
Remote Control: Distributed
Application Configuration, Management,

and Visualization with Plush

Jeannie Albrecht – Williams College
Ryan Braud, Darren Dao, Nikolay Topilski, Christopher Tuttle, Alex C. Snoeren,

and Amin Vahdat – University of California, San Diego

ABSTRACT

Support for distributed application management in large-scale networked environments re-
mains in its early stages. Although a number of solutions exist for subtasks of application deploy-
ment, monitoring, maintenance, and visualization in distributed environments, few tools provide a
unified framework for application management. Many of the existing tools address the manage-
ment needs of a single type of application or service that runs in a specific environment, and these
tools are not adaptable enough to be used for other applications or platforms. In this paper, we
present the design and implementation of Plush, a fully configurable application management in-
frastructure designed to meet the general requirements of several different classes of distributed
applications and execution environments. Plush allows developers to specifically define the flow
of control needed by their computations using application building blocks. Through an extensible
resource management interface, Plush supports execution in a variety of environments, including
both live deployment platforms and emulated clusters. To gain an understanding of how Plush
manages different classes of distributed applications, we take a closer look at specific applications
and evaluate how Plush provides support for each.

Introduction

Managing distributed applications involves deploy-
ing, configuring, executing, and debugging software run-
ning on multiple computers simultaneously. Particularly
for applications running on resources that are spread
across the wide-area, distributed application management
is a time-consuming and error-prone process. After the
initial deployment of the software, the applications need
mechanisms for detecting and recovering from the in-
evitable failures and problems endemic to distributed en-
vironments. To achieve availability and reliability, appli-
cations must be carefully monitored and controlled to en-
sure continued operation and sustained performance. Op-
erators in charge of deploying and managing these appli-
cations face a daunting list of challenges: discovering
and acquiring appropriate resources for hosting the appli-
cation, distributing the necessary software, and appropri-
ately configuring the resources (and re-configuring them
if operating conditions change). It is not surprising, then,
that a number of tools have been developed to address
various aspects of the process in distributed environ-
ments, but no solution yet flexibly automates the applica-
tion deployment and management process across all en-
vironments.

Presently, most researchers who want to evaluate
their applications in wide-area distributed environ-
ments take one of three management approaches. On
PlanetLab [6, 26], service operators address deploy-
ment and monitoring in an ad hoc, application-specific

fashion using customized scripts. Grid researchers, on
the other hand, leverage one or more toolkits (such as
the Globus Toolkit [12]) for application development
and deployment. These toolkits often require tight in-
tegration with not only the infrastructure, but the ap-
plication itself. Hence, applications must be custom
tailored for a given toolkit, and can not easily be run
in other environments. Similarly, system administra-
tors who are responsible for configuring resources in
machine-room settings often use remote execution
tools such as cfengine [9] for managing and configur-
ing networks of machines. As in the other two ap-
proaches, however, the configuration files are tailored
to a specific environment and a particular set of re-
sources, and thus are not easily extended to other plat-
forms.

Motivated by the limitations of existing approach-
es, we believe that a unified set of abstractions for
achieving availability, scalability, and fault tolerance can
be applied to a broad range of distributed applications,
shielding developers from some of the complexities of
large-scale networked environments. The primary goal
of our research is to understand these abstractions and
define interfaces for specifying and managing distrib-
uted computations run in any execution environment.
We are not trying to build another toolkit for managing
distributed applications. Rather, we hope to define the
way users think about their applications, regardless of
their target platform. We took inspiration from classical

21st Large Installation System Administration Conference (LISA ’07) 185

Remote Control: Distributed Application . . . With Plush Albrecht, et al.

operating systems like UNIX [28] which defined the
standard abstractions for managing applications: files,
processes, pipes, etc. For most users, communication
with these abstractions is simplified through the use of a
shell or command-line interpreter. Of course, distributed
computations are both more difficult to specify, because
of heterogeneous hardware and software bases, and
more difficult to manage, because of failure conditions
and variable host and network attributes. Further, many
distributed testbeds do not provide global file system ab-
stractions, which complicates data management.

To this end, we present Plush [27], a generic appli-
cation management infrastructure that provides a unified
set of abstractions for specifying, deploying, and moni-
toring distributed applications. Although Plush was ini-
tially designed to support applications running on Planet-
Lab [2], Plush now provides extensions that allow users
to manage distributed applications in a variety of com-
puting environments. Plush users describe distributed
computations using an extensible application specifica-
tion language. In contrast to other application manage-
ment systems, however, the language allows users to
customize various aspects of the deployment life cycle to
fit the needs of an application and its target infrastruc-
ture. Users can, for example, specify a particular re-
source discovery service to use during application de-
ployment. Plush also provides extensive failure manage-
ment support to automatically adapt to failures in the ap-
plication and the underlying computational infrastruc-
ture. Users interact with Plush through a simple com-
mand-line interface or a graphical user interface (GUI).
Additionally, Plush exports an XML-RPC interface that
allows users to programmatically integrate their applica-
tions with Plush if desired.

Plush provides abstractions for managing re-
source discovery and acquisition, software distribu-
tion, and process execution in a variety of distributed
environments. Applications are specified using combi-
nations of Plush application ‘‘building blocks’’ that de-
fine a custom control flow. Once an application is run-
ning, Plush monitors it for failures or application-level
errors for the duration of its execution. Upon detecting
a problem, Plush performs a number of user-config-
urable recovery actions, such as restarting the applica-
tion, automatically reconfiguring it, or even searching
for alternate resources. For applications requiring wide-
area synchronization, Plush provides several efficient
synchronization primitives in the form of partial barri-
ers, which help applications achieve better performance
and robustness in failure-prone environments [1].

The remainder of this paper discusses the archi-
tecture of Plush. We motivate the design in the next
section by enumerating a set of general requirements
for managing distributed applications. Subsequently,
we present details about the design and implementa-
tion of Plush and then provide specific application
case studies and uses of Plush. Related work is shown
in the next section which is followed by the conclu-
sion.

Application Management Requirements

To better understand the requirements of a dis-
tributed application management framework, we first
consider how we might run a specific application in a
widely-used distributed environment. In particular, we
investigate the process of running SWORD [23], a
publicly-available resource discovery service, on Plan-
etLab. SWORD uses a distributed hash table (DHT)
for storing data, and aims to run on as many hosts as
possible, as long as the hosts provide some minimum
level of availability (since SWORD provides a service
to other PlanetLab users). Before starting SWORD,
we have to find and gain access to PlanetLab ma-
chines capable of hosting the service. Since SWORD
is most concerned with reliability, it does not necessar-
ily need powerful machines, but it must avoid nodes
that frequently perform poorly over a relatively long
time. We locate reliable machines using a tool like
CoMon [25], which monitors resource usage on Plan-
etLab, and then we install the SWORD software on
those machines.

This software installation involves downloading
the SWORD software package on each host individu-
ally, unpacking the software, and installing any soft-
ware dependencies, including a Java Runtime Envi-
ronment. After the software has been installed on all
of the selected machines, we start the SWORD execu-
tion. Recall that reliability is important to SWORD, so
if an error or failure occurs at any point, we need to
quickly detect it (perhaps using custom scripts and
cron jobs) and restore the service to maintain high
availability.

Running SWORD on PlanetLab is an example of
a specific distributed application deployment. The
low-level details of managing distributed applications in
general largely depend on the characteristics of the tar-
get application and environment. For example, long-
running services such as SWORD prefer reliable ma-
chines and attempt to dynamically recover from failures
to ensure high availability. On the other hand, short-
lived scientific parallel applications (e.g., EMAN [18])
prefer powerful machines with high bandwidth/low la-
tency network connections. Long term reliability is not a
huge concern for these applications, since they have
short execution times. At a high level, however, if we
ignore the complexities associated with resource man-
agement, the requirements for managing distributed ap-
plications are largely similar for all applications and en-
vironments. Rather than reinvent the same infrastructure
for each class separately, our goal is to identify common
abstractions that support the execution of many types of
distributed applications, and to build an application-
management infrastructure that supports the general re-
quirements of all applications. In this section, we identi-
fy these general requirements for distributed application
management.

Specification. A generic application controller
must allow application operators to customize the

186 21st Large Installation System Administration Conference (LISA ’07)

Albrecht, et al. Remote Control: Distributed Application . . . With Plush

control flow for each application. This specification is
an abstraction that describes distributed computations.
A specification identifies all aspects of the execution
and environment needed to successfully deploy, man-
age, and maintain an application, including the soft-
ware required to run the application, the processes that
will run on each machine, the resources required to
achieve the desired performance, and any environ-
ment-specific execution parameters. User credentials
for resources must also be included in the application
specification in order to obtain access to resources. To
manage complex multi-phased computations, such as
scientific parallel applications, the specification must
support application synchronization requirements. Simi-
larly, distributing computations among pools of ma-
chines requires a way to specify a workflow – a collec-
tion of tasks that must be completed in a given order –
within an application specification.

The complexity of distributed applications varies
greatly from simple, single-process applications to
elaborate, parallel applications. Thus the challenge is
to define a specification language abstraction that pro-
vides enough expressibility for complex distributed
applications, but is not too complicated for single-
process computations. In short, the language must be
simple enough for novice application developers to
understand, yet expose enough advanced functionality
to run complex scenarios.

Resource Discovery and Acquisition. Another
key abstraction in distributed applications are re-
sources. Put simply, resources are computing devices
that are connected to a network and are capable of
hosting an application. Because resources in distrib-
uted environments are often heterogeneous, applica-
tion developers naturally want to find the resource set
that best satisfies the demands of their application.
Even if hardware is largely homogeneous, dynamic re-
source characteristics such as available bandwidth or
CPU load can vary over time. The goal of resource
discovery is to find the best current set of resources
for the distributed application as described in the spec-
ification. In environments that support dynamic virtual
machine instantiation [5, 30], these resources may not
exist in advance. Thus, resource discovery in this case
involves finding the appropriate physical machines to
host the virtual machine configurations.

Resource discovery systems often interact directly
with resource acquisition systems. Resource acquisition
involves obtaining a lease or permission to use the de-
sired resources. Depending on the execution environ-
ment, acquisition can take a number of forms. For ex-
ample, to support advanced resource reservations as in
a batch pool, resource acquisition is responsible for
submitting a resource request and subsequently obtain-
ing a lease from the scheduler. In virtual machine envi-
ronments, resource acquisition may involve instantiat-
ing virtual machines, verifying their successful creation,
and gathering the appropriate information (e.g., IP

address, authentication keys) required for access. The
challenge facing an application management framework
is to provide a generic resource-management interface.
Ultimately, the complexities associated with creating and
gaining access to physical or virtual resources should be
hidden from the application developer.

Deployment. Upon obtaining an appropriate set
of resources, the application-deployment abstraction
defines the steps required to prepare the resources
with the correct software and data files, and run any
necessary executables to start the application. This in-
volves copying, unpacking, and installing the software
on the target hosts. The application controller must
support a variety of different file-transfer mechanisms
for each environment, and should react to failures that
occur during the transfer of software or in starting exe-
cutables.

One important aspect of application deployment
is configuring the requested number of resources with
compatible versions of the software. Ensuring that a
minimum number of resources are available and cor-
rectly configured for a computation may involve re-
questing new resources from the resource discovery
and acquisition systems to compensate for failures that
occur at startup. Further, many applications require
some form of synchronization across hosts to guaran-
tee that various phases of computation start at approxi-
mately the same time. Thus, the application controller
must provide mechanisms for loose synchronization.

Maintenance. Perhaps the most difficult require-
ment for managing distributed applications is monitor-
ing and maintaining an application after execution be-
gins. Thus, another abstraction that the application
controller must define is support for customizable ap-
plication maintenance. One key aspect of maintenance
is application and resource monitoring, which involves
probing hosts for failure due to network outages or
hardware malfunctions, and querying applications for
indications of failure (often requiring hooks into appli-
cation-specific code for observing the progress of an
execution). Such monitoring allows for more specific
error reporting and simplifies the debugging process.

In some cases, system failures may result in a sit-
uation where application requirements can no longer
be met. For example, if an application is initially con-
figured to be deployed on 50 resources, but only 48
can be contacted at a certain point in time, the applica-
tion controller should adapt the application, if possi-
ble, and continue executing with only 48 machines.
Similarly, different applications have different policies
and requirements with respect to failure recovery.
Some applications may be able to simply restart a
failed process on a single host, while others may re-
quire the entire execution to abort in the case of fail-
ure. Thus, in addition to the other features previously
described, the application controller should support a
variety of options for failure recovery.

21st Large Installation System Administration Conference (LISA ’07) 187

Remote Control: Distributed Application . . . With Plush Albrecht, et al.

Plush: Design and Implementation

We now describe Plush, an extensible distributed
application controller, designed to address the require-
ments of large-scale distributed application manage-
ment discussed in the second section.

I/O and Timers

Communication Fabric

Host Monitor
Barriers File

Manager Processes

Barrier Block

Process

Monitor

Resource

Discovery and

Acquisition Process Block

Workflow Block

Component Block

Application Block

Software

Resource

Manager

User Interface

Barrier Block

Figure 1a: The architecture of Plush. The user interface is shown above the rest of the architecture and contains
methods for interacting with all boxes in the lower sub-systems of Plush. Boxes below the user interface and
above the dotted line indicate objects defined within the application specification abstraction. Boxes below the
line represent the core functional units of Plush.

Application BlockApplication Block /app/app

Component Block 1 /app/comp1

Senders

Process Block 1 /app/comp1/proc1

prepare_files.pl

Process Block 2 /app/comp1/proc2

join_overlay.pl

Process Block 3 /app/comp1/proc3

send_files.pl

Barrier Block 1 /app/comp1/barr1

bootstrap_barrier

Component Block 2 /app/comp2

Receivers

Process Block 1 /app/comp2/proc1

join_overlay.pl

Process Block 2 /app/comp2/proc2

receive_files.pl

Barrier Block 1 /app/comp2/barr1

bootstrap_barrier

Figure 1b: Example file-distribution application comprised of application, component, process, and barrier blocks in
Plush. Arrows indicate control-flow dependencies (i.e., X → Y implies that X must complete before Y starts).

To directly monitor and control distributed appli-
cations, Plush itself must be distributed. Plush uses a
client-server architecture, with clients running on each
resource (e.g., machine) involved in the application.
The Plush server, called the controller, interprets input
from the user (i.e., the person running the application)
and sends messages on behalf of the user over an over-
lay network (typically a tree) to Plush clients. The

controller, typically run from the user’s workstation,
directs the flow of control throughout the life of the
distributed application. The clients run alongside each
application component across the network and per-
form actions based upon instructions received from
the controller.

Figure 1a shows an overview of the Plush con-
troller architecture. (The client architecture is symmet-
ric to the controller with only minor differences in
functionality.) The architecture consists of three main
sub-systems: the application specification, core func-
tional units, and user interface. Plush parses the appli-
cation specification provided by the user and stores

188 21st Large Installation System Administration Conference (LISA ’07)

Albrecht, et al. Remote Control: Distributed Application . . . With Plush

internal data structures and objects specific to the ap-
plication being run. The core functional units then ma-
nipulate and act on the objects defined by the applica-
tion specification to run the application. The function-
al units also store authentication information, monitor
physical machines, handle event and timer actions,
and maintain the communication infrastructure that
enables the controller to query the status of the distrib-
uted application on the clients. The user interface pro-
vides the functionality needed to interact with the oth-
er parts of the architecture, allowing the user to main-
tain and manipulate the application during execution.
In this section, we describe the design and implemen-
tation details of each of the Plush sub-systems.1

Application Specification

Developing a complete, yet accessible, applica-
tion specification language was one of the principal
challenges in this work. Our approach, which has
evolved over the past three years, consists of combina-
tions of five different abstractions:

1. Process blocks – Describe the processes exe-
cuted on each machine involved in an applica-
tion. The process abstraction includes runtime
parameters, path variables, runtime environ-
ment details, file and process I/O information,
and the specific commands needed to start a
process on a remote machine.

2. Barrier blocks – Describe the barriers that are
used to synchronize the various phases of exe-
cution within a distributed application.

3. Workflow blocks – Describe the flow of data
in a distributed computation, including how the
data should be processed. Workflow block
may contain process and barrier blocks. For ex-
ample, a workflow block might describe a set
of input files over which a process or barrier
block will iterate during execution.

4. Component blocks – Describe the groups of re-
sources required to run the application. This in-
cludes expectations specific to a set of metrics
for the target resources. In the case of compute
nodes in a cluster, for example, these metrics
might include maximum load requirements and
minimum free memory requirements. Compo-
nents also define required software configura-
tions, installation instructions, and any authenti-
cation information needed to access the re-
sources. Component blocks may contain work-
flow blocks, process blocks, and barrier blocks.

5. Application blocks – Describe high-level in-
formation about a distributed application. This
includes one or many component blocks, as
well as attributes to help automate failure re-
covery.

To better illustrate the use of these blocks in
Plush, consider building the specification for a simple

1Note that the components within the sub-systems are high-
lighted using boldface throughout the text in the remainder
of this section.

file-distribution application as shown in Figure 1b.
This application consists of two groups of machines.
One group, the senders, stores the files, and the second
group, the receivers, attempt to retrieve the files from
the senders. The goal of the application is to experi-
ment with the use of an overlay network to send files
from the senders to the receivers using some new file-
distribution protocol. In this example, there are two
phases of execution. In the first phase, all senders and
receivers join the overlay before any transfers begin,
and the senders must prepare the files for transfer be-
fore the receivers start receiving files. In the second
phase, the receivers begin receiving the files. No new
senders or receivers are allowed to join the network
during the second phase.

The first step in building the corresponding Plush
application specification for our new file-distribution
protocol is to define an application block. The applica-
tion block defines general characteristics about the ap-
plication including liveness properties and failure de-
tection and recovery options, which determine default
failure recovery behavior. For this example, we choose
the behavior ‘‘restart-on-failure,’’ which attempts to
restart the failed application instance on a single host,
since it is not necessary to abort the entire application
across all hosts if only a single failure occurs.

The application block also contains one or many
component blocks that describe the groups of re-
sources (i.e., machines) required to run the applica-
tion. Our application consists of a set of senders and a
set of receivers, and two separate component blocks
describe the two groups of machines. The sender com-
ponent block defines the location and installation in-
structions for the sender software, and includes au-
thentication information to access the resources. Simi-
larly, the receiver component block defines the receiv-
er software package. In our example, it may be desir-
able to require that all machines in the sender group
have a processor speed of at least 1 GHz, and each
sender should have sufficient bandwidth for sending
files to multiple receivers at once. These types of ma-
chine-specific requirements are included in the com-
ponent blocks. Within each component block, a com-
bination of workflow, process, and barrier blocks de-
scribe the distributed computation.2

Plush process blocks describe the specific com-
mands required to execute the application. Most process
blocks depend on the successful installation of software
packages defined in the component blocks. Users speci-
fy the commands required to start a given process, and
actions to take upon process exit. The exit policies cre-
ate a Plush process monitor that oversees the execution
of a specific process. Our example has several process
blocks. In the sender component, process blocks define
processes for preparing the files, joining the overlay, and

2Although our example does not use workflow blocks, they
are used in applications where data files must be distributed
and iteratively processed.

21st Large Installation System Administration Conference (LISA ’07) 189

Remote Control: Distributed Application . . . With Plush Albrecht, et al.

sending the files. Similarly, the receiver component con-
tains process blocks for joining the overlay and receiv-
ing the files.

Some applications operate in phases, producing
output files in early stages that are used as input files
in later stages. To ensure all hosts start each phase of
computation only after the previous phase completes,
barrier blocks define loose synchronization semantics
between process and workflow blocks. In our exam-
ple, a barrier ensures that all receivers and senders join
the overlay in phase one before beginning the file
transfer in phase two. Note that although each barrier
block is uniquely defined within a component block, it
is possible for the same barrier to be referenced in
multiple component blocks. We use barrier blocks in
our example within each component block that refer to
the same barrier, which means that the application will
wait for all receivers and senders to reach the barrier
before allowing either component to start sending or
receiving files.

In Figure 1b, the outer application block contains
our two component blocks that run in parallel (since
there are no arrows indicating control-flow dependen-
cies between them). Within the component blocks, the
different phases are separated by the bootstrap barrier
that is defined by barrier block 1. Component block 1,
which describes the senders, contains process blocks 1
and 2 that define perl scripts that run in parallel during
phase one, synchronize on the barrier in barrier block
1, and then proceed to process block 3 in phase two
which sends the files. Component block 2, which de-
scribes the receivers, runs process block 1 in phase
one, synchronizes on the barrier in barrier block 1, and
then proceeds to process block 2 in phase two which
runs the process that receives the files. In our imple-
mentation, the blocks are represented by XML that is
parsed by the Plush controller when the application is
run. We show an example of the XML later.

We designed the Plush application specification
to support a variety of execution patterns. With the
blocks described above, Plush supports the arbitrary
combination of processes, barriers, and workflows,
provided that the flow of control between them forms
a directed acyclic graph. Using predecessor tags in
Plush, users specify the flow of control and define
whether processes run in parallel or sequentially. Ar-
rows between blocks in Figure 1b, for example, indi-
cate the predecessor dependencies. (Process blocks 1
and 2 in component block 1 will run in parallel before
blocking at the bootstrap barrier, and then the execu-
tion will continue on to process block 3 after the boot-
strap barrier releases.) Internally, Plush stores the
blocks in a hierarchical data structure, and references
specific blocks in a manner similar to referencing ab-
solute paths in a UNIX file system. Figure 1b shows
the unique path names for each block from our file-
distribution example. This naming abstraction also
simplifies coordination among remote hosts. Each

Plush client maintains an identical local copy of the
application specification. Thus, for communication re-
garding control flow changes, the controller sends the
clients messages indicating which ‘‘block’’ is current-
ly being executed, and the clients update their local
state information accordingly.

Core Functional Units

After parsing the block abstractions defined by
the user within the application specification, Plush in-
stantiates a set of core functional units to perform the
operations required to configure and deploy the dis-
tributed application. Figure 1a shows these units as
shaded boxes below the dotted line. The functional
units manipulate the objects defined in the application
specification to manage distributed applications. In
this section, we describe the role of each of these
units.

Starting at the highest level, the Plush resource
discovery and acquisition unit uses the resource re-
quirements in the component blocks to locate and cre-
ate (if necessary) resources on behalf of the user. The
resource discovery and acquisition unit is responsible
for obtaining a valid set, called a matching, of re-
sources that meet the application’s demands. To deter-
mine this matching, Plush may either call an existing
external service to construct a resource pool, such as
SWORD or CoMon for PlanetLab, or use a statically
defined resource pool based on information provided
by the user. The Plush resource matcher then uses the
resources in the resource pool to create a matching for
the application. All hosts involved in an application
run a Plush host monitor that periodically publishes
information about the host. The resource discovery
and acquisition unit may use this information to help
find the best matching. Upon acquiring a resource, a
Plush resource manager stores the lease, token, or
any necessary user credential needed for accessing
that resource to allow Plush to perform actions on be-
half of the user in the future.

The remaining functional units in Figure 1a are
responsible for application deployment and mainte-
nance. These units connect to resources, install re-
quired software, start the execution, and monitor the
execution for failures. One important functional unit
used for these operations is the Plush barrier manag-
er, which provides advanced synchronization services
for Plush and the application itself. In our experience,
traditional barriers [17] are not well suited for volatile,
wide-area network conditions; the semantics are sim-
ply too strict. Instead, Plush uses partial barriers,
which are designed to perform better in volatile envi-
ronments [1]. Partial barriers ensure that the execution
makes forward progress in the face of failures, and im-
prove performance in failure-prone environments us-
ing relaxed synchronization semantics.

The Plush file manager handles all files required
by a distributed application. This unit contains informa-
tion regarding software packages, file transfer methods,

190 21st Large Installation System Administration Conference (LISA ’07)

Albrecht, et al. Remote Control: Distributed Application . . . With Plush

installation instructions, and workflow data files. The
file manager is responsible for preparing the physical re-
sources for execution using the information provided by
the application specification. It monitors the status of
file transfers and installations, and if it detects an error
or failure, the controller is notified and the resource dis-
covery and acquisition unit may be required to find a
new host to replace the failed one.

Once the resources are prepared with the neces-
sary software, the application deployment phase com-
pletes by starting the execution. This is accomplished
by starting a number of processes on remote hosts.
Plush processes are defined within process blocks in
the application specification. A Plush process is an ab-
straction for standard UNIX processes that run on
multiple hosts. Processes require information about
the runtime environment needed for an execution in-
cluding the working directory, path, environment vari-
ables, file I/O, and the command line arguments.

The two lowest layers of the Plush architecture
consist of a communication fabric and the I/O and
timer subsystems. The communication fabric handles
passing and receiving messages among Plush overlay
participants. Participants communicate over TCP con-
nections. The default topology for a Plush overlay is a
star, although we also provide support for tree topolo-
gies for increased scalability (discussed later in detail).
In the case of a star topology, all clients connect direct-
ly to the controller, which allows for quick failure de-
tection and recovery. The controller sends messages to
the clients instructing them to perform certain actions.
When the clients complete their tasks, they report back
to the controller for further direction. The communica-
tion fabric at the controller knows what hosts are in-
volved in a particular application instance, so that the
appropriate messages reach all necessary hosts.

At the bottom of all of the other units is the Plush
I/O and timer abstraction. As messages are received in
the communication fabric, message handlers fire events.
These events are sent to the I/O and timer layer and en-
ter a queue. The event loop pulls events off the queue,
and calls the appropriate event handler. Timers are a
special type of event in Plush that fire at a predefined in-
stant.

Fault Tolerance and Scalability

Two of the biggest challenges that we encoun-
tered during the design of Plush was being robust to
failures and scaling to hundreds of machines spread
across the wide-area. In this section we explore fault
tolerance and scalability in Plush.

Fault Tolerance

Plush must be robust to the variety of failures
that occur during application execution. When design-
ing Plush, we aimed to provide the functionality need-
ed to detect and recover from most failures without
ever needing to involve the user running the applica-
tion. Rather than enumerate all possible failures that

may occur, we will discuss how Plush handles three
common failure classes – process, host, and controller
failures.

Process failures. When a remote host starts a
process defined in a process block, Plush attaches a
process monitor to the process. The role of the process
monitor is to catch any signals raised by the process,
and to react appropriately. When a process exits either
due to successful completion or error, the process
monitor sends a message to the controller indicating
that the process has exited, and includes its exit status.
Plush defines a default set of behaviors that occur in
response to a variety of exit codes (although these can
be overridden within an application specification). The
default behaviors include ignoring the failure, restart-
ing only the failed process, restarting the application,
or aborting the entire application.

In addition to process failures, Plush also allows
users to monitor the status of a process that is still run-
ning through a specific type of process monitor called
a liveness monitor, whose goal is to detect misbehav-
ing and unresponsive processes that get stuck in loops
and never exit. This is especially useful in the case of
long-running services that are not closely monitored
by the user. To use the liveness monitor, the user spec-
ifies a script and a time interval in the process block of
the application specification. The liveness monitor
wakes up once per time interval and runs the script to
test for the liveness of the application, returning either
success or failure. If the test fails, the Plush client kills
the process, causing the process monitor to be alerted
and inform the controller.

Remote host failures. Detecting and reacting to
process failures is straightforward since the controller
is able to communicate information to the client re-
garding the appropriate recovery action. When a host
fails, however, recovering is more difficult. A host
may fail for a number of reasons, including network
outages, hardware problems, and power loss. Under
all of these conditions, the goal of Plush is to quickly
detect the problem and reconfigure the application
with a new set of resources to continue execution. The
Plush controller maintains a list of the last time suc-
cessful communication occurred with each connected
client. If the controller does not hear from a client
within a specified time interval, the controller sends a
ping to the client. If the controller does not receive a
response from the client, we assume host failure. Reli-
able failure detection is an active area of research;
while the simple technique we employ has been suffi-
cient thus far, we intend to leverage advances in this
space where appropriate.

There are three possible actions in response to a
host failure: restart, rematch, and abort. By default, the
controller tries all three actions in order. The first and
easiest way to recover from a host failure is to simply
reconnect and restart the application on the failed host.

21st Large Installation System Administration Conference (LISA ’07) 191

Remote Control: Distributed Application . . . With Plush Albrecht, et al.

This technique works if the host experiences a tempo-
rary power or network outage, and is only unreachable
for a short period of time. If the controller is unable to
reconnect to the host, the next option is to rematch in an
attempt to replace the failed host with a different host.
In this case, Plush reruns the resource matcher to find a
new machine. Depending on the application, the entire
execution may need to be restarted across all hosts after
the new host joins the control overlay, or the execution
may only need to be started on the new host. If the con-
troller is unable to find a new host to replace the failed
host, Plush aborts the entire application.

In some applications, it is desirable to mark a
host as failed when it becomes overloaded or experi-
ences poor network connectivity. The Plush host mon-
itor that runs on each machine is responsible for peri-
odically informing the controller about each machine’s
status. If the controller determines that the perfor-
mance is less than the application tolerates, it marks
the host as failed and attempts to rematch. This func-
tionality is a preference specified at startup. Although
Plush currently monitors host-level metrics including
load and free memory, the technique is easily extended
to encompass sophisticated application-level expecta-
tions of host viability.

Controller failures. Because the controller is re-
sponsible for managing the flow of control across all
connected clients, recovering from a failure at the con-
troller is difficult. One solution is to use a simple pri-
mary-backup scheme, where multiple controllers in-
crease reliability. All messages sent from the clients
and primary controller are sent to the backup con-
trollers as well. If a pre-determined amount of time
passes and the backup controllers do not receive any
messages from the primary, the primary is assumed to
have failed. The first backup becomes the primary,
and execution continues.

This strategy has several drawbacks. First, it
causes extra messages to be sent over the network,
which limits the scalability of Plush. Second, this ap-
proach does not perform well when a network parti-
tion occurs. During a network partition, multiple con-
trollers may become the primary controller for subsets
of the clients initially involved in the application.
Once the network partition is resolved, it is difficult to
reestablish consistency among all hosts. While we
have implemented this architecture, we are currently
exploring other possibilities.

Scalability

In addition to fault tolerance, an application con-
troller designed for large-scale environments must
scale to hundreds or even thousands of participants.
Unfortunately there is a tradeoff between performance
and scalability. The solutions that perform the best at
moderate scale typically do not scale as well as solu-
tions with lower performance. To balance scalability
and performance, Plush provides users with two topo-
logical alternatives.

By default, all Plush clients connect directly to
the controller forming a star topology. This architec-
ture scales to approximately 300 remote hosts, limited
by the number of file descriptors allowed per process
on the controller machine in addition to the band-
width, CPU, and latency required to communicate
with all connected clients. The star topology is easy to
maintain, since all clients connect directly to the con-
troller. In the event of a host failure, only the failed
host is affected. Further, the time required for the con-
troller to exchange messages with clients is short due
to the direct connections.

At larger scales, network and file descriptor limi-
tations at the controller become a bottleneck. To ad-
dress this, Plush also supports tree topologies. In an
effort to reduce the number of hops between the
clients and the controller, we construct ‘‘bushy’’ trees,
where the depth of the tree is small and each node in
the tree has many children. The controller is the root
of the tree. The children of the root are chosen to be
well-connected and historically reliable hosts whenev-
er possible. Each child of the root acts as a ‘‘proxy
controller ’’ for the hosts connected to it. These proxy
controllers send invitations and receive joins from oth-
er hosts, reducing the total number of messages sent
back to the root controller. Important messages, such
as failure notifications, are still sent back to the root
controller. Using the tree topology, we have been able
to use Plush to manage an application running on 1000
ModelNet [29] emulated hosts, as well as an applica-
tion running on 500 PlanetLab clients. We believe that
Plush has the ability to scale by another order of mag-
nitude with the current design.

While the tree topology has many benefits over
the star topology, it also introduces several new prob-
lems with respect to host failures and tree mainte-
nance. In the star topology, a host failure is simple to
recover from since it only involves one host. In the
tree topology, however, if a non-leaf host fails, all
children of the failed host must find a new parent. De-
pending on the number of hosts affected, a reconfigu-
ration involving several hosts often has a significant
impact on performance. Our current implementation
tries to minimize the probability of this type of failure
by making intelligent decisions during tree construc-
tion. For example, in the case of ModelNet, many vir-
tual hosts (and Plush clients) reside on the same physi-
cal machine. When constructing the tree in Plush, only
one client per physical machine connects directly to
the controller and becomes the proxy controller. The
remaining clients running on the same physical ma-
chine become children of the proxy controller. In the
wide area, similar decisions are made by placing hosts
that are geographically close together under the same
parent. This decreases the number of hops and latency
between leaf nodes and their parent, minimizing the
chance of network failures.

192 21st Large Installation System Administration Conference (LISA ’07)

Albrecht, et al. Remote Control: Distributed Application . . . With Plush

Running An Application Using Plush

In this section, we will discuss how the architec-
tural components of Plush interact to run a distributed
application. When starting Plush, the user’s worksta-
tion becomes the controller. The user submits an appli-
cation specification to the Plush controller. The con-
troller parses the specification, and internally creates
the objects shown above the dotted line in Figure 1a.

Figure 2a: Nebula World View tab showing an application running on PlanetLab. Different colored dots indicate
PlanetLab sites in various stages of execution.

Figure 2b: Nebula Application View tab displaying Plush application specification.

After parsing the application specification, the
controller runs the resource discovery and acquisition
unit to find a suitable set of resources that meet the re-
quirements specified in the component blocks. Upon
locating the necessary resources, the resource manager
stores the required access and authentication informa-
tion. The controller then attempts to connect to each

remote host. If the Plush client is not already running,
the controller initiates a bootstrapping procedure to
copy the Plush client binary to the remote host, and
then uses SSH to connect to the remote host and start
the client process. Once the client process is running,
the controller establishes a TCP connection to the re-
mote host, and transmits an INVITE message to the host
to join the Plush overlay (which is either a star or tree
as discussed previously).

If a Plush client agrees to run the application, the
client sends a JOIN message back to the controller ac-
cepting the invitation. Next, the controller sends a
PREPARE message to the new client, which contains a
copy of the application specification (XML represen-
tation). The client parses the application specification,

21st Large Installation System Administration Conference (LISA ’07) 193

Remote Control: Distributed Application . . . With Plush Albrecht, et al.

starts a local host monitor, sends a PREPARED mes-
sage back to the controller, and waits for further in-
struction. Once enough hosts join the overlay and
agree to run the application, the controller initiates the
beginning of the application deployment stage by
sending a GO message to all connected clients. The
file managers then begin installing the requested soft-
ware and preparing the hosts for execution.

In most applications, the controller instructs the
hosts to begin execution after all hosts have completed
the software installation. (Synchronizing the begin-
ning of the execution is not required if the application
does not need all hosts to start simultaneously.) Since
each client has now created an exact copy of the con-
troller ’s application specification, the controller and
clients exchange messages about the application’s
progress using the block naming abstraction (i.e.,
/app/comp1/proc1) to identify the status of the execu-
tion. For barriers, a barrier manager running on the
controller determines when it is appropriate for hosts
to be released from the barriers.

Upon detecting a failure, clients notify the con-
troller, and the controller attempts to recover from it
according to the actions enumerated in the user’s ap-
plication specification. Since many failures are appli-
cation-specific, Plush exports optional callbacks to the
application itself to determine the appropriate reaction
for some failure conditions. When the application
completes (or upon a user command), Plush stops all
associated processes, transfers output data back to the
controller ’s local disk if desired, performs user-speci-
fied cleanup actions on the resources, disconnects the
resources from the overlay by closing the TCP con-
nections, and stops the Plush client processes.

User Interface

Plush aims to support a variety of applications
being run by users with a wide range of expertise in
building and managing distributed applications. Thus,
Plush provides three interfaces which each provide
users with techniques for interacting with their appli-
cations. We describe the functionality of each user in-
terface in this section.

Figure 1a shows the user interface above all oth-
er parts of Plush. In reality, the user interacts with ev-
ery box shown in the figure through the user interface.
For example, the user forces the resource discovery
and acquisition unit to find a new set of resources us-
ing a terminal command. We designed Plush in this
way to provide maximum control over the application.
At any point, the user can override a default Plush be-
havior. The effect is a customizable application con-
troller that supports a variety of distributed applica-
tions.

Graphical User Interface

In an effort to simplify the creation of application
specifications and help visualize the status of execu-
tions running on resources around the world, we

implemented a graphical user interface for Plush called
Nebula. In particular, we designed Nebula (as shown
in Figures 2a, 2b, and 3) to simplify the process of
specifying and managing applications running across
the PlanetLab wide-area testbed. Plush obtains data
from the PlanetLab Central (PLC) database to deter-
mine what hosts a user has access to, and Nebula uses
this information to plot the sites on the map. To start
using Nebula, users have the option of building their
Plush application specification from scratch or loading
a preexisting XML document representing an applica-
tion specification. Upon loading the application speci-
fication, the user runs the application by clicking the
Run button from the Plush toolbar, which causes Plush
to start locating and acquiring resources.

The main Nebula window contains four tabs that
show different information about user’s application. In
the ‘‘World View’’ tab, users see an image of a world
map with colored dots indicating PlanetLab hosts. Dif-
ferent colored dots on the map indicate sites involved
in the current application. In Figure 2a, the dots
(which range from red to green on a user’s screen)
show PlanetLab sites involved in the current applica-
tion. The grey dots are other available PlanetLab sites
that are not currently being used by Plush. As the ap-
plication proceeds through the different phases of exe-
cution, the sites change color, allowing the user to vi-
sualize the progress of their application. When failures
occur, the impacted sites turn red, giving the user an
immediate visual indication of the problem. Similarly,
green dots indicate that the application is executing
correctly. If a user wishes to establish an SSH connec-
tion directly to a particular resource, they can simply
right-click on a host in the map and choose the SSH
option from the pop-up menu. This opens a new tab in
Nebula containing an SSH terminal to the host. Users
can also mark hosts as failed by right-clicking and
choosing the Fail option from the pop-up menu if they
are able to determine failure more quickly than Plush’s
automated techniques. Failed hosts are completely re-
moved from the execution.

Users retrieve more detailed usage statistics and
monitoring information about specific hosts (such as
CPU load, free memory, or bandwidth usage) by dou-
ble clicking on the individual sites in the map. This
opens a second window that displays real-time graphs
based on data retrieved from resource monitoring
tools, as shown in the bottom right corner of Figure
2a. The second smaller window displays a graph of
the CPU or memory usage, and the status of the appli-
cation on each host. Plush currently provides built-in
support for monitoring CoMon [25] data on PlanetLab
machines, which is the source of the CPU and memo-
ry data. Additionally, if the user wishes to view the
CPU usage or percentage of free memory available
across all hosts, there is a menu item under the Planet-
Lab menu that changes the colors of the dots on the
map such that red means high CPU usage or low free

194 21st Large Installation System Administration Conference (LISA ’07)

Albrecht, et al. Remote Control: Distributed Application . . . With Plush

memory, and green indicates low CPU usage and high
free memory. Users can also add and remove hosts to
their PlanetLab account (or slice in PlanetLab termi-
nology) directly by highlighting regions of the map
and choosing the appropriate menu option from the
PlanetLab menu. Additionally, users can renew their
PlanetLab slice from Nebula.

Figure 3: Nebula Host View tab showing PlanetLab resources. This tab allows users to select multiple hosts at once
and run shell commands on the selected resources. The text-box at the bottom shows the output from the com-
mand.

The second tab in the Nebula main window is the
‘‘ A p p l i c a t i o n Vi e w.’’ The Application View tab, shown
in Figure 2b, allows users to build Plush application
specifications using the blocks described previously. Al-
ternatively, users may load an existing XML file describ-
ing an application specification by choosing the Load Ap-
plication menu option under the File menu. There is also
an option to save a new application specification to an
XML file for later use. After creating or loading an ap-
plication specification, the Run button located on the Ap-
plication View tab starts the application.

The Plush blocks in the application specification
change to green during the execution of the applica-
tion to indicate progress. After an application begins
execution, users have the option to ‘‘force’’ an appli-
cation to skip ahead to the next phase of execution
(which corresponds to releasing a synchronization
barrier), or aborting an application to terminate execu-
tion across all resources. Once the application aborts
or completes execution, the user may either save their
application specification, disconnect from the Plush
communication mesh, restart the same application, or
load and run a new application by choosing the appro-
priate option from the File menu.

The third tab is the ‘‘Resource View’’ tab. This
tab is blank until an application starts running. During
execution, this tab lists the specific machines that are
currently involved in the application. If failures occur

during execution, the list of machines is updated dy-
namically, such that the Resource View tab always
contains an accurate listing of the machines that are in
use. The resources are separated into components, so
that the user knows which resources are assigned to
which tasks in their application.

The fourth tab in Nebula is called the ‘‘Host
View’’ tab, shown in Figure 3. This tab contains a ta-
ble that displays the hostname of all available re-
sources. In the right column, the status of the host is
shown. The purpose of this tab is to give users another
alternative to visualize the status of an executing ap-
plication. The status of the host in the right column
corresponds to the color of the dot in the ‘‘World
View’’ tab. This tab also allows users to run shell
commands simultaneously on several resources, and
view the output. As shown in Figure 3, users can se-
lect multiple hosts as once, run a command, and the
output is shown in the text-box at the bottom of the
window. Note that hosts do not have to be involved in
an application in order to take advantage of this fea-
ture. Plush will connect to any available resources and
run commands on behalf of the user. Just as in the
World View tab, right-clicking on hosts in the Host
View tab opens a pop-up menu that enables users to
SSH directly to the hosts.

Command-line Interface

Motivated by the popularity and familiarity of
the shell interface in UNIX, Plush further streamlines
the develop-deploy-debug cycle for distributed appli-
cation management through a simple command-line
interface where users deploy, run, monitor, and debug
their distributed applications running on hundreds of
remote machines. Plush combines the functionality of
a distributed shell with the power of an application

21st Large Installation System Administration Conference (LISA ’07) 195

Remote Control: Distributed Application . . . With Plush Albrecht, et al.

controller to provide a robust execution environment
for users to run their applications. From a user’s stand-
point, the Plush terminal looks like a shell. Plush sup-
ports several commands for monitoring the state of an
execution, as well as commands for manipulating the
application specification during execution. Table 1
shows some of the available commands.

Command Description

load <file> Load application specification
connect <host> Connect to host and start client
disconnect Close all connections and clients
info nodes Print all resource information
info mesh Print communication fabric status

info

info control Print application control state info
run Start the application (after load)
shell <cmd> Run ‘‘cmd’’ on all connected re-

sources

Table 1: Sample Plush terminal commands.

Programmatic Interface

Many commands that are available via the Plush
command-line interface are also exported via an XML-
RPC interface to deliver similar functionality as the
command-line to those who desire programmatic ac-
cess. This allows Plush to be scripted and used for re-
mote execution and automated application manage-
ment, and also enables the use of external services for
resource discovery, creation, and acquisition within
Plush. In addition to the commands that Plush exports,
external services and programs may also register them-
selves with Plush so that the controller can send call-
backs to the XML-RPC client when various actions oc-
cur during the application’s execution.

Figure 4 shows the Plush XML-RPC API. The
functions shown in the PlushXmlRpcServer class are
available to users who wish to access Plush program-
matically in scripts, or for external resource discovery
and acquisition services that need to add and remove
resources from the Plush resource pool. The plush
AddNode(HashMap) and plushRemoveNode(string) calls
add and remove nodes from the resource pool, respec-
tively. setXmlRpcClientUrl(string) registers XML-RPC
clients for callbacks, while plushTestConnection() sim-
ply tests the connection to the Plush server and returns
‘‘Hello World.’’ The remaining function calls in the
class mimic the behavior of the corresponding com-
mand-line operations.

Aside from resource discovery and acquisition
services, the XML-RPC API allows for the implemen-
tation of different user interfaces for Plush. Since al-
most all of the Plush terminal commands are available
as XML-RPC function calls, users are free to imple-
ment their own customized environment specific user
interface without understanding or modifying the in-
ternals of the Plush implementation. This is beneficial

because it gives the users more flexibility to develop
in the programming language of their choice. Most
mainstream programming languages have support for
XML-RPC, and hence users are able to develop inter-
faces for Plush in any language, provided that the cho-
sen language is capable of handling XML-RPC. For
example, Nebula is implemented in Java, and uses the
XML-RPC interface shown in Figure 4 to interact
with a Plush controller. To increase the functionality
and simplify the development of these interfaces, the
Plush XML-RPC server has the ability to make call-
backs to programs that register with the Plush con-
troller via setXmlRpcClientUrl(string). Some of the more
common callback functions are shown in the bottom
of Figure 4 in class PlushXmlRpcCallback. Note that
these callbacks are only useful if the programmatic
client implements the corresponding functions.

class PlushXmlRpcServer extends XmlRpcServer {
void plushAddNode(HashMap properties);
void plushRemoveNode(string hostname);
string plushTestConnection();
void plushCreateResources();
void plushLoadApp(string filename);
void plushRunApp();
void plushDisconnectApp(string hostname);
void plushQuit();
void plushFailHost(string hostname);
void setXmlRpcClientUrl(string clientUrl);

}

class PlushXmlRpcCallback extends XmlRpcClient {
void sendPlanetLabSlices();
void sendSliceNodes(string slice);
void sendAllPlanetLabNodes();
void sendApplicationExit();
void sendHostStatus(string host);
void sendBlockStatus(string block);
void sendResourceMatching(HashMap matching);

}
Figure 4: Plush XML-RPC API.

Implementation Details

Plush is a publicly available software package
consisting of over 60,000 lines of C++ code. Plush de-
pends on several C++ libraries, including those pro-
vided by xmlrpc-c, curl, xml2, zlib, math, openssl,
readline, curses, boost, and pthreads. The command-
line interface also depends on packages for lex and
yacc (we use flex and bison).

In addition to the main C++ codebase, Plush uses
several simple perl scripts for interacting with the Plan-
etLab Central database and bootstrapping resources.
Plush runs on most UNIX-based platforms, including
Linux, FreeBSD, and Mac OS X, and a single Plush
controller can manage clients running on different oper-
ating systems. The only prerequisite for using Plush on
a resource is the ability to SSH to the resource. Current-
ly Plush is being used to manage applications on

196 21st Large Installation System Administration Conference (LISA ’07)

Albrecht, et al. Remote Control: Distributed Application . . . With Plush

PlanetLab, ModelNet, and Xen virtual machines [5] in
our research cluster.

Nebula consists of approximately 25,000 lines of
Java code. Nebula communicates with Plush using the
XML-RPC interface. XML-RPC is implemented in
Nebula using the Apache XML-RPC client and server
packages. In addition, Nebula uses the JOGL imple-
mentation of the OpenGL graphics package for Java.
Nebula runs in any computing environment that sup-
ports Java, including Windows, Linux, FreeBSD, and
Mac OS X among others. Note that since Nebula and
Plush communicate solely via XML-RPC, it is not
necessary to run Nebula on the same physical machine
as the Plush controller.

<?xml_version="1.0"encoding="utf"−8?>
<plush>

<project_name="sword">
<software_name="sword_software" type="tar">

<package_name="sword.tar" type="web">
<path>http://plush.ucsd.edu/sword.tar</path>
<dest>sword.tar</dest>

</package>
</software>
<component_name="sword_participants">

<rspec>
<num_hosts_min="10" max="800"/>

</rspec>
<resources>

<resource_type="planetlab" group="ucsd_sword"/>
</resources>
<software_name="sword_software"/>

</component>
<application_block_name="sword_app_block" service="1"

reconnect_interval="300">
<execution>

<component_block_name="participants">
<component_name="sword_participants"/>
<process_block_name="sword">

<process_name="sword_run">
<path>dd/planetlab/run−sword</path>

</process>
</process_block>

</component_block>
</execution>

</application_block>
</project>

<plush>
Figure 5: SWORD application specification.

Usage Scenarios

One of the primary goals of our work is to build
a generic application management framework that
supports execution in any execution environment. This
is mainly accomplished through the Plush resource ab-
straction. In Plush, resources are computing devices
capable of hosting applications, such as physical ma-
chines, emulated hosts, or virtual machines. To show

that Plush achieves this goal, in this section we take a
closer look at specific uses of Plush in different dis-
tributed computing environments, including a live de-
ployment testbed, an emulated network, and a cluster
of virtual machines.

PlanetLab Live Deployment

To demonstrate Plush’s ability to manage the live
deployment of applications, we revisit our previous
example from the second section and show how Plush
manages SWORD [23] on PlanetLab. Recall that
SWORD is a resource discovery service that relies on
host monitors running on each PlanetLab machine to
report information periodically about their resource
usage. This data is stored in a DHT (distributed hash
table), and later accessed by SWORD clients to re-
spond to requests for groups of resources that have
specific characteristics. SWORD is a service that
helps PlanetLab users find the best set of resources
based on the priorities and requirements specified, and
is an example of a long-running Internet service.

The XML application specification for SWORD
is shown in Figure 5. Note that this specification could
be built using Nebula, in which case the user would

21st Large Installation System Administration Conference (LISA ’07) 197

Remote Control: Distributed Application . . . With Plush Albrecht, et al.

never have to edit the XML directly. The top half of
the specification in Figure 5 defines the SWORD soft-
ware package and the component (resource group) re-
quired for the application. Notice that SWORD uses
one component consisting of hosts assigned to the
ucsd_sword PlanetLab slice.

An interesting feature of this component defini-
tion is the ‘‘num_hosts’’ tag. Since SWORD is a ser-
vice that wants to run on as many nodes as possible, a
range of acceptable values is used rather than a single
number. In this case, as long as 10 hosts are available,
Plush will continue managing SWORD. Since the max
is set to 800, Plush will not look for more than 800 re-
sources to host SWORD. Since PlanetLab contains
less than 800 hosts, this means that SWORD will at-
tempt to run on all PlanetLab resources.

The lower half of the application specification
defines the application block, component block, and
process block that describes the SWORD execution.
The application block contains a few key features that
help Plush react to failures more efficiently for long-
running services. When defining the application block
object for SWORD, we include special ‘‘service’’ and
‘‘reconnect_interval’’ attributes. The service attribute
tells the Plush controller that SWORD is a long-run-
ning service and requires different default behaviors
for initialization and failure recovery. For example,
during application initialization the controller does not
wait for all participants to install the software before
starting all hosts simultaneously. Instead, the con-
troller instructs individual clients to start the applica-
tion as soon as they finish installing the software,
since there is no reason to synchronize the execution
across all hosts. Further, if a process fails when the
service attribute has been specified, the controller at-
tempts to restart SWORD on that host without abort-
ing the entire application.

The reconnect_interval specifies the period of
time the controller waits before rerunning the resource
discovery and acquisition unit. For long running ser-
vices, hosts often fail and recover during execution.
The reconnect_interval attribute tells the controller to
check for new hosts that have come alive since the last
run of the resource discovery unit. The controller also
unsets any hosts that had previously been marked as
‘‘failed’’ at this time. This is the controller’s way of
‘‘refreshing’’ the list of available hosts. The controller
continues to search for new hosts until reaching the
maximum num_hosts value, which is 800 in our case.

Evaluating Fault Tolerance

To demonstrate Plush’s ability to automatically re-
cover from host failures for long running services, we
ran SWORD on PlanetLab with 100 randomly chosen
hosts, as shown in Figure 6. The host set includes ma-
chines behind DSL links as well as hosts from other
continents. When Plush starts the application, the con-
troller starts the Plush client on 100 randomly chosen

PlanetLab machines, and they each begin downloading
the SWORD software package (38 MB).

It takes approximately 1000 seconds for all hosts
to successfully download, install, and start SWORD.
At time t = 1250s, we kill the SWORD process on 20
randomly chosen hosts to simulate host failure. Nor-
mally, Plush would automatically try to restart the
SWORD process on these hosts. However, we dis-
abled this feature to simulate host failures and force a
rematching. The remote Plush clients notify the con-
troller that the hosts have failed, and the controller be-
gins to find replacements for the failed machines. The
replacement hosts join the Plush overlay and start
downloading the SWORD software. As before, Plush
chooses the replacements randomly, and low band-
width/high latency links have a great impact on the
time it takes to fully recover from the host failure. At
t = 2200s, the service is restored on 100 machines.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

N
um

be
r

of
 h

os
ts

Elapsed time (seconds)

Running
Failed

Figure 6: SWORD running on 100 randomly chosen
PlanetLab hosts. At t=1250 seconds, we fail 20
hosts. The Plush controller finds new hosts, who
start the Plush client process and begin download-
ing and installing the SWORD software. Service
is fully restored at approximately t=2200 seconds.

Using Plush to manage long-running services like
SWORD alleviates the burden of manually probing for
failures and configuring/reconfiguring hosts. Further,
Plush interfaces directly with the PlanetLab Central
API, which means that users can automatically add
hosts to their slice and renew their slice using Plush.
This is beneficial since services typically want to run on
as many PlanetLab hosts as possible, including any new
hosts that come online. In addition, Plush simplifies the
task of debugging problems by providing a single point
of control for all connected PlanetLab hosts. Thus, if a
user wants to view the memory consumption of their
service across all connected hosts, a single Plush com-
mand retrieves this information, making it easier to
maintain and monitor a service running on hundreds of
resources scattered around the world.

ModelNet Emulation

Aside from PlanetLab resources, Plush also sup-
ports running applications on virtual hosts in emulated

198 21st Large Installation System Administration Conference (LISA ’07)

Albrecht, et al. Remote Control: Distributed Application . . . With Plush

environments. In this section we discuss how Plush
supports using ModelNet [29] emulated resources to
host applications. In addition, we will discuss how a
batch scheduler uses the Plush programmatic interface
to perform remote job execution.

Mission is a simple batch scheduler used to man-
age the execution of jobs that run on ModelNet in our
research cluster. ModelNet is a network emulation envi-
ronment that consists of one or more Linux edge nodes
and a set of FreeBSD core machines running a special-
ized ModelNet kernel. The code running on the edge
hosts routes packets through the core machines, where
the packets are subjected to the delay, bandwidth, and
loss specified in a target topology. A single physical ma-
chine hosts multiple ‘‘virtual’’ IP addresses that act as
emulated resources on the Linux edge hosts.

To setup the ModelNet computing environment
with the target topology, two phases of execution are re-
quired: deploy and run. Before running any applications,
the user must first deploy the desired topology on each
physical machine, including the FreeBSD core. The de-
ploy process essentially instantiates the emulated hosts,
and installs the desired topology on all machines. Then,
after setting a few environment variables, the user is free
to run applications on the emulated hosts using virtual
IP addresses just as applications are run on physical ma-
chines using real IP addresses.

A single ModelNet experiment typically con-
sumes almost all of the computing resources available
on the physical machines involved. Thus, when run-
ning an experiment, it is essential to restrict access to
the machines so that only one experiment is running at
a time. Further, there are a limited number of FreeBSD
core machines running the ModelNet kernel available,
and access to these hosts must also be arbitrated. Mis-
sion is a batch scheduler developed locally to help ac-
complish this goal by allowing the resources to be ef-
ficiently shared among multiple users. ModelNet users
submit their jobs to the Mission job queue, and as the
machines become available, Mission pulls jobs off the
queue and runs them on behalf of the user, ensuring
that no two jobs are run simultaneously.

A Mission job submission has two components:
a Plush application specification and resource directo-
ry file. For ModelNet, the directory file contains infor-
mation about both the physical and virtual (emulated)
resources on which the ModelNet experiment will run.
In the resource directory file, some entries include two
extra parameters, ‘‘vip’’ and ‘‘vn’’, which define the
virtual IP address and virtual number (similar to a
hostname) for the emulated resources. In addition to
the directory file that is used to populate the Plush re-
source pool, users also submit an application specifi-
cation describing the application they wish to run on
the emulated topology to the Mission server.

The application specification submitted to Mis-
sion contains two component blocks separated by a

synchronization barrier. The first component block de-
scribes the processes that run on the physical ma-
chines during the deployment phase (where the emu-
lated topology is instantiated). The second component
block defines the processes associated with the target
application. When the controller starts the Plush clients
on the emulated hosts, it specifies extra command line
arguments that are defined in the directory file by the
‘‘ v i p ’’ and ‘‘vn’’ attributes. This sets the appropriate
ModelNet environment variables, ensuring that all
commands run on that client on behalf of the user in-
herit those settings.

When a user submits a Plush application specifi-
cation and directory file to Mission, the Mission server
parses the directory file to identify which resources
are needed to host the application. When those re-
sources become available for use, Mission starts a
Plush controller on behalf of the user using the Plush
XML-RPC interface. Mission passes Plush the direc-
tory file and application specification, and continues
to interact throughout the execution of the application
via XML-RPC. After Plush notifies Mission that the
execution has ended, Mission kills the Plush process
and reports back to the user with the results. Any ter-
minal output that is generated is emailed to the user.

Plush jobs are currently being submitted to Mis-
sion on a daily basis at UCSD. These jobs include ex-
perimental content distribution protocols, distributed
model checking systems, and other distributed appli-
cations of varying complexity. Mission users benefit
from Plush’s automated execution capabilities. Users
simply submit their jobs to Mission and receive an
email when their task is complete. They do not have to
spend time configuring their environment or starting
the execution. Individual host errors that occur during
execution are aggregated into one message and re-
turned back to the user in the email. Logfiles are col-
lected in a public directory on a common file system
and labeled with a job ID, so that users are free to in-
spect the output from individual hosts if desired.

Virtual Machine Deployment

In all of the examples discussed above, the pool
of resources available to Plush is known at startup. In
the PlanetLab examples, Plush uses slice information
to determine the set of user-accessible hosts. For Mod-
elNet, the emulated topology includes specific infor-
mation about the virtual hosts to be created and this
information is passed to Plush in the directory file. We
next describe how Plush manages applications in envi-
ronments without fixed sets of machines, but rather
underlying capabilities to create and destroy resources
on demand.

Shirako [16] is a utility computing framework.
Through programmatic interfaces, Shirako allows users
to create dynamic on-demand clusters of resources, in-
cluding storage, network paths, physical servers, and vir-
tual machines. Shirako is based on a resource leasing

21st Large Installation System Administration Conference (LISA ’07) 199

Remote Control: Distributed Application . . . With Plush Albrecht, et al.

abstraction, enabling users to negotiate access to re-
sources. Usher [21] is a virtual machine scheduling sys-
tem for cluster environments. It allows users to create
their own virtual machines or clusters. When a user re-
quests a virtual machine, Usher uses data collected by
virtual machine monitors to make informed decisions
about when and where the virtual machine should run.

We have extended Plush to interface with both
Shirako and Usher. Through its XML-RPC interface,
Plush interacts with the Shirako and Usher servers. As
resources are created and destroyed, the resource pool
in Plush is updated to include the current set of leased
resources. Using this dynamic resource pool, Plush
manages applications running on potentially tempo-
rary virtual machines in the same way that applica-
tions are managed in static environments like Planet-
Lab. Thus, using the resource abstractions provided by
Plush, users are able to run their applications on Plan-
etLab, ModelNet, or on clusters of virtual machines
without ever having to worry about the underlying de-
tails of the environment.

<?xml_version="1.0" encoding="utf−8"?>
<plush>

<project_name="simple">
<component_name="Group1">

<rspec>
<num_hosts>10</num_hosts>
<shirako>

<num_hosts>10</num_hosts>
<type>1</type>
<memory>200</memory>
<bandwidth>200</bandwidth>
<cpu>50</cpu>
<lease_length>600</lease_length>
<server>http://shirako.cs.duke.edu:20000</server>

</shirako>
</rspec>
<resources>

<resource_type="ssh" group="shirako"/>
</resources>

</component>
</project>

</plush>
Figure 7: Plush component definition containing Shirako resources. The resource description contains a lease pa-

rameter which tells Shirako how long the user needs the resources.

To support dynamic resource creation and man-
agement, we augment the Plush application specifica-
tion with a description of the desired virtual machines
as shown in Figure 7. Specifically, the Plush applica-
tion specification needs to include information about
the desired attributes of the resources so that this in-
formation can be passed on to either Shirako or Usher.
Shirako and Usher currently create Xen [5] virtual ma-
chines (as indicated by the ‘‘type’’ flag in the resource
description) with the CPU speed, memory, disk space,
and maximum bandwidth specified in the resource re-
quest. As the Plush controller parses the application

specification, it stores the resource description. Then
when the create resource command is issued either via
the terminal interface or programmatically through
XML-RPC, Plush contacts the appropriate Shirako or
Usher server and submits the resource request. Once
the resources are ready for use, Plush is informed via
an XML-RPC callback that also contains contact in-
formation about the new resources. This callback up-
dates the Plush resource pool and the user is free to
start applications on the new resources by issuing the
run command to the Plush controller.

Though the integration of Plush and Usher is still
in its early stages, Plush is being used by Shirako
users regularly at Duke University. While Shirako
multiplexes resources on behalf of users, it does not
provide any abstractions or functionality for using the
resources once they have been created. On the other
hand, Plush provides abstractions for managing dis-
tributed applications on remote machines, but provides
no support for multiplexing resources. A ‘‘resource’’
is merely an abstraction in Plush to describe a machine
(physical or virtual) that can host a distributed applica-
tion. Resources can be added and removed from the
application’s resource pool, but Plush relies on exter-
nal mechanisms (like Shirako and Usher) for the cre-
ation and destruction of resources.

The integration of Shirako and Plush allows
users to seamlessly leverage the functionality of both
systems. While Shirako provides a web interface for
creating and destroying resources, it does not provide
an interface for using the new resources, so Shirako
users benefit from the interactivity provided by the
Plush shell. Researchers at Duke are currently using

200 21st Large Installation System Administration Conference (LISA ’07)

Albrecht, et al. Remote Control: Distributed Application . . . With Plush

Plush to orchestrate workflows of batch tasks and per-
form data staging for scientific applications including
BLAST [3] on virtual machine clusters managed by
Shirako [14].

Related Work

The functionality that Plush provides is related to
work in a variety of areas. With respect to remote job
execution, there are several tools available that pro-
vide a subset of the features that Plush supports, in-
cluding cfengine [9], gexec [10], and vxargs [20]. The
difference between Plush and these tools is that Plush
provides more than just remote job execution. Plush
also supports mechanisms for failure recovery, and au-
tomatic reconfiguration due to changing conditions. In
general, the pluggable aspect of Plush allows for the
use of existing tools for actions like resource discov-
ery and allocation, which provides more advanced
functionality than most remote job execution tools.

From the user’s point of view, the Plush com-
mand-line is similar to distributed shell systems such
as GridShell [31] and GCEShell [22]. These tools pro-
vide a user-friendly language abstraction layer that
support script processing. Both tools are designed to
work in Grid environments. Plush provides a similar
functionality as GridShell and GCEShell, but unlike
these tools, Plush works in a variety of environments.

In addition to remote job execution tools and dis-
tributed shells, projects like the PlanetLab Application
Manager (appmanager) [15] and SmartFrog [13] focus
specifically on managing distributed applications. app-
manager is a tool for maintaining long running ser-
vices and does not provide support for short-lived exe-
cutions. SmartFrog [13] is a framework for describing,
deploying, and controlling distributed applications. It
consists of a collection of daemons that manage dis-
tributed applications and a description language to de-
scribe the applications. Unlike Plush, SmartFrog is a
not a turnkey solution, but rather a framework for
building configurable systems. Applications must ad-
here to a specific API to take advantage of Smart-
Frog’s features.

There are also several commercially available
products that perform functions similar to Plush.
Namely, Opsware [24] and Appistry [4] provide soft-
ware solutions for distributed application manage-
ment. Opsware System 6 allows customers to visual-
ize many aspects of their systems, and automates soft-
ware management of complex, multi-tiered applica-
tions. The Appistry Enterprise Application Fabric
strives to deliver application scalability, dependability,
and manageability in grid computing environments. In
comparison to Plush, both of these tools focus more
on enterprise application versioning and package man-
agement, and less on providing support for interacting
with experimental distributed systems.

The Grid community has several application man-
agement projects with goals similar to Plush, including

Condor [8] and GrADS/vGrADS [7]. Condor is a work-
load management system for compute-intensive jobs
that is designed to deploy and manage distributed exe-
cutions. Where Plush is designed to deploy and manage
naturally distributed tasks with resources spread across
several sites, Condor is optimized for leveraging under-
utilized cycles in desktop machines within an organiza-
tion where each job is parallelizable and compute-
bound. GrADS/vGrADS [7] provides a set of program-
ming tools and an execution environment for easing
program development in computational grids. GrADS
focuses specifically on applications where resource re-
quirements change during execution. The task deploy-
ment process in GrADS is similar to Plush. Once the ap-
plication starts execution, GrADS maintains resource re-
quirements for compute intensive scientific applications
through a stop/migrate/restart cycle. Plush, on the other
hand, supports a far broader range of recovery actions.

Within the realm of workflow management, there
are tools that provide more advanced functionality
than Plush. For example, GridFlow [11], Kepler [19],
and the other tools described in [32] are designed for
advanced workflow management in Grid environ-
ments. The main difference between these tools and
Plush is that they focus solely on workflow manage-
ment schemes. Thus they are not well suited for man-
aging applications that do not contain workflows, such
as long-running services.

Lastly, the Globus Toolkit [12] is a framework
for building Grid systems and applications, and is per-
haps the most widely used software package for Grid
development. Some components of Globus provide a
similar functionality as Plush. With respect to our ap-
plication specification language, the Globus Resource
Specification Language (RSL) provides an abstract
language for describing resources that is similar in de-
sign to our language. The Globus Resource Allocation
Manager (GRAM) processes requests for resources,
allocates the resources, and manages active jobs in
Grid environments, providing much of the same func-
tionality as Plush does. The biggest difference be-
tween Plush and Globus is that Plush provides a user-
friendly shell interface where users directly interact
with their applications. Globus, on the other hand, is a
framework, and each application must use the APIs to
create the desired functionality. In the future, we plan
to integrate Plush with some of the Globus tools, such
as GRAM and RSL. In this scenario Plush will act as a
front-end user interface for the tools available in
Globus.

Conclusion

Plush is an extensible application control infra-
structure designed to meet the demands of a variety of
distributed applications. Plush provides abstractions
for resource discovery and acquisition, software instal-
lation, process execution, and failure recovery in dis-
tributed environments. When an error is detected,

21st Large Installation System Administration Conference (LISA ’07) 201

Remote Control: Distributed Application . . . With Plush Albrecht, et al.

Plush has the ability to perform several application-
specific actions, including restarting the computation,
finding a new set of resources, or attempting to adapt
the application to continue execution and maintain
liveness. In addition, Plush provides new relaxed syn-
chronization primitives that help applications achieve
good throughput even in unpredictable wide-area con-
ditions where traditional synchronization primitives
are too strict to be effective.

Plush is in daily use by researchers worldwide, and
user feedback has been largely positive. Most users find
Plush to be an ‘‘extremely useful tool’’ that provides a
user-friendly interface to a powerful and adaptable appli-
cation control infrastructure. Other users claim that
Plush is ‘‘flexible enough to work across many admin-
istrative domains (something that typical scripts do not
do).’’ Further, unlike many related tools, Plush does
not require applications to adhere to a specific API,
making it easy to run distributed applications in a vari-
ety of environments. Our users tell us that Plush is
‘‘fairly easy to get installed and setup on a new ma-
chine. The structure of the application specification
largely makes sense and is easy to modify and adapt.’’

Although Plush has been in development for
over three years now, we still have some features that
need improvement. One important area for future en-
hancements is error reporting. Debugging applications
is inherently difficult in distributed environments. We
try to make it easier for researchers using Plush to lo-
cate and diagnose errors, but this is a difficult task. For
example, one user says that ‘‘when things go wrong
with the experiment, it’s often difficult to figure out
what happened. The debug output occasionally does
not include enough information to find the source of
the problem.’’ We are currently investigating ways to
allow application specific error reporting, and ulti-
mately simplify the task of debugging distributed ap-
plications in volatile environments.

Author Biographies

Jeannie Albrecht is an Assistant Professor of
Computer Science at Williams College in Williams-
town, Massachusetts. She received her Ph.D. in Com-
puter Science from the University of California, San
Diego in June 2007 under the supervision of Amin
Vahdat and Alex C. Snoeren.

Ryan Braud is a fourth-year doctoral student at
the University of California, San Diego where he
works under the direction of Amin Vahdat in the Sys-
tems and Networking research group. He received his
B.S. in Computer Science and Mathematics from the
University of Maryland, College Park in 2004.

Darren Dao is a graduate student at the Universi-
ty of California, San Diego where he works under the
direction of Amin Vahdat in the Systems and Net-
working research group. He received his B.S. in Com-
puter Science from the University of California, San
Diego in 2006.

Nikolay Topilski is a graduate student at the Uni-
versity of California, San Diego where he works under
the direction of Amin Vahdat in the Systems and Net-
working research group. He received his B.S. in Com-
puter Science from the University of California, San
Diego in 2002.

Christopher Tuttle is a Software Engineer at
Google in Mountain View, California. He received his
M.S. in Computer Science from the University of Cal-
ifornia, San Diego in December 2005 under the super-
vision of Alex C. Snoeren.

Alex C. Snoeren is an Assistant Professor in the
Department of Computer Science and Engineering at
the University of California, San Diego. He received
his Ph.D. in Electrical Engineering and Computer Sci-
ence from the Massachusetts Institute of Technology
in 2003 under the supervision of Hari Balakrishnan
and M. Frans Kaashoek.

Amin Vahdat is a Professor in the Department of
Computer Science and Engineering and the Director of
the Center for Networked Systems at the University of
California, San Diego. He received his Ph.D. in Com-
puter Science from the University of California, Berke-
ley in 1998 under the supervision of Thomas Anderson.
Before joining UCSD in January 2004, he was on the
faculty at Duke University from 1999-2003.

Bibliography

[1] Albrecht, J., C. Tuttle, A. C. Snoeren, and A.
Vahdat, ‘‘Loose Synchronization for Large-Scale
Networked Systems,’’ Proceedings of the USENIX
Annual Technical Conference (USENIX), 2006.

[2] Albrecht, J., C. Tuttle, A. C. Snoeren, and A. Vah-
dat, ‘‘PlanetLab Application Management Using
Plush,’’ ACM Operating Systems Review (OSR),
Vo l . 40, Num. 1, 2006.

[3] Altschul, S. F., W. Gish, W. Miller, E. W. Myers,
and D. J. Lipman, ‘‘Basic Local Alignment Search
To o l , ’’ Journal of Molecular Biology, Vol. 215,
1990.

[4] Appistry, http://www.appistry.com/ .

[5] Barham, P., B. Dragovic, K. Fraser, S. Hand, T.
Harris, A. Ho, R. Neugebauer, I. Pratt, and A.
Warfield, ‘‘Xen and the Art of Virtualization,’’
Proceedings of the ACM Symposium on Operat-
ing System Principles (SOSP), 2003.

[6] Bavier, A., M. Bowman, B. Chun, D. Culler, S.
Karlin, S. Muir, L. Peterson, T. Roscoe, T. Spalink,
and M. Wawrzoniak, ‘‘Operating Systems Support
for Planetary-Scale Network Services,’’ Proceed-
ings of the ACM/USENIX Symposium on Net-
worked Systems Design and Implementation (NS-
DI), 2004.

[7] Berman, F., H. Casanova, A. Chien, K. Cooper,
H. Dail, A. Dasgupta, W. Deng, J. Dongarra, L.
Johnsson, K. Kennedy, C. Koelbel, B. Liu, X.
Liu, A. Mandal, G. Marin, M. Mazina, J. Mellor-
Crummey, C. Mendes, A. Olugbile, M. Patel, D.

202 21st Large Installation System Administration Conference (LISA ’07)

Albrecht, et al. Remote Control: Distributed Application . . . With Plush

Reed, Z. Shi, O. Sievert, H. Xia, and A. YarKhan,
‘‘New Grid Scheduling and Rescheduling Meth-
ods in the GrADS Project,’’ International Journal
of Parallel Programming (IJPP), Vol. 33, Num.
2-3, 2005.

[8] Bricker, A., M. Litzkow, and M. Livny, ‘‘Condor
Te c h n i c a l Summary,’’ Te c h n i c a l Report 1069,
University of Wisconsin-Madison, CS Depart-
ment, 1991.

[9] Burgess, M., ‘‘Cfengine: A Site Configuration
Engine,’’ USENIX Computing Systems, Vol. 8,
Num. 3, 1995.

[10] Chun, B., gexec, http://www.theether.org/gexec/ .

[11] Coa, J., S. Jarvis, S. Saini, and G. Nudd, ‘‘Grid-
Flow: Workflow Managament for Grid Comput-
ing,’’ Proceedings of the IEEE International Sym-
posium on Cluster Computing and the Grid (CC-
Grid), 2003.

[12] Foster, I., A Globus Toolkit Primer, 2005, http://
www.globus.org/toolkit/docs/4.0/key/GT4_Primer_
0.6.pdf .

[13] Goldsack, P., J. Guijarro, A. Lain, G. Mecheneau,
P. Murray, and P. Toft, ‘‘SmartFrog: Configura-
tion and Automatic Ignition of Distributed Appli-
cations,’’ HP Openview University Association
Conference (HP OVUA), 2003.

[14] Grit, L., D. Irwin, V. Marupadi, P. Shivam, A.
Yumerefendi, J. Chase, and J. Albrecht, ‘‘Har-
nessing Virtual Machine Resource Control for
Job Management,’’ Proceedings of the Workshop
on System-level Virtualization for High Perfor-
mance Computing (HPCVirt), 2007.

[15] Huebsch, R., PlanetLab Application Manager,
http://appmanager.berkeley.intel-research.net .

[16] Irwin, D., J. Chase, L. Grit, A. Yumerefendi, D.
Becker, and K. G. Yocum, ‘‘Sharing Networked
Resources with Brokered Leases,’’ Proceedings
of the USENIX Annual Technical Conference
(USENIX), 2006.

[17] Jordan, H. F., ‘‘A Special Purpose Architecture
for Finite Element Analysis,’’ Proceedings of the
International Conference on Parallel Processing
(ICPP), 1978.

[18] Ludtke, S., P. Baldwin, and W. Chiu, ‘‘EMAN:
Semiautomated Software for High-Resolution Sin-
gle-Particle Reconstructions,’’ Journal of Struc-
tural Biology, Vol. 122, 1999.

[19] Ludäscher, B., I. Altintas, C. Berkley, D. Higgins,
E. Jaeger-Frank, M. Jones, E. A. Lee, J. Tao, and
Y. Zhao, ‘‘Scientific Workflow Management and
the Kepler System,’’ Concurrency and Computa-
tion: Practice and Experience, Special Issue on
Scientific Workflows (CC: P&E), Vol. 18, Num.
10, 2005.

[20] Mao, Y., vxargs, http://dharma.cis.upenn.edu/planet
lab/vxargs/ .

[21] McNett, M., D. Gupta, A. Vahdat, and G. M.
Voelker, ‘‘Usher: An Extensible Framework for

Managing Clusters of Virtual Machines,’’ Pro-
ceedings of the USENIX Large Installation Sys-
tem Administration Conference (LISA), 2007.

[22] Nacar, M. A., M. Pierce, and G. C. Fox, ‘‘Devel-
oping a Secure Grid Computing Environment
Shell Engine: Containers and Services,’’ Neural,
Parallel, and Scientific Computations (NPSC),
Vol. 12, 2004.

[23] Oppenheimer, D., J. Albrecht, D. Patterson, and
A. Vahdat, ‘‘Design and Implementation Trade-
offs for Wide-Area Resource Discovery,’’ Pro-
ceedings of the IEEE Symposium on High Perfor-
mance Distributed Compuuting (HPDC), 2005.

[24] Opsware, http://www.opsware.com/ .

[25] Park, K. and V. S. Pai, ‘‘CoMon: A Mostly-Scal-
able Monitoring System for PlanetLab,’’ ACM
Operating Systems Review (OSR), Vol. 40, Num.
1, 2006.

[26] Peterson, L., T. Anderson, D. Culler, and T.
Roscoe, ‘‘A Blueprint for Introducing Disruptive
Technology into the Internet,’’ Proceedings of the
ACM Workshop on Hot Topics in Networks (Hot-
Nets), 2002.

[27] Plush, http://plush.ucsd.edu .

[28] Ritchie, D. M. and K. Thompson, ‘‘The UNIX
Time-Sharing System,’’ Communications of the
Association for Computing Machinery (CACM),
Vol. 17, Num. 7, 1974.

[29] Vahdat, A., K. Yocum, K. Walsh, P. Mahadevan,
D. Kostić, J. Chase, and D. Becker, ‘‘Scalability
and Accuracy in a Large-Scale Network Emula-
tor,’’ Proceedings of the ACM/USENIX Sympo-
sium on Operating System Design and Implemen-
tation (OSDI), 2002.

[30] Waldspurger, C. A., ‘‘Memory Resource Manage-
ment in VMware ESX Server,’’ Proceedings of
the ACM/USENIX Symposium on Operating Sys-
tem Design and Implementation (OSDI), 2002.

[31] Walker, E., T. Minyard, and J. Boisseau, ‘‘Grid-
Shell: A Login Shell for Orchestrating and Coor-
dinating Applications in a Grid Enabled Environ-
ment,’’ Proceedings of the International Confer-
ence on Computing, Communications and Con-
trol Technologies (CCCT), 2004.

[32] Yu, J. and R. Buyya, ‘‘A Taxonomy of Workflow
Management Systems for Grid Computing,’’ Jour-
nal of Grid Computing (JGC), Vol. 3, Num. 3-4,
2005.

21st Large Installation System Administration Conference (LISA ’07) 203

