
Approximating Optimal Binary Decision Trees

Micah Adler1 and Brent Heeringa2

1 Department of Computer Science, University of Massachusetts, Amherst, 140 Governors Drive, Amherst, MA 01003
micah@cs.umass.edu

2 Department of Computer Science, Williams College, 47 Lab Campus Drive, Williamstown, MA 01267
heeringa@cs.williams.edu

Abstract. We give a (ln n + 1)-approximation for the decision tree (DT) problem. We also show that DT does
not have a PTAS unless P=NP. An instance of DT is a set of m binary tests T = (T1, . . . , Tm) and a set of n
items X = (X1, . . . , Xn). The goal is to output a binary tree where each internal node is a test, each leaf is an
item and the total external path length of the tree is minimized. DT has a rich history in computer science with
applications ranging from medical diagnosis to experiment design. Our work, while providing the first non-trivial
upper and lower bounds on approximating DT, also demonstrates that DT and a subtly different problem which also
bears the name decision tree (but which we call ConDT) have fundamentally different approximation complexity.
We conclude with a stronger lower bound for a third decision tree problem called MinDT.

1 Introduction

We consider the problem of approximating optimal binary decision trees. Garey and Johnson [6] define the
decision tree (DT) problem as follows: given a set of m binary tests T = (T1, . . . , Tm) and a set of n items
X = (X1, . . . , Xn), output a binary tree where each leaf is labeled with an item from X and each internal
node is labeled with a test from T . If an item passes a test it follows the right branch; if it fails a test it follows
the left branch. A path from the root to a leaf uniquely identifies the item labeled by that leaf. The depth of a
leaf is the length of its path from the root. The total external path length of the tree is the sum of the depths
of all the leaves in the tree. The goal of DT is to find a tree which minimizes the total external path length.
An equivalent formulation of the problem views each item as an m-bit binary string where bit i is 1 if the
item passes test Ti and 0 otherwise. We use instances of this type when discussing DT throughout this paper
and denote them using the set of items X . If no two strings in X are identical, every feasible solution to
DT has n leaves. In this paper we always assume the input is a set of unique strings since finding duplicate
strings is easily computable in polynomial time. Decision trees have many natural applications (see [9, 11]
and references therein) including medical diagnosis (tests are symptoms) and experiment design (tests are
experiments which determine some property). In fact, Hyafil and Rivest proved that DT was NP-Complete
precisely because ”of the large amount of effort that [had] been put into finding efficient algorithms for
constructing optimal binary decision trees” [8].

In this paper, we give a (lnn + 1)-approximation for the decision tree problem. We also show that
DT does not afford a PTAS unless P=NP. To the best of our knowledge, these are the first non-trivial
upper and lower bounds on the approximation ratio for DT. The noticeable absence of work studying the
approximability of DT seems surprising given the age and wide applicability of the problem. However, a
close examination of the literature offers some explanation: the name decision tree also refers to a similar
but subtly different problem which we call ConDT (for consistent decision tree) that is extremely hard to
approximate. The input to ConDT is a set of n positive / negative labeled binary strings, each of length m,
called examples3. The output is a binary tree where each internal node tests some bit i of the examples, and
maps the example to its left child if i is a 0 and its right child if i is a 1. Each leaf is labeled either TRUE
or FALSE. A consistent decision tree maps each positive example to a leaf labeled TRUE and each negative

3 Many papers take m to be the number of examples and take n to be the number of bits.

example to a leaf labeled FALSE. The size of a tree is the number of leaves. ConDT seeks the minimum size
tree which is consistent with the examples.

Alekhnovich et. al. [1] show it is not possible to approximate size s decision trees by size sk decision
trees for any constant k ≥ 0 unless NP is contained in DTIME[2mε

] for some ε < 1. This improves a result
from Hancock et. al. [7] which shows that no 2logδ s-approximation exists for size s decision trees for any
δ < 1 unless NP is quasi-polynomial. These results hold for s = Ω(n).

Our results demonstrate that DT and ConDT – although closely related – are quite different in terms
of approximability: ConDT has no c lnn-approximation for any constant c (unless P = NP) whereas our
results yield such an approximation for DT for c > 1. Also, we show that the lower bounds on learning
decision trees of the ConDT type hold when minimizing total external path length instead of minimum size.
Note that tree size is not an insightful measure for DT since all feasible solutions have n leaves. Thus, it
is the difference in input and output, and not the difference in measure, that accounts for the difference in
approximation complexity.

Not surprisingly, the difference in approximation complexity between DT and ConDT combined with
the ambiguity of the name decision tree has caused confusion in the literature. For example, [2] and its
online incarnation [3], define the decision tree problem according to the DT input and output but cite the
negative results for ConDT in Hancock et. al [7]. Therefore, we consider the separation of DT and ConDT
in terms of approximation complexity one contribution of our work.

Moret [9] views DT and ConDT as unique instances of a general decision tree problem where each
item is tagged with k possible labels. With DT there are always k = n labels, but only one item per label.
With ConDT, there are only two labels, but multiple items carry the same label. It appears then that labeling
restrictions play a crucial role in the complexity of approximating decision trees.

DT shares some similarities with set cover. Since each pair of items is separated exactly once in any valid
decision tree, one can view a path from the root to a leaf as a kind of covering of the items. In this case, each
leaf defines a set cover problem where it must cover the remaining n − 1 items using an appropriate set of
bits or tests. In fact, our analysis is inspired by this observation. However, in the decision tree problem, the n
set cover problems defined by the leaves are not independent. For example, the bit at the root of an optimal
decision tree appears in each of the n set cover solutions, but it is easy to construct instances of DT for which
the optimal (independent) solutions to the n set cover instances have no common bits. More specifically, one
can construct instances of DT where the n independent set cover problems have solutions of size 1, yielding a
decision tree with cost Θ(n2) but where the optimal decision tree has cost O(n log(n)). Hence, the interplay
between the individual set cover problems appears to make the DT problem fundamentally different from
set cover. Conversely, set cover instances naturally map to decision tree instances, however, the difference
in cost between the two problems means that the optimal set cover is not necessarily the optimal decision
tree.

The min-sum set cover (MSSC) problem is also similar to DT. The input to MSSC is the same as set
cover (i.e., a universe of items X and a collection C of subsets of X), but the output is a linear ordering of
the sets from 1 to |C|. If f(x) gives the index of the first set in the ordering that covers x then the cost of
the ordering is

∑
x∈X f(x). This is similar, but not identical to the cost of the corresponding DT problem

because the covered items must still be separated from one another, thus adding additional cost. Greedily
selecting the set which covers the most remaining uncovered items yields a 4-approximation to MSSC [5,
10]. This approximation is tight unless P=NP. As with set cover, we can think of DT as n instances of
MSSC, but again, these instances are not independent so the problems inherent in viewing DT as n set cover
problems remain when considering DT as n instances of MSSC.

In the following section we describe and analyze our approximation algorithm for DT. We also consider
the problem with weights associated with the tests and show that the (lnn+1)-approximation remains intact.
In Section 3, we show that there exists a δ > 0 such that DT does not have a (1 + δ)-factor approximation

unless P=NP. We also show that the lower bounds on learning ConDTs hold for total external path length.
Finally, we conclude with a discussion of some open problems including the gap between the upper and
lower bounds on the approximation ratio.

2 Approximating DT

Given a set of binary m-bit strings S, choosing some bit i always partitions the items into two sets S0 and
S1 where S0 contains those items with bit i = 0 and S1 contains those items with i = 1. A greedy strategy
for splitting a set S chooses the bit i which minimizes the difference between the size of S0 and S1. In other
words, it chooses the bit which most evenly partitions the set. Using this strategy, consider the following
greedy algorithm for constructing decision trees of the DT type given a set of n items X:

GREEDY-DT(X)

1 if X = ∅
2 then return NIL

3 else Let i be the bit which most evenly partitions X into X0 and X1

4 Let T be a tree node with left child left [T] and right child right [T]
5 left [T]← GREEDY-DT(X0)
6 right [T]← GREEDY-DT(X1)
7 return T

Fig. 1. A greedy algorithm for constructing decision trees.

A straightforward implementation on this algorithm runs in time O(mn2). While the algorithm does not
always give an optimal solution, it does approximate it within a factor of lnn + 1.

Theorem 1. If X is an instance of DT with n items and optimal cost C∗ then GREEDY-DT(X) yields a tree
with cost at most (lnn + 1)C∗

Proof. We begin with some notation. Let T be the tree constructed by GREEDY-DT on X with cost C. An
unordered pair of items {x, y} (hereafter just pair of items) is separated at an internal node S if x follows
one branch and y follows the other. Note that each pair of items is separated exactly once in any valid
decision tree. Conversely, each internal node S defines a set ρ(S) of pairs of items separated at S. That is

ρ(S) = {{x, y} | {x, y} is separated at S}

For convenience we also use S to denote the set of items in the subtree rooted at S. Let S+ and S− be the
two children of S such that |S+| ≥ |S−|. Note that |S| = |S+|+ |S−|. The number of sets to which an item
belongs equals the length of its path from the root, so the cost of T may be expressed as the sum of the sizes
of each S:

C =
∑
S∈T

|S|

Our analysis uses an accounting scheme to spread the total cost of the greedy tree among all unordered pairs
of items. Since each set S contributes its size to the total cost of the tree, we spread its size uniformly among
the |S+||S−| pairs of items separated at S. Let cxy be the pair cost assigned to each pair of items {x, y}
where

cxy =
1

|S+
xy|

+
1

|S−
xy|

.

and Sxy separates x from y. We can now talk about the cost of a tree node S by the costs associated with the
pairs of items separated at S. Summing the costs of these pairs is, by definition, exactly the size of S:∑

{x,y}∈ρ(S)

cxy = |S+||S−|
(1
|S+|

+
1

|S−|

)
= |S|

Because two items are separated exactly once, C is exactly the sum of the all pair costs:

C =
∑
{x,y}

cxy

Now consider the optimal tree T ∗ for X . If Z is an internal node of T ∗ then we also use Z to denote the set
of items that are leaves of the subtree rooted at Z. Following our notational conventions, we let Z+ and Z−

be the children of Z such that |Z+| ≥ |Z−| and |Z| = |Z+|+ |Z−|. The cost of the optimal tree, C∗, is

C∗ =
∑

Z∈T ∗

|Z| (1)

Since, every feasible tree separates each pair of items exactly once, we can rearrange the greedy pair
costs according to the structure of the optimal tree:

C =
∑

Z∈T ∗

∑
{x,y}∈ρ(Z)

cxy (2)

If Z is a node in the optimal tree, then it defines |Z+||Z−| pairs of items. Our goal is to show that the
sum of the cxy associated with the |Z+||Z−| pairs of items split at Z (but which are defined with respect to
the greedy tree) total at most a factor of H(|Z|) more than |Z| where H(d) =

∑d
i=1 1/i is the dth harmonic

number. This is made precise in the following lemma:

Lemma 1. For each internal node Z in the optimal tree:∑
{x,y}∈ρ(Z)

cxy ≤ |Z|H(|Z|)

where each cxy is defined with respect to the greedy tree T .

Proof. Consider any node Z in the optimal tree. For any unordered pair of items {x, y} split at Z, imagine
using the bit associated with the split at Z on the set Sxy separating x from y in the greedy tree. Call the
resulting two sets SZ+

xy and SZ−
xy respectively. Since the greedy split at Sxy minimizes cxy, we know

cxy =
1

|S+
xy|

+
1

|S−
xy|

≤ 1
|SZ+

xy |
+

1
|SZ−

xy |
≤ 1
|Sxy ∩ Z+|

+
1

|Sxy ∩ Z−|
.

Hence ∑
{x,y}∈ρ(Z)

cxy ≤
∑

{x,y}∈ρ(Z)

1
|Sxy ∩ Z+|

+
1

|Sxy ∩ Z−|
(3)

One interpretation of the sum in (3) views each item x in Z+ as contributing∑
y∈Z−

1
|Sxy ∩ Z−|

to the sum and each node y in Z− as contributing∑
x∈Z+

1
|Sxy ∩ Z+|

to the sum. For clarity, we can view Z as a complete bipartite graph where Z+ is one set of nodes and Z−

is the other. Letting bxy = 1/(|(Sxy ∩ Z−|) and byx = 1/(|Sxy ∩ Z+|) we can think of every edge (x, y)
where x ∈ Z+ and y ∈ Z− as having two costs: one associated with x (bxy) and the other associated with
y (byx). Thus, the total cost of Z is at most the sum of all the bxy and byx costs. We can bound the total cost
by first bounding all the costs associated with a particular node. In particular, we claim:

Claim. For any x ∈ Z+ we have∑
y∈Z−

bxy =
∑

y∈Z−

1
|Sxy ∩ Z−|

≤ H(|Z−|)

Proof. If Z− has m items then let (y1, . . . , ym) be an ordering of Z− in reverse order from when the items
are split from x in the greedy tree (with ties broken arbitrarily). This means item y1 is the last item split
from x, ym is the first item split from x, and in general ym−t+1 is the tth item split from x. When ym is split
from x there must be at least |Z−| items in Sxym — by our ordering the remaining items in Z− must still
be present — so Z− ⊆ Sxym . Hence bxym , the cost assigned to x on the edge (x, ym), is at most 1/|(Z−)|
and in general, when yt is separated from x there are at least t items remaining from Z−, so the cost bxyt

assigned to the edge (x, yt) is at most 1/t. This means, for any x ∈ Z+

∑
y∈Z−

bxy ≤ H(|Z−|)

which proves the claim. ut

We can use the same argument to prove the analogous claim for all the items in Z−. With these inequal-
ities in hand we have

∑
{x,y}∈ρ(Z)

1
|Sxy ∩ Z+|

+
1

|Sxy ∩ Z−|
≤ |Z+|H(|Z−|) + |Z−|H(|Z+|)

< |Z+|H(|Z|) + |Z−|H(|Z|)
< |Z|H(|Z|) (since |Z+|+ |Z−| = |Z|))

ut

Substituting this result into the initial inequality completes the proof of the theorem.

∑
Z∈T ∗

∑
{x,y}∈ρ(Z)

cxy ≤
∑

Z∈T ∗

|Z|H(|Z|) ≤
∑

Z∈T ∗

|Z|H(n) = H(n)C∗ ≤ (lnn + 1)C∗

ut

2.1 Tests with Weights

In many applications, different tests may have different execution costs. For example, in experiment design,
a single test might be a good separator of the items, but it may also be expensive. Running multiple, inex-
pensive tests may serve the same overall purpose, but at less cost. To model scenarios like these we associate
a weight w(k) with each bit k and without confusion take w(S) to be the weight of the bit used at node S.
We call this problem DT with weighted tests. In the original problem formulation, we can think of each test
as having unit weight, so the cost of identifying an item is just the length of the path from the root to the
item. When the tests have non-uniform weights, the cost of identifying an item is the sum of the weights
of the tests along that path. We call this the path cost. The cost of the tree is the sum of the path costs of
each item. When all the tests have equal weight, we choose the bit which most evenly splits the set of items
into two groups. In other words, we minimize the pair cost cxy. With equal weights, the cost of an internal
node is just its size |S|. With unequal weights, the cost of an internal node is the weighted size w(S)|S|, so
assuming S separates x from y the pair cost becomes

cxy =
w(S)
|S+|

+
w(S)
|S−|

(4)

and our new greedy algorithm recursively selects the bit which minimizes this quantity. This procedure
yields a result equivalent to Theorem 1 for DT with weighted tests. A straightforward implementation on
this algorithm still runs in time O(mn2).

Theorem 2. The greedy algorithm which recursively selects the bit that minimizes Equation 4 yields a
(lnn + 1)-approximation to DT with weighted tests.

Proof. Following the structure of the proof for Theorem 1 leads to the desired result. The key observation
is that choosing the bit that minimizes Equation 4 yields the inequality

cxy ≤ w(Z)
(1
|Sxy ∩ Z+|

+
1

|Sxy ∩ Z−|

)
. (5)

Since the weight term w(Z) may be factored out of the summation

w(Z)
∑

{x,y}∈ρ(Z)

1
|Sxy ∩ Z+|

+
1

|Sxy ∩ Z−|

we can apply the previous claim and the theorem follows:∑
Z∈T ∗

∑
{x,y}∈ρ(Z)

cxy ≤
∑

Z∈T ∗

w(Z)|Z|H(n) ≤ (lnn + 1)C∗

Here C∗ =
∑

Z∈T ∗ w(Z)|Z| is the cost of the optimal tree. ut

Another natural extension to DT considers the problem with weighted items. Here, one weights each
path length by the weight of the item which defines the path. Unfortunately, our analysis does not hold for
this case. We discuss this further in Section 5.

n∊/3 < 6
Fig. 2. (left) The topology of the optimal tree. Here the n + m− 1 bits along the left branch correspond to the sets in the set cover.
(right) This tree represents the best case when n+m+ nε

3
sets are required to cover the items. To minimize the cost in this scenario,

the extra bits cover a single item and the top of the tree is filled with subtrees of size 6.

3 Approximating DT is Hard

In this section we show that there exists a universal constant δ > 0 such that DT has no (1 + δ) factor
approximation unless P=NP. This immediately implies that if DT has a PTAS, then P=NP. We give a gap-
preserving reduction to DT from MAX-3SAT5 which Feige defines in [4]:

Input: A set of n variables X = {x1, . . . , xn} and m clauses C = {C1, . . . , Cm} where each clause has
exactly three literals (a literal is a variable or its negation), no variable appears more than once in a
clause, and each variable appears in exactly 5 clauses. Note that m = 5n

3

Output: The maximum number of clauses which can be satisfied simultaneously by some variable assign-
ment

Feige shows that for some ε > 0 it is NP-hard to distinguish between those 3SAT5 formulas which are
satisfiable and those which have at most (1− ε)|C| clauses satisfied simultaneously. Hence, we will restrict
our attention to just those instances which are either satisfiable or which, for any assignment, have at least
ε|C| clauses that are not satisfied.

The idea is to reduce 3SAT5 to a covering problem which we then reduce to a decision tree. The form
of the covering problem is important: with total external path length, cost is a function of leaf depth so to
control the cost, we require some control over the depth of the leaves. We show how to reduce instances of
3SAT5 to instances of set cover where every set has size 6 and where every satisfiable instance of 3SAT5
has an exact cover and every unsatisfiable instance requires some constant factor number of sets more for a
cover.

The reduction from 3SAT5 to the bounded-size set cover problem uses a variation of the reduction used
by Sieling [12] to show that MinDT (a problem quite similar, but distinct from ConDT) has no PTAS.

3.1 Reduction from 3SAT5 to Set Cover

Given a 3SAT5 formula φ with n variables and m clauses, we define the following polynomial time reduction
f(φ) to a set cover instance (U,Z) where U is a set of items and Z is a collection of subsets of U . Let Y (i)
be the indices of the 5 clauses in which xi appears. First we define the set of items. For each variable xi,

create 11 items: yi, aij (for j in Y (i)), and bij (again, for j in Y (i)). For each clause Cj create three items
cj1 , cj2 , and cj3 . In total, there are 11n + 3m = 16n items, so |U | = 16n.

Now we define the sets. For each variable xi, create two sets:

Sa
i = {yi} ∪ {aij | j ∈ Y (i)} and Sb

i = {yi} ∪ {bij | j ∈ Y (i)}

Call these sets the variable sets since they are constructed from the variables of the formula. For each
clause Cj , create seven sets called the clause sets. Construct each set in the following way: Let xu1 , xu2 ,
and xu3 be the variables appearing in clause j. For each local satisfying assignment z(x) (there are exactly
seven), create the set

Sz
j = {cj1 , cj2 , cj3} ∪ {d1, d2, d3} where dk =

{
bukj if z(xuk

) = 1
aukj if z(xuk

) = 0

For example if Cj = (x1 ∨ x̄2 ∨x3) then there are eight possible local assignments to the variables. The
assignment x1 = 1, x2 = 0, x3 = 0 satisfies the clause so the set S100

j = {cj1 , cj2 , cj3} ∪ {b1j , a2j , a3j}
is included. However, the assignment x1 = 0, x2 = 1, and x3 = 0 fails to satisfy the clause, so the set
S010

j = {cj1 , cj2 , cj3} ∪ {a1j , b2j , a3j} is not included. Since there are seven locally satisfying assignments
per clause, there are a total of 7m sets in Z. Note that every set has exactly 6 items. The key to the reduction
is that the aij correspond to a positive assignment of xi and the bij correspond to a negative assignment to xi.
The clause sets include the items which are opposite of the assignment, so when a formula is satisfiable, it is
always possible to cover it with n + m sets. However, if no satisfying assignment exists for an assignment
then more sets are required. Though our reduction is not identical to the one given by Sieling, the following
theorem still holds:

Theorem 3 ([12]). If φ is a satisfiable 3SAT5 formula then there is a solution to f(φ) of size n + m. If, for
any assignment to φ, at most (1− ε)m clauses may be satisfied simultaneously, then a solution to f(φ) has
size at least n + m + εn

3 .

Proof. It’s clear that n + m sets are necessary to cover U , but when φ is satisfiable, n + m sets are also
sufficient. If z is a satisfying assignment to φ then for each variable xi, choose Sa

i if z(xi) = 1 or choose
Sb

i if z(xi) = 0. For each clause j, choose Sz
j where Sz

j is the set for clause j corresponding to assignment
z. It’s clear that all the yi and cj items are covered. Every aij item is also covered: If z(xi) = 1 then Sa

i

covers it. If z(xi) = 0 then Sz
j covers it. The bij cases are symmetric, so n + m sets are sufficient. If φ is

not a satisfying assignment then more sets are required. To see this, let Y be a solution to the the set cover
problem. Let Y ′ be a subset of Y such that for all i, Y ′ contains the first occurrence of a set covering yi and,
for all j, the first occurrence of the set covering cj . The variable sets of Y ′ define an assignment z to the
variables. At least εm clauses aren’t satisfied by this assignment. Let Cj be such a clause, say (x1, x2, x3).
Since it isn’t satisfied, z(xi) = 0 for i ∈ [1, 3]. So all the bi for i ∈ [1, 3] are covered by the variables sets,
but the clause set j cannot cover the remaining ai because, by construction, it doesn’t exist. To cover the
remaining items requires at least one more variable set. This has the potential of covering at most 5 other
uncovered items. So if φ is unsatisfiable we require at least εm

5 = εn
3 more sets. For more details, we refer

the reader to [12]. Note that when φ is satisfiable the set cover is an exact cover meaning no two sets share
the same item. ut

We now define a gap-preserving reduction g from instances of set cover (U,Z) of the form given by f
to instances X of DT. Let |U | = n′ and |Z| = m′. For each item u in U create a binary string of length 4m′.
The first m′ bits correspond to the m′ sets of Z so we call them Z-bits. A string for item u has Z-bit i set to
1 if and only if u is in set Zi. In other words, the first m′ bits denote set membership in the m′ sets in Z. The

final 3m′ bits allow us to disambiguate the items from one another—recall that each set has six items, so if
we use a Z-bit at node T in the decision tree, then at most 6 items may follow the 1-branch of T . We want
to control the shape of the subtree formed by these items. That is, we want them to form as near a complete
tree as possible. Hence, each set Zi in Z adds 3 more bits per string. These bits are set to 0 for all items not
appearing in Zi. For those items which do appear in Zi, we assign the bits so that a near-complete tree of
height 3 is always possible (e.g., half the items will have the first bit set to 1, the other half will have them
set to 0, and so on. See Figure 2 for details). Together, these n′ strings comprise the DT instance X . Note
that the number of items does not change and that the reduction is polynomial in n′ and m′.

Claim. if φ is a satisfiable 3SAT5 formula then g(f(φ)) has a tree with cost at most 64n2

3 + 152n
3 − 6.

Proof. All we need to do is construct the cascading tree pictured on the left in Figure 2. The bits along the
left side correspond to the optimal set cover, except for the final 3 bits (which are used to disambiguate the
final remaining set). Selecting the n + m− 1 = n + (5/3)n− 1 sets yields a cost of

C = (−6) +
n+5/3n∑

i=1

6i + 16 =
64n2

3
+

152n

3
− 6.

ut

In fact, we can also show that C is the minimum cost. To see this, imagine a tree T corresponding to
some sub-optimal cover of the items. This tree has depth at least n + m + 3. Since every bit partitions off
at most 6 items, we know T is also a cascading-style tree, but that some of its subtrees have fewer than 6
items. It’s easy to show that shifting a leaf lower in the tree to a leaf higher in the tree decreases the total
cost. This is because the complete binary tree minimizes total external path length. Hence it is advantageous
to maximize the number of subtrees of size 6 that occur higher in the tree. Since the tree corresponding to
the optimal set cover is composed entirely of subtrees with size 6, it has minimum cost. What’s left to show
is that g preserves the gap in cost when the set cover requires at least n + m + εn

3 sets.

Claim. if φ is a 3SAT5 formula such that, for any assignment to φ, at most (1 − ε)|C| clauses are simulta-
neously satisfied, then any solution to g(f(φ)) has cost at least C + n2ε2

18 + nε
6 − 1.

Proof. From Theorem 3 we know that at least nε
3 additional sets are required to cover all the items. Given

that the tree must have depth at least n + m + nε/3− 1 for large enough n and that any bit can partition off
at most 6 items, what is the minimum cost tree which adheres to these constraints? In the best case, each of
the additional nε

3 internal nodes partitions off only a single element with the remaining n′ − nε
3 + 1 items

partitioned off by the first n + m internal nodes. In the best case, these will be subtrees of size 6 where
possible. This is illustrated on the right in Figure 2. Another way to think about this tree is starting with the
optimal tree from Claim 3.1 and repeatedly creating a new leaf at a lower level by deleting a leaf at a higher
level. This is tantamount to shifting a leaf. This process is a convenient way to analyze the cost since the first
leaf shifted adds at least 1 to the total cost, the second leaf shifted adds at least 2 to the total cost, and so forth.
Hence, the cost of the optimal tree for the gap case is at least C+1+2+. . .+ nε

3 −1 = C+ n2ε2

18 + nε
6 −1. ut

Combining Claims 3.1 and 3.1 yields the desired result:

Theorem 4. There exists a δ > 0 such that DT cannot be approximated in polynomial time within a factor
of (1 + δ) unless P=NP.

Proof. Suppose that for all δ > 0, DT could be approximated in polynomial time within a factor of (1 + δ).
Let 0 < ε < 1 be given so that the ε-gap in satisfiable 3SAT5 formulas and unsatisfiable 3SAT5 formulas
exists. Choose δ < ε2

912 . Now any satisfiable instance has cost at most (1 + δ)C < C + n2ε2

18 + nε
6 − 1

for n > 6
ε . By Claim 3.1, this gives us a polynomial time procedure for distinguishing satisfiable 3SAT5

formulas from unsatisfiable formulas — a contradiction unless P=NP. ut

3.2 Hardness of Approximation for ConDT under Total External Path Length

Alekhnovich et. al. [1] showed it is not possible to approximate size s decision trees by size sk decision trees
for any constant k ≥ 0 unless NP is contained in DTIME[2mε

] for some ε < 1. Decision tree here refers to
trees of the ConDT type and the measure here is tree size. In this section we show that these hardness results
also hold when for ConDT under minimum total external path length. Our theorem relies on the observation
that if I is an instance of ConDT with minimum total external path length s then I has minimum tree size at
least Ω(

√
s). If it didn’t, a tree of smaller size would have smaller total external path length, a contradiction.

The case where minimum total external path length s corresponds to minimum size Ω(
√

s) is a cascading
tree; that is, a tree with exactly one leaf at each depth save the deepest two.

Theorem 5. If there exists an sk approximation for some constant k > 0 to decision trees with minimum
total external path length s then NP is contained in DTIME[2mε

] for some ε < 1.

Proof. Let I be an instance of ConDT with minimum total external path length s = r2. It follows that I has
minimum tree size at least Ω(r). Now, if an sk approximation did exist for some k then there would exist an
Ω(r2k) = rk′ approximation for some constant k′ for ConDT under minimum tree size; a contradiction. ut

4 New Lower Bounds on Approximating MinDT

A problem similar to ConDT is finding small, equivalent decision trees. This problem, called MinDT, takes
as input a decision tree T over n variables of the ConDT type (i.e., a function from {0, 1}n → {0, 1})
and seeks the smallest decision tree T ′ (smallest, again, in terms of number of leaves) which is function-
ally equivalent to T . Here, functionally equivalent means that T and T ′ compute the same function on all
binary strings of length n. Zantema and Bodlaender [13] first defined this problem and showed it to be NP-
hard. Sieling [12] showed that MinDT has no constant factor approximation unless P=NP. This negative
result follows from a self-improving property of decision trees which is consistent with the squaring results
from [7]. We review the self-improving property here, show how to generalize it, and then apply arguments
and techniques from [7] to show that no 2logδs approximation exists (where s is the size of the optimal tree
and δ < 1) unless NP ⊆ DTIME[2polylog n].

Lemma 2 ([12]). Let f and g be boolean functions over n and m disjoint binary variables respectively. If
MIN(f ⊕ g) is the size of the minimum decision tree computing f ⊕ g then MIN(f ⊕ g) = MIN(f) · MIN(g).
Similarly, if T is a tree of size |T | which computes f ⊕ g then Tf , a tree that computes f and Tg, a tree that
computes g can be constructed in polynomial time such that |Tf | · |Tg| ≤ |T |.

The proof of Lemma 2 divides up T into f -regions and g-regions based on the largest contiguous parts
of the tree which examine bits exclusively from f or g. The idea is that regions near the leaves may be
switched with their parents to form larger contiguous regions until Tf and Tg are easily identifiable. The
generalization of this result requires a few more details:

Lemma 3. Let F be a set of r binary functions such that fi : {0, 1}ni → {0, 1}. Let g = ⊕r
i=1fi. If MIN(g)

is the size of the minimum decision tree computing g then MIN(g) =
∏r

i=1 MIN(fi). Similarly, if T is a
tree of size |T | which computes g then in polynomial time, we can construct a tree Ti for each fi such that∏r

i=1 |Ti| ≤ |T |.

Proof. The proof is similar to the generalization of the squaring technique used in [7]. Call a tree reduced
when no path contains the same variable twice. In this proof we’ll assume all trees are reduced since one
can reduce a tree very quickly. It is easy to show that MIN(g) ≤

∏r
i=1 MIN(fi) — just build the tree using

concatenated copies of the functions in F . This yields a tree for g with size exactly
∏r

i=1 MIN(ni). The
other direction is more complicated. Let xi denote a variable from function fi. A tree is in standard form if,
on any path from the root to a leaf, variable xi is followed only by variables xi′ where i′ ≥ i. If the root of
a tree (or a subtree) is xi then let s(xi) = (s1 . . . st) denote the roots of the subtrees of xi which are the first
nodes along a path from the root having variables which differ from i.

A tree rooted at xi is called subtree equivalent if every tree rooted at one of s(xi) is structurally identical
except for the leaf labels. Once a tree is in standard form and is subtree equivalent it is easy to recover
functions computing each fi. Hence any subtree equivalent tree computing g in standard form must have
size greater than or equal to the product of the size of its composite functions. We often denote a tree by its
root, so saying xi is in standard form really means the tree rooted at xi is in standard form. We now show
how to take any tree T computing g and turn it into a tree which is subtree equivalent and in standard form.
The proof is by induction on the height of subtrees of T which are in standard from and subtree equivalent.
It is trivially true that each leaf is subtree equivalent and in standard form. Now consider an internal node xi

with left child xi′ and right child xi′′ both in standard form and subtree equivalent. Without loss of generality,
let i′ ≤ i′′. We must consider two cases: If i ≤ i′ then xi is in standard form. Furthermore, we make the
following claim:

Claim. Any two trees from s(xi) are functionally equivalent up to polarity.

Proof. Suppose two of the s(xi) trees compute different functions. Then there are two strings w1 and w2

that differ only in the fi variables (specifically those at xi and beyond) and have different outputs on g ⊕ fi

(g with fi removed). This is a contradiction since g⊕fi ignores the fi variables so g⊕fi(w1) = g⊕fi(w2).

Now we can take the smallest of the s(xi) and replicate it across the remaining s(xi), negating the output
on the leaves when appropriate. This tree rooted at xi is now subtree equivalent and the induction holds. On
the other hand, if i > i′ then xi is not in standard form. Using the same type of argument from Claim 4
we can show that xi′ and xi′′ are functionally equivalent up to differences in fi. If fi is not constant with
respect to xi then find the tree among xi′ and xi′′ with the smallest total number of nodes leading up to its fi

regions. Without loss of generality, say this is xi′ . Insert xi above each fi subtree in xi′ and make fi the left
child of xi. Now, choose the root of any fi region from xi′′ (they are all the same except for the labels) and
make it (and its subtree) the right child of each xi, again, negating the labels when appropriate. It’s clear that
for xi = 0, the tree rooted at xi′ computes the same value as the old tree. To see why it’s true for xi = 1,
recall that xi′ and xi′′ are functionally equivalent up to fi so every fj region (j 6= i) must independently
be able to compute its proper label, hence all the fj are sufficient discriminators. By construction xi′ is still
in standard form and subtree equivalent. We delete xi′′ , promote xi′ to root, and by virtue of it having the
smaller subtree leading up to each fi, we know it is smaller than the original xi tree.

With Lemma 3 in hand, it’s possible to prove the following theorem:

Theorem 6. For any δ < 1, there is no 2logδ s approximation for MinDT where s is the size of the optimal
tree, unless NP is quasi-polynomial.

The proof is essentially identical to one given for the analogous ConDT result. We give it here for
completeness.

Proof. Suppose such an approximation did exist. Take the given tree T of size n and raise it to the power d
where d = logr(n) and where r = 2δ/(1 − δ). This takes time nd = nlogr(n) = 2polylog(n). The smallest
solution for T d has size sd so our approximation gives us a solution of size at most sd2logδ(sd) from which
we can find a tree for T of size:

s2dδ−1 logδ(s) = s2log
2δ(δ−1)

1−δ (n) logδ(s) = s2log−2δ(n) logδ(s) = s2log−2δ(n) logδ(s)

which is O(s). This contradicts the no constant factor approximation result by Sieling.

Lemma 3 is tantamount to repeatedly squaring the problem and improving the approximation. Here
we show that no log(n) approximation exists for MinDT unless NP is contained in O(nlog log(n)) time. By
increasing the number of iterations we can also prove Theorem 6.

Theorem 7. If an instance of MinDT with smallest solution size s has a log(s) approximation then NP is
nO(log log(n)).

Proof. Suppose a log(s) approximation exists. Then after the kth iteration of squaring, we have an (log(s))1/2k

approximation. So after k = log(log(log(s))) iterations we arrive at a constant factor approximation. Since
each iteration effectively doubles the problem size, the total time for k iterations is

n2k
= n2log log log(s)

= nlog(log(s)) = nO(log log(s))

The theorem follows since s ≤ n.

5 Open Problems and Discussion

In this paper, we present a (lnn + 1)-approximation for the decision tree problem. Besides being the first
non-trivial upper bound on the approximation ratio, the result serves a second purpose; it separates the
approximation complexity of DT from a similar, hard-to-approximate decision tree problem which we call
ConDT. In addition we give a polynomial-time reduction from MAX-3SAT5 to DT which preserves the ε
gap between satisfiable formulas and unsatisfiable formulas. This means DT does not have a PTAS unless
P=NP.

The most prominent open problem is the gap between the upper and lower bounds on the approxima-
tion ratio of DT. Amplifying the gap using techniques from [7] for ConDT does not work for DT. There,
one squares an instance of ConDT, applies an α-approximation, and recovers a solution to the original in-
stance which is a

√
α-approximation. Repeating this procedure yields the stronger lower bound. This does

not work for DT because the average path length only doubles when squaring the problem, so solving the
squared problem with an α-approximation and recovering a solution to the original problem simply pre-
serves (and unfortunately does not improve) the approximation ratio. The hardness results from [1] rely on
the construction of a binary function which is difficult to approximate accurately when certain instances of
a hitting-set problem have large solutions. These techniques do not appear to work for DT either. Improving
the upper bound also seems reasonable. For example, we have yet to find a family of DT instances where
our analysis is tight for the greedy algorithm.

The second open problem involves DT with weighted items. While our analysis generalizes to tests with
weights, it does not work for items with weights. This is because our method does not allow us to easily
compare the weight of a node in the greedy tree with the weight of a node in the optimal tree when the
weight of a node is determined not by the number of items in its subtree, but the total weight of the items in
the subtree. Overcoming this obstacle presents an interesting analytical challenge.

References

1. Misha Alekhnovich, Mark Braverman, Vitaly Feldman, Adam R. Klivans, and Toniann Pitassi. Learnability and automatiz-
ability. In Proceedings of the 45th Annual Symposium on Foundations of Computer Science, pages 621–630. IEEE Computer
Society Press, Los Alamitos, CA, 2004.

2. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi. Complexity and Approximation.
Springer-Verlag, 1st edition, 1999.

3. Pierluigi Crescenzi and Viggo Kann. A Compendium of NP Optimization Problems.
http://www.nada.kth.se/˜viggo/problemlist/.

4. Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4):634–652, 1998.
5. Uriel Feige, László Lovász, and Prasad Tetali. Approximating min-sum set cover. Algorithmica, 40(4):219 – 234, September

2004.
6. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H.

Freeman and Company, New York, New York, 1979.
7. Thomas Hancock, Tao Jiang, Ming Li, and John Tromp. Lower bounds on learning decision lists and trees. Information and

Computation, 126(2):114–122, 1996.
8. L. Hyafil and R. Rivest. Constructing optimal binary decision trees is np-complete. Information Processing Letters, 5(1):15–17,

1976.
9. Bernard M. E. Moret. Decision trees and diagrams. ACM Comput. Surv., 14(4):593–623, 1982.

10. Kamesh Munagala, Shivnath Babu, Rajeev Motwani, and Jennifer Widom. The pipelined set cover problem. In ICDT, pages
83–98, 2005.

11. Kolluru Venkata Sreerama Murthy. On growing better decision trees from data. PhD thesis, The Johns Hopkins University,
1996.

12. Detlef Sieling. Minimization of decision trees is hard to approximate. In 18th Annual IEEE Conference on Computational
Complexity, pages 82–92. IEEE Computer Society, 2003.

13. H. Zantema and H. L. Bodlaender. Finding small equivalent decision trees is hard. International Journal on Foundations of
Computer Science, 11(2):343–354, 2000.

