
Application Management and Visualization with Plush

Jeannie Albrecht
Williams College
Williamstown, MA

jeannie@cs.williams.edu

Ryan Braud
UC San Diego
La Jolla, CA

rbraud@cs.ucsd.edu

Abstract—Deploying, running, and maintaining applications
running on a distributed set of resources is a challenging
task. Software developers often spend a significant amount
of time dealing with the complexities associated with soft-
ware configuration and management in these environments.
Distributed application management systems are designed to
automate the process, and to ultimately help developers cope
with the common problems that arise during the design,
implementation, and evaluation of distributed systems. In this
talk, we highlight the key features of Plush, an application
management system for PlanetLab and ModelNet, and describe
how Plush simplifies peer-to-peer system visualization and
evaluation.

Keywords-Distributed application; PlanetLab; ModelNet;
management; visualization

I. OVERVIEW

Most applications deployed on the Internet today run
simultaneously on thousands or even millions of comput-
ing devices spread around the world. In general, the goal
of these distributed applications is to connect users to
shared resources. One particularly popular type of distributed
application is a peer-to-peer (P2P) system. Characterized
by functional homogeneity among peers, P2P systems are
completely decentralized and, thus, have the ability to scale
to large numbers of peers without sacrificing performance.
However, while P2P systems offer many benefits, they
also introduce new complexities associated with managing
computations and services running on hundreds or thousands
of computers. For example, consider the task of deploying
a P2P application on a large-scale testbed, which involves
installing the required software and starting the computation.
When running a P2P application on distributed resources,
ensuring that hundreds or thousands of computers around
the world are all running the correct version of the required
software is a cumbersome and tedious task that is further
complicated by the heterogeneity—in terms of both hard-
ware and software—of the resources hosting the application.

After installing any required software, additional chal-
lenges arise when managing P2P applications. Tasks in-
volved with starting an execution across distributed re-
sources, achieving loose synchronization, keeping an appli-
cation running, detecting and recovering from failures, and
gathering data are all complicated by the distributed nature
of a P2P system and the unpredictable behavior of peers.

The difficulties associated with these tasks can be frustrating
to developers, who end up spending the majority of their
time managing executions and trying to detect and react
to failures, rather than developing new optimizations and
enhancements for increased application performance.

In response to these difficulties, we developed Plush [1],
[2] an application management infrastructure that aims to
support application management and visualization on differ-
ent types of resources. Plush simplifies the tasks associated
with software configuration, resource management, failure
detection, and failure recovery in a variety of distributed
execution environments. This is accomplished through an
easily-adapted application specification language and re-
source management system. In this talk, we discuss how
Plush works in a general sense, and then describe how Plush
specifically supports P2P applications on PlanetLab [3] and
ModelNet [4]. We will also demonstrate the functionality of
two user interfaces, including a command-line interface and
Nebula, a graphical user interface that has been integrated
with Plush for application visualization on PlanetLab and
ModelNet. The remainder of this paper describes the key
subtasks of application management in Plush, including
specifying an application, configuring resources and starting
an execution, and recovering from failures.

II. APPLICATION SPECIFICATION

The Plush application specification is an XML file that
describes the flow of control for the application. The XML
defines a set of “building block” abstractions that specify
the required software packages, processes, and desired re-
sources. The blocks can be arbitrarily combined to support
a range of applications in different environments.

Figure 1 shows a sample application specification for a
very basic application. Starting at the top, the XML contains
information describing the required software, with additional
parameters used to specify how to obtain the remote software
package. The next section of XML describes the desired
resources that define the application’s component. The third
section, called the application block, consists of one or more
process blocks that specify the execution itself. Any syn-
chronization requirements for the application are described
in the application block as well.



<?xml version="1.0" encoding="utf-8"?>
<plush>

<project name="simple">
<software name="SimpleSoftwareTarball" type="tar">

<package name="Package" type="web">
<path>http://sysnet.cs.williams.edu/˜jeannie/software.tar</path>
<dest path>software.tar</dest path>

</package>
</software>
<component name="PLMachines">

<rspec>
<num hosts>20</num hosts>

</rspec>
<software name="SimpleSoftwareTarball" />
<resources>

<resource type="planetlab" group="williams1"/>
</resources>

</component>
<application name="simple">

<execution>
<component block name="compBlock1">

<component name="PLMachines" />
<process block name="procBlock1">

<process name="catProc">
<path>cat</path>
<cmdline>

<arg>software.txt</arg>
</cmdline>
<cwd/>

</process>
</process block>

</component block>
</execution>

</application>
</project>

</plush>

Figure 1. Plush application specification that is used to manage an
application on 20 PlanetLab machines. This trivial example simply runs
“cat software.txt” on each resource.

III. RESOURCE CONFIGURATION AND EXECUTION

In addition to the application specification, the user must
also provide Plush with a resource directory. The resource
directory is used to define resource pools in Plush, which
are simply groupings of resources that are available to the
user and are capable of hosting an application. Plush uses
the resources in the resource pool to create a matching, or
a mapping of resources to an application component. After
choosing the resources, Plush can begin connecting to the
resources and eventually start the execution.

The Plush architecture consists of a controller and the
clients. The Plush controller process is responsible for man-
aging the Plush client processes running on the distributed
resources. The controller process is often run on the Desktop
computer of the Plush user. The clients are lightweight
processes that run on specified ports on each resource
involved in an application. When configuring resources and
starting an execution, the controller initiates a separate TCP
connection to each client process creating a communication
fabric. For the remainder of the P2P application’s execution,
the controller sends messages to the clients via the fabric
instructing them to install software, run commands, and start
processes on behalf of the user.

IV. FAILURE DETECTION AND RECOVERY

After constructing the communication fabric, the client
processes running on the distributed resources monitor the
liveness of the P2P application. Thus, if any processes
exit with an incorrect exit code or issue an application-
specific warning, the clients send a message back to the
Plush controller. The controller then decides how to recover
from the failure, based on the specifications provided by the
user. The clients also periodically send the controller updates
regarding their individual status and progress. Using these
status updates, the Plush controller can construct a single,
global view of the progress of a distributed P2P application.

If a client detects a failure and informs the controller,
the actions used to recover from the error are chosen based
on the severity of the problem. The default options include
restarting the failed process, finding a replacement resource,
or aborting the either application. Other application-specific
failure recovery behaviors are possible via XML-RPC call-
backs. In this way, the controller can instruct the client to
recover from the failure using application-specific code.

V. CONCLUSION

In conclusion, Plush is an application management frame-
work that helps developers deploy and maintain software
running on distributed set of resources. Through a generic
resource management interface and an extensible application
specification, Plush supports execution on several differ-
ent types of resources, including PlanetLab machines and
ModelNet emulated clusters. Through two intuitive user
interfaces, Plush helps P2P developers deploy, monitor, and
visualize the status and progress of applications running on
hundreds of distributed resources. Additional information
regarding the installation and use of Plush can be found
at [5].

REFERENCES

[1] J. Albrecht, R. Braud, D. Dao, N. Topilski, C. Tuttle, A. C.
Snoeren, and A. Vahdat, “Remote Control: Distributed Ap-
plication Configuration, Management, and Visualization with
Plush,” in Proceedings of the USENIX Large Installation
System Administration Conference (LISA), 2007.

[2] J. Albrecht, C. Tuttle, A. C. Snoeren, and A. Vahdat, “Planet-
Lab Application Management Using Plush,” ACM Operating
Systems Review (OSR), vol. 40, no. 1, 2006.

[3] L. L. Peterson, A. C. Bavier, M. E. Fiuczynski, and S. Muir,
“Experiences Building PlanetLab.” in Proceedings of the
ACM/USENIX Symposium on Operating System Design and
Implementation (OSDI), 2006.

[4] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić,
J. Chase, and D. Becker, “Scalability and Accuracy in a Large-
Scale Network Emulator,” in Proceedings of the ACM/USENIX
Symposium on Operating System Design and Implementation
(OSDI), 2002.

[5] “Plush Webpage,” http://plush.cs.williams.edu.


