter-group attributes
across all groups. Note that for queries specified using the ClassAds syntax, the
penalty function is defined by the “rank” statement, which defines the rank of a
candidate node as a function of the per-node attributes of the node.

For floating point attributes, Figure 4(a) shows that the SWORD penalty function
has five regions: two regions of infinite penalty where attribute values are either too
high or too low to be useful to the application, a preferred region of zero penalty,
and two constant-slope regions starting at the endpoints of the preferred region.
Notice that the preferred region defines a sub-range of the required region. The
penalty function for a floating point attribute takes the form
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Required attr [abs_min, abs_max]

Preferred attr [pref_min, pref_max], penalty k

The k value maps a deviation from the preferred region to an abstract penalty unit.
It therefore indicates how sensitive the application is to changes in the attribute’s
value—larger k denotes more incremental penalty per unit change in the attribute,
while smaller k denotes less incremental penalty per unit change in the attribute—
and defines the relative weighting of attributes.

Although most resource-related attributes are floating point quantities, users also
have to ability to specify requirements and preferences for string attributes such
as operating system and machine architecture. Figure 4(b) illustrates the penalty
function for a string, which takes the form

Required attr [name1, name2, name3, name4, name5, name6]

Preferred attr [name1, name2, name3], penalty p1

Preferred attr [name4, name5, name6], penalty p2

This penalty function associates penalty p1 with discrete values name1, name2,
and name3, and penalty p2 with discrete values name4, name5, and name6. Any
values that meet the “Required” clause for an attribute but are not mentioned in
a “Preferred” clause for that attribute are implicitly assigned a penalty of 0.

Boolean attribute penalty functions are of the same form as string attribute
penalty functions, but the only allowed strings are “true” and “false.” Network

coordinate attribute penalty functions are of the same form as string attribute
penalty functions, but in place of an arbitrary string they use a name that maps to
a specific node, and a range of latencies from that node.

One extension to this work is the characterization of sensitivity to resource con-
straints for real applications. We believe that our assumptions that overall penalty
is the sum of independent per-attribute penalties and that the penalty associated
with an attribute can be approximated by a piecewise function are reasonable first
approximations that are suitable for the majority of our users. While a simple piece-
wise function restricts the form of the penalty function for a small subset of our
more advanced users, we currently believe that keeping the query syntax somewhat
simple and intuitive for all users is important.

3. DESIGN AND IMPLEMENTATION

In addition to defining a resource specification language, Section 2 established the
need for a logical database and query processor for storing and querying monitoring
data, and an optimizer that finds an optimal mapping of resources to groups in the
user’s query. Given the design goals of Section 1, all of the components of SWORD
must scale to large numbers of resources without sacrificing availability. For the
logical database, this means we require sufficient storage (disk and memory) and
network capacity to transmit and store the measurement updates from all nodes
in the system. For the query processor, each node needs sufficient network capac-
ity and memory to receive queries, filter nodes based on per-node attributes, and
forward the results as appropriate. The optimizer requires enough CPU cycles and
memory to complete at least a partial exponential search over the candidate nodes
returned from the query processor. For per-node attributes, the storage, network,
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and memory requirements increases linearly as the number of nodes and metrics
in the system increases. While per-node attributes scale linearly, the storage, net-
work, and memory requirements for inter-node attributes scale exponentially as
the number of nodes increase. In the following paragraphs, we describe how we
achieve the desired scalability and availability in the implementation of our logical
database and query processor in Section 3.1, as well as the design of our optimizer
in Section 3.2.

3.1 Logical Database and Query Processor

SWORD’s query processor is responsible for retrieving the per-node and inter-node
measurements from the logical database needed to satisfy a query of the form
described in Section 2.4. Recognizing that it may be useful for the query processor
to treat per-node attributes differently from inter-node attributes, we split the
retrieval of per-node attributes and inter-node attributes into two separate phases.
In this section, we first describe several alternatives for storing and retrieving per-
node attributes. Here the core algorithm of interest is multi-attribute range search

to identify the set of nodes whose measurements match all ranges of per-node
requirements for some group in the query, and that could therefore potentially be
placed into one of the groups in the query response. In Section 3.1.3, we discuss
alternatives for storing and retrieving inter-node attributes.

3.1.1 Per-node Attribute Alternatives. As previously mentioned, the core algo-
rithm of interest for retrieving per-node attribute data is the multi-attribute range
search. To better understand what is meant by multi-attribute range search, con-
sider a query that requests a group of nodes that have load average between 0.0 and
2.0, and free disk space greater than 100 MB. Logically, to satisfy this query a join
operation must be performed over the sets of nodes whose individual attributes fall
within the desired ranges. One approach to satisfying this query is a centralized
architecture where a central database collects and stores all nodes’ reports of load
and free disk space, and maintains indexes on load and disk space to quickly find
nodes that meet the required ranges. One potential problem with this alternative
is its lack of scalability as the number of nodes increases, which may also reduce the
overall system availability. Thus, we look to distributed architectures in addition
to centralized approaches, and compare their performance. Figures 5 and 6 show
four different database and query processor architectures.

Before discussing our specific design alternatives, we must first define some basic
terminology. A node that wishes to offer its resources through SWORD joins the
SWORD infrastructure and collects resource monitoring data locally. This reporting

node periodically sends a measurement report to one or more SWORD servers

according to the query processor architecture in use. A node need not be part of
the SWORD infrastructure to submit queries. To issue a query, a client node sends
a query to any node in the SWORD infrastructure. This query node that receives
the request acts as a proxy into the SWORD infrastructure, potentially issuing
one or more SWORD sub-queries to one or more remote SWORD servers, again
depending on the query processor architecture in use. The query node collects the
necessary information to satisfy the query and returns the resulting node list back
to the client, along with the measurement values of the attributes in the query. In
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our implementations, the reporting node, server, client, and query node roles are
implemented on the same set of nodes.

Within this framework, we explore alternatives for the design of our logical
database and query processor, focusing on how per-node attribute data is orga-
nized among the servers, and how a query is satisfied. How the data is organized
dictates where a reporting node sends measurement reports, where and whether
query nodes send sub-queries, and how the query node collects results. Overall,
the alternatives we explore fall into three categories: distributed, centralized, and
a hybrid between distributed and centralized. We implement four solutions in to-
tal: two distributed approaches that organize servers into a DHT (distributed hash
table) overlay, one centralized approach that uses clusters of fixed servers, and one
hybrid option that combines the distributed and centralized approaches, storing
the measurement reports on nodes in the DHT overlay and storing on fixed servers
an index that maps DHT key ranges to DHT server IP addresses.

A centralized architecture for SWORD consists of a single SWORD server that
collects measurement reports as <node,attribute,value> triples from reporting
nodes. It builds a database, each of whose “rows” contain all of the information
from a single reporting node including its name, and one column for each reported
attribute. Additionally, the server maintains indices over one or more attributes.
Each index maps ranges of an attribute to the rows that currently record values of
that attribute in the corresponding range. Answering a query then involves using
the index to retrieve the rows for the value range of interest for one of the attributes
of interest, and then filtering out the rows that do not meet the desired values of the
other attributes. The final set of rows contains the measurement reports from the
nodes that meet all criteria in the query. Since a single, central server does not scale
well and is a single point of failure, we chose to implement a variation of this design
that uses clusters of fixed servers rather than a single server to improve scalability
and fault tolerance. In this approach, we assign the reporting nodes to one (or more
for added fault tolerance) of the servers in our fixed server cluster. Then each of N
fixed servers becomes responsible for maintaining all the current attribute values
for (at least) 1/N of the reporting nodes. Assuming there is sufficient bandwidth
and CPU power for the fixed servers, this solution provides much better scalability
than a single server approach, since each fixed server requires 1/N of the bandwidth
and CPU power that a single server would need for comparable performance.

The data storage and query processing becomes more complex when employing
a distributed architecture. One option that we explore for distributed data storage,
which is common in traditional distributed databases, is dynamic range partitioning:
partitioning the data space according to dynamic attributes and ranges of values for
those attribute. For instance, a subset of SWORD servers would become responsible
for handling updates for all machines whose load average is between 0.0 and 1.0, a
second subset for all machines whose load average is between 1.0 and 2.0, a third
subset for machines that have between 100 MB and 200 MB of disk space, and so
on. Given our target operating conditions, choosing a dynamic attribute such as
load works just as well as a static attribute as the basis for range partitioning. Since
we expire data quickly in our database to avoid maintaining stale information, it is
more important to pick an attribute with a wide distribution of values for better load
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(a) (b)

Fig. 5. (a) SingleQuery. For updates, the full report is routed to the node responsible for a = 7
and the node responsible for b = 15. For queries, the query is routed to a node chosen randomly
among those responsible for values of a between 2 and 391, and forwarded to all other nodes
responsible for those values. (b) MultiQuery. For updates, the a measurement is sent to the node
responsible for a = 7, and the b measurement is sent to the node responsible for b = 15. For
queries, the a portion of the query is sent to one randomly chosen node responsible for values of
a between 2 and 391, and forwarded to all other nodes responsible for those values. The same is

done simultaneously for the b portion of the query.

balancing among servers, than to pick an attribute that does not change frequently.
In the distributed approaches, we focus primarily on DHT-based range search al-

gorithms because of their scalability, self-configuration, and high availability. These
traits are a good match to our target of federated platforms that eschew central-
ized management, such as PlanetLab. Additionally, DHTs are well-suited to range
partitioning, because they automatically partition a large (160 bit in our case)
keyspace among servers. Our DHT-based algorithms are built on top of the Bam-
boo DHT [Rhea et al. 2004], though they could be built on top of any structured
peer-to-peer overlay network. We leverage the DHT’s ability to partition responsi-
bility for the keyspace among servers, to deliver to the responsible node a message
addressed to a key (“key-based routing” [Dabek et al. 2003]), and to enable, through
“successor pointers” that organize the nodes into a linked list sorted by ascending
key ranges, the visiting of the nodes responsible for a contiguous range of keys. On
top of the DHT’s key-based routing interface we build our own soft-state distributed
data repository. All non-DHT messages are sent using UdpCC [Rhea et al. 2004].

The principal alternatives we consider for the distributed approaches also explore
how the amount of information stored in a measurement report impacts perfor-
mance. The information stored in a measurement report is somewhat dependent
on what the resource monitors are measuring. We currently use a bootstrapping
mechanism at startup to determine the list of available attributes being reported
by the resource monitors. This allows us to inform the reporting nodes of the
“useful” attributes for future measurement reports. As detailed below, one alter-
native for the measurement report is to include information only for the attribute
of interest to the particular SWORD server. A second alternative is to include all
current attribute values for the particular reporting node. These alternatives have
implications for how queries are performed, and have varying levels of performance
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depending on the workload and deployment scenarios. The specific details of the
design of our four approaches are as follows.

— Figure 5(a) illustrates SingleQuery. A reporting node sends n measurement
reports, each containing the n attribute values it has measured, to n SWORD
servers. Each report is routed to a DHT key computed, as described later in this
section, from the value of one of the attributes in the update. While updates are
large (size n), in this approach a multi-attribute query need only be sent to the
set of servers responsible for the target range of one of the queried attributes. In
particular, the query is first routed to any node responsible for any key in the query
range of any attribute in the query, and it is forwarded along DHT successor pointers
to all other nodes responsible for keys in the query range of that attribute. This
technique is similar in principle to how Mercury [Bharambe et al. 2004] performs
multi-attribute distributed range queries and how eSearch [Tang and Dwarkadas
2004] performs multi-keyword full text searches over a DHT.

— Figure 5(b) illustrates MultiQuery. The reporting node places a single value
in each measurement report. Thus, a node reporting n attributes transmits n 1-
attribute measurement reports to n SWORD servers, with the measurement report
routed to the DHT key computed from the value of the attribute in the report.
This approach has the potential to reduce update bandwidth consumption relative
to SingleQuery. The downside is that to perform a query, one set of SWORD
servers must be queried for each attribute in the request. The query node sends
messages to the servers in parallel and intersects the returned nodes to find those
that satisfy all attributes in the query. Because each server only stores information
about one attribute, each server can only filter on one attribute, so this approach
can potentially return many more nodes than SingleQuery, in which each server can
filter on all attributes. This approach resembles in some ways how multi-attribute
searches are performed by XenoSearch [Spence and Harris 2003] and how keyword
search is performed in [Reynolds and Vahdat 2003].

— Figure 6(a) illustrates Fixed. This approach is basically a centralized data-
center model with a varying number of servers. To send an update, a SWORD node
sends one copy of its measurement report to one of n infrastructures servers that is
assigned at random when the reporting node starts up, so that approximately m/n
SWORD nodes are assigned to each server when the reporting node population is
m. (Note that if redundancy is desired for increased fault tolerance, the reporting
node sends its report to kn servers, and each server stores information for km/n
nodes, where k is the level of redundancy.) A server acting as a query node forwards
the query to the remaining n−1 servers, collects the results, and returns the results
to the querying node or client.

— Figure 6(b) illustrates Index, which is a hybrid between the Fixed and Sin-
gleQuery approaches. The fixed infrastructure servers hold an index containing
the mapping of contiguous DHT key ranges to the IP address of the DHT node
responsible for that range. Each DHT node periodically informs one of the index
servers of the range of keys for which it is responsible. The keyspace index is range-
partitioned among the fixed servers. Updates are handled as with the SingleQuery
and MultiQuery approaches. A query is sent first to the index server(s) responsible
for the key range of interest, and those index servers then forward the query di-
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Fig. 6. (a) Fixed. For updates, the full report is sent to one of N servers chosen at random. For
queries, the client sends the query to one of N servers chosen at random. The server that receives
the query, called the “querying node”, sends the query to each of the other N − 1 servers. (b)
Index. Updates are handled identically to SingleQuery. A query is first routed to the set of index
servers responsible for the range specified in the query, and the index servers forward the query
to the appropriate nodes in the DHT.

rectly to the DHT nodes responsible for the requested key range(s) without having
to route through the DHT.

For all of the DHT-based approaches, one implementation detail relates to how
the querying node decides it has received all responses. For the Fixed architecture,
the query is complete when a response has been received from all queried servers.
For the other architectures, the querying node does not know ahead of time to
which, or how many, servers the query will be routed. But the querying node does
know the lowest and highest DHT keys corresponding to the range of values to be
queried. Additionally, all nodes send back the range of DHT keys for which they
are responsible when they send a reply to the querying node. An empty response
is returned if the DHT node has no matching nodes. Thus, the querying node can
keep track of gaps in the query’s key range from which no responding node has yet
indicated responsibility. As responses are returned, the missing ranges of the query
key range will shrink until a response has been received from the nodes responsible
for each piece of the query key range. At that point the response set is complete.
The query may also eventually time out if some messages are lost, at which time
the query processor will return the partial results received thus far.

Nodes send their measurement reports at a frequency interval of their choosing.
The interval chosen is indicated as a parameter (called the TTL) in the measure-
ment report. When a report arrives at a server, the server records the update
in memory—thus reports are soft state. The servers time out these reports when
the TTLs expire so that when a reporting node fails, that node will eventually no
longer appear in the result set of any query. Our use of soft state also provides
a low-overhead mechanism for recovery from failures within the server infrastruc-
ture in the DHT-based approaches: in our DHT-based approaches, if a DHT server
fails, the next update that the DHT would have routed to that server will instead
be routed to the new server now responsible for the report. This soft-state-with-
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timeout mechanism requires that the reporting nodes re-publish their measurement
reports more often than their chosen timeout interval. However, since node mea-
surements are likely to change over fairly short timescales, frequent re-publishing
is arguably necessary for accurate query answering anyway. The alternative, using
the reliable DHT storage layer rather than our memory-only storage would add
unnecessary network, processor, and memory overhead by replicating each piece of
data on multiple nodes, only to change that data soon thereafter.

3.1.2 DHT Keys and Load Balancing. An important design issue when apply-
ing DHT-based range search techniques to resource discovery is how to construct
the 160-bit DHT key corresponding to a measurement value. Recall that it is the
SWORD node that “owns” this DHT key that will receive the corresponding mea-
surement update. To accomplish this mapping, we associate with each per-node
attribute A a monotonically non-decreasing function fA(x) that maps a value from
the range of A to a DHT key. The fA function can be user-defined, or the user can
choose to use a per-datatype default function built into SWORD.

A reporting node sends measurement reports to servers by routing each report
to a DHT key fA(x) for each attribute A in the report and its corresponding
value x. A querying node sends a query to one (in SingleQuery) or multiple (in
MultiQuery) servers. Taking the example of SingleQuery, the querying node chooses
one attribute B from the query as the “range search attribute.” It computes fB(m)
and fB(n) where m is the lowest value in the queried range for attribute B and n is
the highest value in the queried range for attribute B. The query node routes the
query to a randomly chosen key within the range fB(m) to fB(n). The receiving
node replies to the query using the information it stores and forwards the query to
its successors, which, by the structure of the DHT, form a linked list of Node IDs
in sorted order. The search range wraps around to the low end of the range upon
reaching the node responsible for fB(n). This process continues until all nodes
responsible for the range of keys fB(m) to fB(n) are visited and have returned to
the querying node the matching results they store. Because our f functions are
monotonically non-decreasing, they are guaranteed to map contiguous attribute
values to a contiguous range in the DHT, making it feasible to follow successor
pointers in the DHT to cover all nodes with attributes in a user-specified range.

Our f mapping constructs the key from three parts: high-order attribute bits,
middle value bits, and low-order random bits. The first bits of the DHT key are
“attribute bits.” Each attribute is mapped to a setting of the attribute bits which
does not need to be unique. These attribute bits partition the keyspace into “sub-
regions,” each responsible for one or more attributes. Sub-regions allow us to
limit the worst-case number of nodes that might be visited to answer a distributed
range query—an unconstrained search on a single attribute will visit at most all
the nodes in the sub-region for that attribute—thereby helping to bound query
latency. Although all nodes must agree on the number of key bits used as attribute
bits, the mapping of attributes to attribute bits can be computed autonomously,
for example, by hashing the name of the attribute.

The remaining bits of the DHT key are divided between “value bits” and “random
bits” depending on the number of values each attribute commonly takes on. The
value bits represent the value itself, while the random bits spread instances of the
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same value among multiple nodes for load balancing of updates. For example,
a boolean-valued attribute would be represented using one value bit followed by
160 − a − 1 random bits, where 160 is the number of bits in a key and a is the
number of attribute bits. This randomization would serve to spread “false” values
over half of the nodes in that attribute’s sub-region, and “true” values over the
other half of the nodes in that attribute’s sub-region. When a node issues a query,
the random bits are set to all 0 when computing the key for the lowest value in
the range, and are set to all 1 when computing the key for the highest value in the
range. In this way, the query will search all keys that could possibly have been
generated from the desired range.

Our current implementation uniformly maps the expected range of a given float-

ing point attribute to the number of bits allocated to value bits. For example, if 2
bits are used for value bits and the value represented is an integer percentage (0-
100), then the mapping function might map 0− 25 to 00, 26− 50 to 01, 51− 75 to
10, and 76−100 to 11. If the distribution of update values is known ahead of time,
then more frequently-occurring values can be “spread” over more keys relative to
less frequently-occurring values, to improve load balance for updates. Extending
the previous example, if 0 − 25 occurs three times more often than 26 − 100, then
the mapping function might map 0−8 to 00, 9−16 to 01, 17−25 to 10 and 26−100
to 11. Because we only require that fA be monotonically nondecreasing, all values
less than the lowest value in the expected range can be mapped to all 0 value bits,
and all values greater than the largest value in the expected range can be mapped
to all 1 bits. The expected value range does not need to be known ahead of time to
achieve a good spreading of input values; only the range of “typical” values needs
to be known, and outliers are mapped to the two extreme endpoints.

The default function for booleans is as described earlier. The default function
for strings forms the value bits from the high-order bits of the ASCII value of the
string, allowing string prefix searches, such as “all IP addresses that begin with
128.112.” Finally, the default function for network coordinates generates the value
bits using the z-coordinate [Jagadish 1990] linearization of the 3-dimensional net-
work coordinate of the client node. (The z-coordinates are determined using an out-
of-band mechanism that maps geographic names to corresponding z-coordinates.)
This transformation enables multidimensional range search in the n-dimensional
network coordinate space via a linear search over the z-coordinate attribute. This
mapping is especially useful for the MultiQuery approach because it allows one
range query to be issued, over the synthetic z-coordinate, instead of three, namely
one over each of 3 dimensions.

In summary, attribute bits reduce conflicts between identical values of different
attributes, random bits reduce conflicts between identical values of the same at-
tribute, and value bits can be used to spread potentially non-uniform value ranges
to more uniform DHT key ranges. These load balancing techniques are passive

since they do not require nodes to measure or react to their load. A second, active

layer of load balancing [Karger and Ruhl 2004; Bharambe et al. 2004] can further
enhance load balance by observing load distributions on nodes and remapping Node
IDs accordingly. The active and passive load balancing techniques are orthogonal.
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3.1.3 Inter-node Attribute Alternatives. The process we have described thus far
retrieves the identities of all reporting nodes matching all per-node requirements in
the query, along with the values of those attributes. A number of alternatives also
exist for handling inter-node attributes, which are attributes defined between pairs
of nodes, for example inter-node latency or available bandwidth. These alternatives
revolve around which nodes measure and report inter-node attributes, and how
inter-node measurements are stored and queried. With respect to the first issue,
we can have all nodes measure and report inter-node attributes, or we can elect a
subset of nodes as “representatives” for other nodes that are likely to have similar
values for the inter-node attribute in question. With respect to the second issue,
we can store inter-node measurements either within the DHT or externally.

The key distinction between per-node attributes and inter-node attributes (and
the main reason we separate the discussion into two different sections) is the amount
of data that must be stored as the number of resources in the system increases.
While per-node attributes scale linearly with the number of nodes in the system,
inter-node attributes scale exponentially. To reduce the resource consumption of
gathering O(N2) inter-node measurements, SWORD leverages the observation that
nodes typically fall into equivalence classes for several inter-node attributes. For
example, the latency between Node A in Autonomous System 1 (AS1) and Node B
in AS2 is often approximately equal to the latency between any node in AS1 and
any node in AS2. (While there are certainly exceptions to this generalization, on
target infrastructures such as PlanetLab, we find that this is true in most cases.)
SWORD therefore allows arbitrary groups of nodes to define a “representative”
node that collects inter-node measurements on their behalf. Choosing appropriate
representatives is an orthogonal issue that we do not address and might leverage
existing work on network-aware clustering [Krishnamurthy and Wang 2000; Chen
et al. 2004]. The mapping from each node to its representative is one of the per-node
attributes that nodes report; this is essentially an “object location” pointer. We
allow arbitrary equivalence classes to be defined, perhaps on granularities smaller
than ASes.

The distributed query that retrieves inter-node measurements could take a num-
ber of forms. For example, we could use an approach similar to our per-node
attribute range search but use as the DHT key an inter-node measurement range,
for example “10-20 ms”, and use as the values stored at that key the list of node
pairs whose inter-node measurements are within that range, for example all node-
pairs whose inter-node latency is between 10 ms to 20 ms. The query would visit
the DHT keys corresponding to inter-node value ranges specified by the inter-node
requirements of the query, and the servers responsible for those keys would return
all nodes such that both endpoints are nodes returned from the per-node attribute
query step. Note that choosing the “resolution” of these groups well requires some
knowledge of the distribution of inter-node measurements.

Alternatively, the DHT key could be a mixture of an IP address and an inter-
node measurement range, for example “10.0.0.1, 10-20 ms”. We could then use as
the values stored for that key the list of nodes whose inter-node measurement from
the indicated node is within that range, for example all nodes that are within 10 ms
to 20 ms from the node 10.0.0.1. In this case, the query would visit the DHT keys
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corresponding to inter-node value ranges specified by the inter-node requirements
of the query for the nodes that were returned in the per-node attribute query step.

A third approach would be to use as the DHT key simply the IP address I
of a representative, and use as the values stored for that key a list of all other
representatives and their inter-node measurement from the representative with IP
address I. This approach does not allow us to perform a distributed range query,
only a distributed query, with the range filtering done on the querying node once
it has received all pairwise measurements among all representatives of interest.

Our distributed query processor implementation actually uses a variant of the
third approach: instead of storing inter-node measurements in the DHT, represen-
tatives themselves store the inter-node measurements that they collect. This tech-
nique saves them the bandwidth of having to publish a potentially large number
of inter-node measurements into the DHT. Such savings are particularly beneficial
if representatives measure inter-node attributes often, for high accuracy. Thus, in
SWORD, after a querying node receives the node reports R from the per-node at-
tribute range query, the querying node issues a second distributed query, to the
representative nodes indicated in R, to obtain the inter-node attribute(s) of inter-
est among those representative nodes. This two-step process is essentially a “join”
operation. To bootstrap this process, each node in the system need only know the
identity of its own representative. Each node periodically reports the identity of
its representative as part of its measurement reports. When a representative node
boots, it performs a standard SWORD distributed query to find the identities of
all other representatives in the system, and begins measuring to them.

3.2 Optimizer Implementation

Section 3.1.1 describes how the query processor obtains and uses the per-node
measurements to create a set of candidate nodes, and Section 3.1.3 discusses how
to gather the corresponding inter-node measurements. It is important to realize
that the query processor designs previously discussed do not filter based on inter-
node measurements. They also do not compute any penalties. They simply perform
a disitributed range search for per-node attributes, and then gather the inter-node
measurements for the candidate nodes that meet the per-node constraints specified
in the query. These candidate nodes and their corresponding per-node and inter-
node measurements are then fed to the optimizer. It is the optimizer’s role to
determine an appropriate mapping of nodes to the groups specified in the query.
The optimizer computation is not itself distributed, as it runs only on the “query
node” that receives the initial query from the client. However, because a client may
contact any SWORD node as its proxy, the computation is effectively distributed
on a per-request basis, assuming nodes choose proxies randomly.

The optimizer proceeds in several steps. The input to each step is a list of nodes
organized into groups, and the output is also a list of nodes organized into groups.
Some phases use heuristics to improve their running time at the expense of solution
optimality; we describe those heuristics below, and analyze their impact on running
time and solution optimality in Section 4.2.

Phase 1 computes per-node penalties based on the penalty functions defined in
the user’s query. We take as input a list of candidate nodes from the query proces-
sor, and the corresponding per-node and inter-node measurements. The optimizer
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creates, for each group in the user’s query, a list of candidate nodes sorted by the
per-node penalty associated with placing that node in the group. Note that the
per-node penalty associated with placing a node in a group is not affected by the
choice of other nodes in the group. In other words, we assume that the per-node
penalties are independent from each other.

Phase 2 computes per-group penalties using the per-node penalties from Phase
1, in addition to the inter-node penalties associated with each group that are com-
puted in this phase. For each group in the user’s query, we create combinations
of nodes from the Phase 1 candidate list that also meet the inter-node constraints
specified in they query. These combinations of nodes are called “candidate groups.”
Once all possible candidate groups have been formed for each group specified in the
user’s query, the optimizer sorts the candidate groups based on total group penalty,
which is computed by summing the per-node attribute penalties across all nodes
in the group plus the inter-node attribute penalties. Note that given a list of n
candidate nodes for a group that requires k nodes, there are

(

n

k

)

possible candidate
groups that must be considered, though all candidate groups do not necessarily
satisfy the inter-node requirements.

Creating groups of a specific size that satisfy the inter-node constraints is an
NP Hard problem; it is an instance of the k-clique search problem. Thus, as an
optimization, we form groups that use the lower-penalty nodes in the list passed in
from Phase 1 before we use the higher-penalty nodes in the list. We can do this
easily since Phase 1 sorts the nodes based on per-node penalties. Furthermore, we
allow the user to specify a maximum per-group running time for this phase of the
computation. Therefore, if the computation is terminated for a particular group
before all candidate groups are enumerated, the candidate groups that have been
formed thus far will have low per-node penalties, and thus are likely to yield groups
with low overall (per-node plus inter-node) penalty. This heuristic will not help,
however, if the inter-node constraints are given much more weight in the user’s
query than per-node constraints. In that case, groups with low per-node penalty
may not have low overall penalty, and the candidate groups with low overall penalty
will never be formed if the computation is cut short in the way we described. The
output of Phase 2 is one list of candidate groups per group in the user’s query.
Each list is sorted by overall group penalty before being passed to Phase 3.

Phase 3 computes total solution penalty based on the already-computed per-
node and inter-node (also called per-group) penalties, plus inter-group penalties
computed in this phase. We enumerate a list of “candidate answers” to the user’s
query. These are combinations of candidate groups from Phase 2 that satisfy the
query’s inter-group constraints; they are therefore potential “solutions” to the user’s
query. For example, given lists from Phase 2 of size a, b, and c, Phase 3 could
generate up to a ∗ b ∗ c candidate answers, though not all may satisfy the inter-
group requirements.

Creating candidate answers that satisfy the inter-group constraints is again an
NP hard problem. Thus, as an optimization, we form solutions that use the lower-
penalty candidate groups from each list passed in from Phase 2 before we use the
higher-penalty groups from those lists. As in Phase 2, we impose an optional user-
specified limit on the running time of this phase. If the computation times out
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before the full search is complete, the candidate answers that have been formed
up to that point will have low per-group penalties, and thus are likely to yield
answers with low overall (per-group plus inter-group) penalty. Analogous to our
caveat on this optimization in phase 2, this heuristic is not useful if the user’s query
weights inter-group constraints much more heavily than per-group constraints. In
that event, groups with low per-group penalty may contribute significant penalty
to the overall solution, and the candidate answers with low overall penalty will
never be formed if the computation is cut short. The output of Phase 3 is one or
more “candidate answers” along with their associated penalties; these solutions are
returned to the user.

In Section 4.2, we examine several heuristics for reducing the optimizer’s running
time, possibly at the expense of solution optimality. Three second timeout

simply runs the exponential search for three seconds and returns the best solution
found at the end of that time. The three second time budget is evenly divided
between Phase 2 and Phase 3 described above. Top half of candidates searches
only the lowest-penalty half of the candidate groups. Top 5 candidates tries to
shortcut the previous heuristic by eliminating all but the top 5 candidates for each
group before running the search. Finally, since the groups are sorted based on
overall penalty, and the lowest penalty groups are processed first, the first answer
found may be relatively good compared to the optimal solution. Thus the First

answer heuristic runs the exponential search but stops as soon as the first valid
solution is found.

3.3 PlanetLab Implementation and Deployment

SWORD has been running as a publicly-accessible service on PlanetLab since June
2004. A SWORD instance runs on every PlanetLab node, periodically issuing
measurement reports. A user creates a query by either manually writing XML or
using the SWORD web interface which automatically generates XML. The web
interface (or publicly available command line client) then makes a TCP connection
to any SWORD instance, and sends the text of the query over the connection.
The contacted SWORD instance invokes its query processor which issues a search
for nodes meeting the per-node criteria and gathers the corresponding inter-node
requirements, and invokes its optimizer (locally) using the result of the search. That
node then returns to the user over the same TCP connection the result, which is a
list of nodes, the groups to which they have been assigned by the optimizer, total
penalties accrued, and if desired, the raw node measurements that were used in
making the assignment.

SWORD can also be used programmatically. For example, the Plush [Albrecht
et al. 2006] distributed application management system takes a user defined de-
scription of a distributed application, and then automates the process of finding
resources, preparing them for execution, running any executables, and recovering
from failures for the duration of an application’s lifecycle. For PlanetLab users,
Plush has the ability to use SWORD as its resource discovery and service placement
component. Thus Plush “closes the loop” of the application deployment process, by
automatically instantiating a user’s application on the nodes returned by SWORD.
The Bellagio [AuYoung et al. 2004] microeconomic-based resource allocation system
similarly uses SWORD as its resource discovery component. Motivated from the
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development and use of these technologies, we present quantitative evidence that
applications benefit from using resource discovery services in making deployment
decisions in [Oppenheimer et al. 2006].

SWORD currently uses four data sources for resource measurements on Plan-
etLab: a Vivaldi [Dabek et al. 2004] network coordinates implementation that is
built into SWORD, the Ganglia [Massie et al. 2004] daemon on each node that col-
lects node-level measurements, and the “CoTop” tool [Pai ] invoked on each node
to collect slice-level measurements from the slicestat [Chun ] sensor. Because the
number of nodes on PlanetLab is relatively small, we are able to configure every
node as a “representative” without imposing extraordinary inter-node measurement
or storage overhead.

For SWORD’s PlanetLab deployment, we extended the query language to allow
users to specify, for each group in their query, the maximum number of nodes that
can be assigned to that group from any single PlanetLab site. This feature allows
the user some protection from correlated failures that disconnect all of a site’s
nodes from the network, such as a power failure or failure of the site’s Internet
gateway. For example, a user might request 10 nodes from 10 different sites instead
of running the risk that all 10 nodes will come from the same site. A “site” can be
defined arbitrarily; we use the simple approximation of assigning a site ID to each
node as the hash of its DNS suffix, but other approximations such as the node’s AS
number could be used, or a delegation model could be used in which each site that
joins PlanetLab is assigned a site number by a central authority, and the site then
autonomously creates sub-sites by appending additional digits to their site number.

To add an attribute to SWORD, a reporting node’s administrator may choose to
use one of the four default fA functions or a custom-written function. Our current
implementation trusts administrators to supply well-behaved fA functions when
they add attributes with custom fA functions to the system; protecting against
malicious or misbehaving user code that might infinite loop or crash is left as future
work. Once a new attribute is installed on a reporting node, SWORD itself can
be used to distribute the attribute’s identity and its fA function: reporting nodes
can include a list of the names of the attributes they report, and the corresponding
fA’s, in their measurement reports. All nodes can periodically probe the full range
of this attribute to retrieve all other nodes’ reported attributes and fA’s. If one
node is the “seed” node that introduces an attribute, all nodes will discover the
new attribute and its fA function the next time they conduct such a probe query.

4. PERFORMANCE EVALUATION

We are interested in evaluating the following properties of SWORD: (i) How does
the performance of the various DHT-based range search approaches compare to one
another and to the fixed-servers implementation? (ii) How does workload intensity
affect performance? (iii) How do our optimizer heuristics impact optimizer perfor-
mance and accuracy compared to performing the full exponential search? (iv) How
well does our system perform on PlanetLab?

In Section 4.1 we focus on the first two questions, describing the results of an
emulation-based evaluation of our distributed query processor configurations. In
Section 4.2 we address the third question, examining the performance of the opti-
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mizer. Finally, in Section 4.3 we address the question of performance on PlanetLab.

4.1 Emulation-based Evaluation

Our emulation experiments focus on the performance of SWORD’s distributed
query processor that retrieve per-node and inter-node measurements. We choose
query latency as our performance metric because SWORD users may periodically
re-query SWORD to adapt their application to changing node and network con-
ditions, or as the resource needs of their application changes. For our emulation
experiments, we run the distributed query processor to collect per-node and inter-
node measurements, but we do not invoke the optimizer on the result. We evaluate
optimizer performance separately in Section 4.2, and the end-to-end performance
of the entire system, on PlanetLab, in Section 4.3.

We evaluated SWORD’s query processor on a cluster of 40 IBM xSeries PCs with
Dual 1 GHz Pentium III processors, 1.5 GB of RAM, and Gigabit Ethernet. We
used ModelNet [Vahdat et al. 2002] with an INET topology [Chang et al. 2002] con-
sisting of 10,000 transit nodes, 1,000 (virtual) client nodes, and 8 client nodes per
stub. In ModelNet, packet transmissions are routed through emulators responsible
for accurately emulating the hop-by-hop delay, bandwidth, and congestion of a net-
work topology. Propagation delays in the network topology are calculated based on
the relative placement of the network nodes in the plane by INET. Groups of net-
work nodes are classified as being client, stub, or transit depending on their location
in the network. Transit-transit links were given 150 Mb/s (OC3) bandwidth and
client-stub links 384 Kb/s bandwidth. Latencies were based on the INET topology.
1/32 of the nodes were chosen as “representatives.” When evaluating the Fixed
and Index approaches, the infrastructure servers were grouped into 4-node stub
domains each with 150 Mb/s, 1 ms latency connections to their upstream transit
node. For the DHT-based approaches, we used the Bamboo DHT.

Our baseline workload consisted of measurement updates and queries issued by
each of 1000 virtual nodes. The content of updates were taken from a represen-
tative one-hour portion of a trace of Ganglia measurements collected from all live
PlanetLab nodes every 5 minutes between July 2004 and October 2004. Updates
contain 32 metrics collected by Ganglia during that time period, along with Vivaldi
network coordinates and several debugging attributes, for a total of 40 attributes.

Queries contained five per-node attributes—fifteen-minute load average, free disk
space, free memory, network receive bandwidth, and network transmit bandwidth—
and one inter-node attribute, inter-node latency. Queries were formulated according
to a distribution such that they requested a minimum amount of disk space that
is Zipf distributed between 10 MB and 100 MB (biased toward the high end of
the range); a fifteen-minute load average less than a uniformly distributed value
between 0 and 5.0; a minimum amount of free memory that is Zipf distributed
between 0 MB and 48 MB (biased toward the high end of the range), bytes per
second in and out (competing traffic) that is no more than 0.1 MB/s for half of the
queries and unconstrained for the other queries, and inter-node latency between
0 ms and 1000 ms. Because our trace contained valid data for only 124 PlanetLab
nodes, we emulated a 1000-node system by replicating each of the 124 entries an
average of 8 times. The median number of nodes returned per query was 120 and
the 90th percentile was 160. In the DHT approaches, attribute bits are assigned so
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Fig. 7. (a) 90th percentile latency of the SingleQuery vs. MultiQuery approaches. (b) 90th
percentile latency of range query approaches.

that each of the 40 attributes is mapped to a sub-region containing 25 nodes.
We examined the four query processor architectures from Section 3.1 under a

variety of workloads. For evaluating the Fixed and Index approaches, we modified
the emulated topology so that the data servers and index servers, respectively, were
each placed into N/4 groups of 4 nodes each, where N is the number of Fixed (2,
4, 8, or 16) or Index (4) servers used. (For Fixed-2, one group of 2 nodes was
used.) As previously mentioned, each group was given a 150 Mb/s, 1 ms latency
network connection to its upstream transit node, and servers within a group were
given 150 Mb/s point-to-point communication links. This configuration is intended
to emulate an environment in which a service provider has placed the N servers in
N/4 geographically distributed, well-connected co-location centers. For Index, we
chose to use 4 index servers because preliminary results showed that using fewer
worsened performance, while using more did not improve performance significantly.

4.1.1 Distributed Query Latency. Figure 7(a) shows the impact of range-search
approach and workload intensity on the latency to satisfy the range query for per-
node attributes in both the SingleQuery and MultiQuery approaches, with a work-
load of 3 or 4 updates/hour/node and 3 or 4 queries/hour/node evenly generated
by all nodes. At higher workload rates, our emulation cluster’s processors became
overloaded for the MultiQuery approach. The primary reason for the difference
between SingleQuery and MultiQuery is that the network bandwidth consumed by
the larger number of nodes returned to the querying node by MultiQuery compared
to SingleQuery creates sufficient congestion to overwhelm the benefit MultiQuery
derives from sending only one attribute per measurement report. We would expect
that substantially increasing the number of attributes per update, substantially de-
creasing the number of attributes per query, or decreasing the selectivity of queries,
would serve to reduce this performance difference somewhat. However, we be-
lieve our choice of these values is reasonable for an experimental resource discovery
workload. Since these experiments reveal that SingleQuery clearly outperforms
MultiQuery for our “typical” resource discovery workload by at least an order of
magnitude, so we do not consider MultiQuery in the remainder of our evaluation.
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Figure 7(b) shows the impact of range-search approach and workload intensity on
the latency to satisfy the range query for per-node attributes for the SingleQuery,
Index, and Fixed approaches, with a workload of 12 or 24 updates/hour/node and
12 or 24 queries/hour/node, evenly generated by all nodes (except the servers in the
Index and Fixed approaches). We see that Index always outperforms SingleQuery.
This result is reasonable because queries in Index take three hops in parallel—one
to the index server(s), one to the DHT server(s) storing measurements, and one
back to the querying node—while a query in SingleQuery visits up to 25 nodes.

The Fixed approaches vary greatly in performance. With two servers (Fixed-
2), Fixed underperforms the DHT-based approaches (SingleQuery and Index) for
all workloads. This is likely due to the limited bandwidth and processing power
that using only 2 servers provides. With four servers (Fixed-4), Fixed outperforms
the DHT-based approaches for all but the 12 updates/hour + 24 queries/hour
workload. Again the main limitation for the more intense query workload was the
lack of sufficient bandwidth and processing power on the server nodes. With eight
or sixteen servers (Fixed-8 or Fixed-16), Fixed always outperforms the DHT-based
approaches (SingleQuery and Index). This result suggests that a more centralized
approach using a fixed infrastructure cluster with a relatively small number of nodes
and high-bandwidth network connections better supports the resource discovery
workload that we tested than an infrastructure based on end-nodes organized into a
DHT. As predicted, the main problem experienced with the centralized architecture
was lack of scalability due to insufficient network bandwidth, and the smaller cluster
configurations that performed poorly did so because of network congestion, which
we verified by examining router queues.

Although the above workloads included retrieval of inter-node measurements
from representatives, our graphs show only the time for the range search over
per-node measurements. We found that the end-to-end query processor latency—
in other words, including per-node attribute and inter-node attribute retrieval—
followed exactly the same trend as the per-node attribute latency alone. The ex-
planation for this observation is that inter-node measurement retrieval is affected by
the same congestion as per-node measurement retrieval. We found that the amount
of time to retrieve inter-node measurements was about 600 ms for the DHT-based
approaches, about 450 ms for the Fixed-8, Fixed-16, and Fixed-4 workloads that
outperformed the DHT approaches in Figure 7, and was 1000 ms or greater for the
remaining Fixed variants and workloads.

Our use of representatives has a significant impact on 90th percentile end-to-
end query processor latency. For the 12 updates/hour/node, 12 queries/hour/node
workload, we compared selecting all nodes in the system as representatives to select-
ing only half of them. This latter configuration reduced query latency by more than
70% for the Fixed-2 and Fixed-4 implementations, where network congestion at the
fixed servers is high and bandwidth consumption savings are thus very valuable,
and by 7% in the SingleQuery approach.

4.2 Optimizer Performance

Due to the complexity of the searches that the optimizer performs, it is beneficial
to consider some heuristics that reduce the size of the space that must be searched.
Although more complicated algorithms exist for solving this optimization problem,
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Fig. 8. (a) Runtime of optimizer using different heuristics shown as a percentage of the runtime
to complete the full exponential search. The x-axis shows the total number of possible group
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node attributes’ penalties. A missing bar indicates that no solution was found.

we chose to evaluate some simple heuristics that attempt to shortcut the full expo-
nential search while still finding a solution that is close to the optimal. The specific
heuristics that we evaluated were described in Section 3.2.

We measured the performance of the optimizer on a single 3 GHz Pentium 4
processor node with 512 MB of RAM. The workload consisted of queries containing
2 or 3 groups. The queries required load less than a value between 0 and 5, inter-
node latency within each group less than 100 ms, and at least one inter-group link
between 0 ms and 200 ms. The “preferred” attribute values included load less than
1, inter-node latency within each group between 5 ms and 50 ms, and at least one
inter-group link between 50 ms and 100 ms. The underlying data used for all queries
was taken from a snapshot of Ganglia system resource statistics and all-pairs-ping
measurement from PlanetLab in October 2004. The queries were satisfied by less
than 20% of the possible group combinations for all experiments. We considered two
settings for the penalties of the queries. For half of the experiments, all attributes
(per-node load, pairwise intra-group latency, and inter-group latency) were assigned
equal penalties. For the other half, the inter-group latency attribute was assigned
a penalty 10 times greater than the per-node and inter-node attributes to explore
the “pathological” case where the sorting based on per-node and per-group total
penalties does not provide any benefit to the complete search.

To quantify the benefits of the various heuristics, Figure 8(a) shows the running
time of the optimizer using each of our heuristics, as a percentage of the optimizer
running time when using the full exponential search. The time for the full expo-
nential search was 0.28, 1.52, 8.75, and 72.8 seconds for 841, 24389, 103823, and
729000 group combinations examined, respectively. For small numbers of possible
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Fig. 9. (a) Range query median latency versus width of range searched for SingleQuery on Planet-
Lab. The error bars show the 90th and 10th percentile values over 10 runs. (b) Optimizer median
latency versus width of range searched, on PlanetLab. The error bars show the 90th and 10th
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group combinations, the benefits of using the heuristics are relatively small since
the runtime for the full search is small. But for larger problems, the savings gained
from using a heuristic is significant, reducing a 72 second search to a few seconds.

Reducing the time of the search is only useful if the result returned maintains an
acceptable level of “accuracy,” which in this case implies that the solution is found
(if it exists) and it is still close to optimal. Figure 8(b) shows the accuracy of the
various heuristics relative to the results that the full exponential search finds. These
results show that some of the heuristics perform significantly better than others.
The “3-seconds” heuristic performs well for small searches, though for half of the
experiments the full exponential search completed in less than 3 seconds anyway.
The “top half” heuristic performs well in all cases and, for our workload, actually
finds the optimal solution in all but one case. The “first answer” approach is the
least accurate heuristic, particularly in the cases where the inter-group constraint
is heavily weighted, returning solutions with penalties substantially higher than the
optimal penalty. The explanation for this result is that the inter-group latency is
the dominant factor in the total penalty achieved, so the sorting that helps find
good answers early by considering groups with lower penalties first does not have
a noticeable impact. Finally, the “top 5” heuristic does not find a feasible solution
at all in half of our cases, while the other approaches always do. Thus we conclude
that the “top half” heuristic offers the best performance-accuracy tradeoff.

4.3 End-to-end Performance on PlanetLab

In addition to evaluating SWORD in an emulated environment, we evaluated
SWORD on PlanetLab. Compared to ModelNet, PlanetLab has a smaller number
of nodes, more processor contention, and a wide range of inter-node bandwidths.
We ran our experiments on PlanetLab in July 2004 on two sets of nodes (one is a
subset of the other): i) all 214 usable nodes that were connected to the commodity
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Internet, that is, all usable nodes that were not connected only to Internet-22; and
ii) the subset of the first set that is used by CoDeeN, a content distribution net-
work that runs on PlanetLab. This second set of 108 nodes are all at universities
in North America and tend to have high-bandwidth, low-latency network paths to
one another. We deployed SWORD in the SingleQuery configuration.

Each node reported the same number of metrics as our ModelNet experiments.
We ran the experiments with updates at a 2 minute interval and at a 4 minute
interval but found no significant difference in the performance results, so we report
only the 2-minute interval results here. We measured query latency when a single
query was in the system at a time; the measured times thus represent the “best
case” latency. We issued a series of queries, each requesting two groups of 4 nodes
each, such that the inter-node latency among all nodes within each group was
between 0 ms and 150 ms, and the load on each node was between 0 and N , where
N was varied in each query so as to cover all integers between 1 and 15, inclusive.

Figures 9(a) and (b) show the median latency for the distributed range query and
the optimizer runtime, as a function of the upper bound of the load requested, and
hence the number of candidate nodes returned, with a query rate of one query per
minute. The number of candidate nodes returned ranged from 108 to 214 for the
all-non-I2-nodes configuration, and 34 to 108 for the CoDeeN-only configuration,
depending on the range of loads requested. The number of DHT nodes searched
ranged from 2 to 9 and 1 to 6 for the two configurations, respectively.

Figure 9(a) shows that SWORD’s range search performs reasonably well on Plan-
etLab, returning results to the optimizer within a few seconds even when all nodes
are returned by the range query. The graph also shows that for these relatively
small configurations, in which at most 9 nodes are searched, most performance ef-
fects are in the “noise” except for the number of candidate nodes returned. This
observation suggests that if real-world user queries on PlanetLab commonly return
hundreds of candidate nodes, we can improve SWORD’s performance by returning
fewer nodes at the expense of providing approximate solutions, or by compressing
returned data. Figure 9(b) shows SWORD’s optimizer latency increasing as the
number of candidate nodes increases. Here the increasing latency is not due to
data transfer, but because of the larger input to the optimizer algorithm. This
graph shows that on a shared platform where other jobs are contending for the pro-
cessor (PlanetLab nodes in July 2004 were often highly loaded), optimizer latency
is potentially significant if a large number of candidate nodes is returned.

Finally, Figure 10 shows range query latency as a function of query rate for
SWORD in three configurations: the SingleQuery configuration, a Fixed-1 configu-
ration, in which all measurement reports and queries are sent to a single node, and a
Fixed-2 configuration in which half of all measurement reports are sent to one node,
half of all measurement reports are sent to a second node, and all queries are sent
to both nodes. The workload for this experiment was identical to that for the “All
non-I2-only nodes” configuration of the previous experiment with “load requested”
set to 15. However, this experiment was run several months after the one described
earlier in this section, so the absolute latencies are not directly comparable. The
error bars in the graph correspond to the SingleQuery configuration; we omit er-

2Bamboo needs symmetric reachability among nodes, hence this restriction.
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ror bars for the centralized configurations for clarity. The important observation
in this graph is that for these workloads, the Fixed-2 centralized implementation
always outperforms the DHT-based implementation and the Fixed-1 centralized
implementation outperforms the DHT-based implementation with a query rate at
or below forty queries per minute.

5. OBSERVATIONS AND LESSONS LEARNED FROM SWORD ON PLANETLAB

In this section, we present several lessons learned from our deployment and opera-
tion of SWORD on PlanetLab for several months. For each observation, we have
italicized the point we feel generalizes to services beyond SWORD and likely to
future testbeds other than PlanetLab.

The claim has been made that DHTs are important distributed application build-
ing blocks because a service built on top of a DHT will automatically inherit the

DHT’s self-configuration, self-healing, and scalability. We found this claim to be
largely true, although our centralized architectures did outperform the distributed
designs when there was sufficient bandwidth and processing power for the central
servers to operate. Using a DHT also simplified the implementation of our dis-
tributed architectures. Bamboo’s neighbor heartbeat mechanism and node join
bootstrap protocol automatically repartitioned the keyspace—and hence the range
partition mapping of measurement reports to servers—when DHT nodes joined or
left, voluntarily or due to failure or recovery, without the need for human involve-
ment or application-level heartbeats within SWORD.

Our second observation stems from the fact that managed infrastructure dis-
tributed testbeds like PlanetLab tend to be small, particularly in contrast to end-
user peer-to-peer networks like Kazaa [Kazaa 2001] or public resource computing
networks like BOINC [Red Herring Magazine 2004], both of which typically have
thousands to perhaps millions of nodes participating at any one time. To handle the
resource discovery needs of a platform the size of PlanetLab, a resource discovery
system with a few centralized server sites, each containing one or a few clustered
machines, provides sufficient performance, as Figure 10 suggests.

More generally, at such small scales, simple architectures frequently outperform
peer-to-peer architectures. This advantage is especially true for non-compute-
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intensive, low-bandwidth applications, as such applications by their nature will
not benefit significantly from the many extra processors and network links that
peer-to-peer architectures provide. SWORD is an example of such an application:
although its performance benefits from parallelizing the work of the optimizer on
a per-query basis, the dominant performance factor is the sequential visiting of
nodes during the range search, with each traversal incurring one average-latency
network hop. Such multiple wide-area network hops are unnecessary when the ap-
plication is deployed across a small testbed. Thus, our observation is that when

deploying a system that targets a platform the size of PlanetLab, it may be worth-

while to evaluate a centralized implementation before embarking on a peer-to-peer

implementation. Among the factors that should be considered are as follows.

— Performance for expected workload and scale: As already mentioned, the
tradeoffs between peer-to-peer and more centralized implementations are highly
dependent on expected system scale and workload.

— Availability and disaster tolerance requirements: DHTs provide node and net-
work link failure and recovery detection and automatic repartitioning of ownership
of the keyspace in the event of node and network link failure and recovery. Such
automatic failover is also possible in centralized implementations, though typically
requiring an external mechanism such as a front-end failure-detecting load balanc-
ing switch. DHTs provide disaster tolerance when they replicate data; non-peer-to-
peer multi-site implementations can also provide disaster tolerance at the expense
of additional failover mechanisms.

— Implementation effort, given desired features: It is much easier to build a
service to run on a single node than it is to build a service to run on a peer-to-peer
network. Between these two extremes are services built to run on a cluster at a
single site or across a small number of sites. The implementation effort required
for these various architectures depends on the type of service implemented and its
desired scalability and availability.

— Debugging effort: Likewise, it is much easier to debug an application running
on a single node than it is to debug one running on a peer-to-peer network. Be-
tween these two extremes are services built to run on a cluster at a single site or
across a small number of sites. The implementation effort required for these various
architectures is application-specific.

— Security: Peer-to-peer networks, whether installed in users’ homes or spread
across a large number of managed sites as in PlanetLab, store data on hundreds or
more nodes. Because of the wide distribution and federated management of these
nodes, it is likely to be easier for an attacker to compromise data in a distributed
implementation than it is for an attacker to compromise data when the service is
deployed at fixed, pre-authenticated datacenters. We discuss specific security issues
related to SWORD in Section 7.

Another challenge we overcame during our deployment of SWORD was keeping
the service running continuously on PlanetLab. We used the PlanetLab Application
Manager [Huebsch 2004] to automatically restart crashed SWORD instances. It
was important to disable this feature during debugging, however, since in that
setting a crashed application instance generally indicates a bug that needs to be
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fixed. Automatic re-start was a mixed blessing once we had deployed the service in
“production.” While it allowed SWORD to recover quickly from node reboots, and
allowed us to continue to provide the service in the face of bugs, it hid transient
bugs. Because periodically collecting logfiles from hundreds of machines to look
for restarts is time-consuming and resource intensive, a more sensible approach
is to automatically email the service operator the most recent logfile each time
the application is restarted on a node. Restart allows a service to handle failure
gracefully, but care must be taken to notify an operator and preserve forensic
evidence when failures do occur, so that the underlying bug can be fixed.

Finally, we note that when it comes to evaluating distributed applications, Plan-
etLab offers several benefits and drawbacks compared to more traditional platforms
such as fast network simulation3 and cluster-based emulation. These tradeoffs fall
into the following categories.

— Scale: During our measurement period, PlanetLab consisted of about 500
physical nodes, about two thirds of which were typically online and functional
at any one time. In contrast, cluster-based emulation typically allows evaluation
of applications with ten or twenty “virtual nodes” per physical cluster node; for
example, when evaluating SWORD, we found that we could emulate a network
of about 1000 “virtual nodes” on 40 physical nodes before processor contention
due to multiplexing many virtual nodes per physical machine began to affect our
performance measurements. Simulation is arguably the most scalable evaluation
method. Unlike PlanetLab and emulation, it does not run in real-time, so an
arbitrarily large system can be simulated if the experimenter is willing to wait long
enough and is able to provision the machine running the simulation with sufficient
virtual memory.

— Network topology and link characteristics: The PlanetLab network topology is
“hard-wired” based on the nodes that have elected to participate in PlanetLab, but
these network links reflect real-world latency, bandwidth constraints, and packet
loss rates. In contrast, simulation allows the experimenter to create an arbitrary
network topology, but fast network simulators typically simulate only network la-
tency, not bandwidth constraints or packet loss. Emulation offers the best of both
words, enabling the creation of arbitrary network topologies and emulation of user-
defined latency, bandwidth, and loss rate on each network link.

— Competition for resources: Applications running on PlanetLab nodes are ex-
posed to contention from other applications for processor, memory, disk, and net-
work resources. Applications running in emulation can be subjected to contention
for these resources in a more controlled way. Fast network simulators, because they
are network simulators and not processor or operating system simulators, cannot
evaluate the application impact of contention for node resources. Thus emulation,
and to some extent PlanetLab deployment, are the best platforms for studying
application sensitivity to resource constraints.

— Workload: A key benefit of PlanetLab deployment is that applications can be
offered as a service to others, and thereby can be exposed to a real user workload.

3By “fast network simulation” we mean simulators such as p2psim [Li et al. 2005] or the simulator
that is distributed with Bamboo and Tapestry.
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Of course, the challenge is attracting enough users to the service to meaningfully
characterize typical usage. Our current SWORD deployment has not yet met this
criteria, but we hope that its integration with Plush, described in Section 3.3, will
attract more users and thereby enable to us to draw conclusions about what a
“typical” SWORD query workload is. On the other hand, we were able to use
PlanetLab to derive a typical SWORD “update” workload, by observing the node
utilization data that SWORD measured from Ganglia and other sources.

— Operator actions: Because PlanetLab nodes are deployed across hundreds of
sites and operated by local site administrators and PlanetLab Central, they are sub-
jected to a realistic set of operator actions—some beneficial to availability and/or
performance, and some detrimental. However, users cannot subject nodes to the full
range of operator actions that they can in a dedicated cluster environment, because
they do not have access to the physical machine or root access to the underlying
operating system4. Finally, operator actions cannot be realistically represented at
all in a fast network simulator, as neither the hardware nor operating system is
simulated.

— Faults: Because PlanetLab nodes are deployed across hundreds of sites, they
are subjected to a realistic set of hardware, operating system, and operator faults.
Furthermore, application deployers are free to inject application-level faults of their
choosing. However, because PlanetLab users do not have access to the hardware or
underlying operating system, they are limited to injecting arbitrary faults into the
application and virtualized operating system (vserver) layer of their system only.
Emulation, because it runs in a dedicated cluster environment, allows introduction
of the full set of hardware, operating system, and application-level faults. Simu-
lation cannot realistically reflect faults; in essence, the best a simulator can do is
to map all faults into a single fault, namely node disconnection from the simulated
network.

— Reproducibility: The large size of the error bars in our graphs in Figure 10
shows that one of the key drawbacks of PlanetLab experimentation is reproducibil-
ity. Due to varying contention for processor, memory, network, and disk I/O re-
sources, performance varies significantly over even short time periods. This fact
makes it difficult to use PlanetLab to ascertain the performance impact of a design
parameter by varying that parameter over multiple runs, as many other factors will
be varying across those runs outside of the experimenter’s control. In contrast, the
controlled environments of an emulation cluster and a simulator allow the same ex-
periment to be repeated multiple times, with only the desired parameter(s) changing
between runs. We note that simulation is slightly more reproducible than emulation
because it allows a repeatably deterministic ordering of events, whereas emulation
allows events to become arbitrarily interleaved among different nodes.

— Experiment management: Deploying an application on a single-node simula-
tor is generally easy. Deploying an application on a cluster is slightly more difficult

4Each PlanetLab slice (user) is given a Linux vserver [Linux VServer 2003] environment on each
machine, providing namespace isolation (for files, processes, and other entities) but not a true
virtual or physical machine. This allows users to perform some of their own operator actions on
PlanetLab, but not the full set possible on a truly dedicated machine.
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because code and data must be distributed to the cluster nodes, the application
must be started and stopped on the various nodes, and relevant logfiles must be
copied back to a central node if centralized analysis is desired. The same steps
must be taken to run an application on PlanetLab, but with an additional twist:
nodes and network links may fail and recover during the application’s deployment
and operational phases. Tools that deploy and monitor the application—not just
the application itself—must therefore handle failures gracefully. Moreover, to un-
derstand application behavior, an experimenter must “factor out” the failures that
occurred outside of their control as the experiment ran.

Based on these observations, we conclude that PlanetLab evaluation comple-

ments, rather than replaces, traditional evaluation approaches. We believe that in
the future, it will be common for system developers to obtain the “best of both
worlds” by deploying their system on PlanetLab to obtain traces and/or models
of realistic workload, contention, and failures, and then using those traces and/or
models to drive simulation or emulation. In this study, we have started along
these lines in a small way by generating the SWORD “update workload” for our
experiments from a measurement trace taken from PlanetLab.

6. RELATED WORK

SWORD builds on work in resource discovery, Internet-scale query processing, and
distributed range search. In this section we discuss how SWORD compares to
related work in each of these areas.

6.1 Resource discovery

Resource discovery has long been a research topic in the Grid community [Cza-
jkowski et al. 2001]. The most widely-deployed Grid resource discovery system is
the Globus Toolkit Monitoring and Discovery Service (MDS2) [Zhang and Schopf
2004]. MDS2 defines an architecture in which “Information Providers” provide raw
measurement data, a “Grid Resource Information Service” (GRIS) makes the infor-
mation available for querying, and a “Grid Index Information Service” (GIIS) ag-
gregates data from GRISes. Globus provides an OpenLDAP-based per-node GRIS
and allows users to plug in their own GIIS implementations. MDS2 data aggre-
gation follows an administrator-specified hierarchical structure. SWORD’s query
processor could be used as a GIIS, connecting GRISes in a peer-to-peer fashion.
MDS3 and MDS4 have recently emerged as successors to MDS2 with similar goals.

Kee et al. describe “virtual grids” [Kee et al. 2005]. The description language
vgDL allows users to describe resource requirements as hierarchies of homogeneous
or heterogeneous groups of nodes with good or poor connectivity, reminiscent of
SWORD’s groups with per-node, inter-node, and inter-group constraints, but with
coarser-grained specifications and support for arbitrarily deep hierarchies. The re-
source mapping component vgFAB stores resource measurements only in a central-
ized database, in contrast to SWORD which has the ability to store measurements
in groups of central servers or in a DHT. Also, vgFAB computes a bounded set
of pre-fabricated groups and stores them in the database rather than dynamically
forming them on a query-by-query basis like SWORD.

Condor and its ClassAds language [Litzkow et al. 1988] provide similar func-
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tionality to virtual grids and SWORD, absent the notion of groups and inter-node
connectivity constraints. Gang matching [Raman et al. 2003] extends Condor’s
original bilateral matching scheme to a multilateral one, allowing co-allocation of
multiple resources. Set matching [Liu et al. 2002] allows requests that express ag-
gregate constraints. SWORD offers ClassAds as one of its query languages; this
provides users the flexibility of ClassAds’ more general semantics for ranking can-
didate nodes, but using this syntax users cannot specify inter-node or inter-group
constraints or ranking functions. Redline [Liu and Foster 2004] formulates the
matching problem as a constraint satisfaction problem. These latter systems allow
expression of resource groups, but they do not offer a concise method to express
network topologies. Also, to date their implementations have been centralized.

XenoSearch [Spence and Harris 2003] supports DHT-based multi-attribute range
queries in a manner similar to our MultiQuery approach, but it uses a separate DHT
instance per attribute, creates its query routing structure explicitly rather than
using built-in DHT successor pointers, and provides approximate answers using
Bloom Filters. Additionally, SWORD allows users to define groups with inter-
node and inter-group requirements and “penalty functions” to rank nodes meeting
the requirements. SWORD penalty functions are a simple version of more general
utility functions, which are well studied components in many resource management
and allocation mechanisms. Though utility functions are often discussed in the
context of microeconomics and game theory, [Ferguson et al. 1996] and [Ibaraki
and Katoh 1988] provide a survey of some of the earlier computer science research
that focuses on utility functions in resource allocation schemes.

Huang and Steenkiste [Huang and Steenkiste 2003] describe a mechanism for
network-sensitive service selection. Their system addresses problems similar to
the ones that SWORD addresses, but using only centralized data collection and
resource mapping. They focus on finding single groups that meet target criteria for
a desired application, rather than multiple groups with inter-node and inter-group
characteristics as SWORD does.

The network topology embedding problem is formulated as a constraint satisfac-
tion problem in [Considine et al. 2003] for wide-area networks and as an optimiza-
tion problem in [White et al. 2002] for cluster networks. Similar to SWORD, the
former system finds the best “embedding” of a user’s requested emulated network
topology within the graph of PlanetLab nodes, while the latter maps a user’s re-
quested emulated network topology to a set of physical cluster resources that offer
emulation capabilities.

PlaceLab [Chawathe et al. 2005] is a resource discovery service for locating nearby
WiFi hotspots. Organizations store a <latitude, longitude> tuple corresponding
to each hotspot they operate, and arbitrary users may also store such location
information when they discover a hotspot whose administrators have not explicitly
registered the hotspot with PlaceLab. Users wishing to locate a hotspot near them
may query PlaceLab with their current location, and the infrastructure returns a
list of nearby hotspots.

Other Internet technologies, including the Service Location Protocol (SLP) [SLP
1987], Domain Name System (DNS) [DNS 1987], and Lightweight Directory Access
Protocol (LDAP) [LDAP 1997] have been in use for many years and have similar
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goals as SWORD. SLP is a protocol that allows applications to discover networked
services without knowing the specific hostname or IP address of the desired resource.
Instead, applications simply describe the desired service and SLP finds the URLs
for the appropriate resources. Jini [Jini 1998] is an example of a specific Java
technology that provides this service. DNS is an Internet technology that is used
to translate alphabetic domain names into IP addresses. This prevents users from
having to remember IP addresses for resources they wish to access, since domain
names like “www.google.com” are easier to remember than strings of numbers.
Similarly, LDAP is a protocol that is used to access a directory that stores the
location of organizations, individuals, and other networked devices. Thus a user
who wishes to access a particular resource uses LDAP to look up the resource in
a directory. Like SWORD, in all three of these instances, users benefit from not
needing to know all information about all available resources ahead of time.

6.2 Internet-scale query processing

PIER [Huebsch et al. 2003], Sophia [Wawrzoniak et al. 2003], IrisNet [Nath et al.
2003], and Astrolabe [van Renesse et al. 2003] provide Internet-scale query process-
ing. All four could be used to satisfy per-node resource queries, and they offer a
more expressive language for specifying such requirements than SWORD. However,
the first three must contact all data-storing nodes to perform range search and the
last disseminates measurement data globally, while SWORD targets its range search
to only the nodes storing measurements within the target attribute’s range. Also,
SWORD provides a query language and optimizer specialized for specifying and
optimizing groups of nodes with inter-node requirements and preferences. We note
that PIER implements an efficient distributed join primitive that SWORD does not,
which could allow faster processing of range queries over inter-node characteristics.

6.3 Distributed range search

DHT-based range search was suggested initially by Karger and Ruhl [Karger and
Ruhl 2004], using the technique of mapping values of an attribute to DHT keys.
They also suggested an “item balancing” algorithm that reassigns Node IDs so as to
spread load evenly among nodes in the face of a non-uniform workload, though at
the expense of path length inflation. Mercury [Bharambe et al. 2004] extends this
work to multi-attribute queries using the concept of hubs, similar to our subregions.
They also describe a small-world based routing overlay that restores logarithmic
routing path length. Mercury is evaluated primarily via simulation, with a focus
on routing efficiency and load balance. In contrast, SWORD focuses on end-to-
end performance and resource consumption, in emulation and a live deployment,
when multi-attribute range search is applied to resource discovery. Additionally, we
describe passive load balancing that complements Mercury’s active load balancing.

Another recent proposal for distributed range search is the Prefix Hash Tree
(PHT) [Ramabhadran et al. 2004]. PHT is designed to perform single-dimensional
range queries on top of DHTs while maintaining load balance. PHT incrementally
grows a trie, where each leaf corresponds to a range of item identifiers that map
to the DHT node responsible for the DHT key defined by the path from the root
of the trie to that leaf. The trie starts with a singleton node, namely the root,
and grows by incrementally splitting nodes when they become overloaded. The
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PlaceLab mapping infrastructure described earlier uses the PHT algorithm running
atop OpenDHT [Rhea et al. 2005]. It converts <latitude, longitude> tuples into a
single-dimensional attribute using a Z-curve linearization.

Researchers have also recently proposed distributed range search using skip graphs
[Aspnes and Shah 2003; Aspnes et al. 2004; Awerbuch and Scheidler 2003], and us-
ing special-purpose data structures built on top of CAN [Ratnasamy et al. 2001;
Tang et al. 2003] and Chord [Stoica et al. 2001; Gupta et al. 2003; Crainiceanu
et al. 2004].

7. CONCLUSION AND FUTURE WORK

In this paper we have described SWORD, a scalable resource discovery service for
wide-area distributed systems. SWORD users describe a requested system topology
in terms of groups with required intra-group, inter-group, and per-node characteris-
tics whose relative importance and sensitivity are expressed using penalty functions.
We explore a number of distributed and centralized query algorithms for finding
nodes meeting required per-node constraints, and several heuristics for finding the
best mapping of nodes to groups. Through emulation-based evaluation, we find
that an architecture based on 4-node server clusters at network peering facilities
outperforms a DHT-based resource discovery infrastructure for all but the smallest
number of sites.

Our experience with SWORD’s PlanetLab deployment shows that this DHT-
based approach performs reasonably well despite competition from numerous pro-
cessor and network-intensive applications sharing the same PlanetLab infrastruc-
ture nodes. While our results are specific to the system architectures and workload
configurations we examined, we believe that our experience considering both cen-
tralized and distributed architectures provides interesting guidelines and insights
regarding appropriate architectures for a variety of systems depending on available
resources, expected level of load, and required levels of performance and availability.
In operating a live deployment of SWORD on PlanetLab for more than a year, we
found that SWORD benefitted significantly from the DHT’s self-healing properties
but less from its scalability properties due to the small size of the platform. As
an evaluation platform, we found that PlanetLab is an excellent addition to, but
not a replacement for, emulation. In particular, PlanetLab does not allow creation
of arbitrary network topologies or injection of node-level faults, and results on the
platform are less reproducible than those from emulation, due to unpredictable
competition with other PlanetLab users for node and network resources.

An important area of future work is security. Nodes could sign measurement
reports and queries as a form of authentication. Given an authentication infras-
tructure, per-node rate limiting could ensure that no node utilizes more than a
predefined amount of bandwidth (or optimizer CPU time) per unit time on any
single node. Such a technique is vulnerable to the Sybil attack [Douceur 2002]
and therefore requires a trusted identity creation service. To ensure that nodes
are truthful in their measurement reports, a verification service could run micro-
benchmarks to verify that resource availability matches earlier advertisements. To
ensure that, modulo collusion, nodes are truthful when they run the optimizer,
a client might issue each query to several query nodes and compare the results.
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Privacy is another challenging security issue for distributed versions of SWORD.
Reporting nodes could encrypt attribute names to hide their meanings, but our
range search mechanism relies on a monotonic mapping function from measured
values to DHT keys, and encrypting values using standard techniques, either be-
fore or after mapping them to a DHT key, will break this monotonicity.

Finally, we have not yet studied the system dynamics that result from multiple
large-scale applications periodically querying SWORD to determine when and how
to migrate application instances. We anticipate that mechanisms are needed to
dampen potential oscillations. Further, providing support for more complex penalty
functions is another extension we hope to explore in the future.

More information on SWORD including the PlanetLab deployment can be ac-
cessed at http://www.swordrd.org/.
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