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Abstract
The potential for unexpected interference between threads makes
multithreaded programming notoriously difficult. Programmers use
a variety of synchronization idioms such as locks and barriers to
restrict where interference may actually occur. Unfortunately, the
resulting actual interference points are typically never documented
and must be manually reconstructed as the first step in any subse-
quent programming task (code review, refactoring, etc).

This paper proposes explicitly documenting actual interference
points in the program source code, and it presents a type and
effect system for verifying the correctness of these interference
specifications.

Experimental results on a variety of Java benchmarks show that
this approach provides a significant improvement over prior sys-
tems based on method-level atomicity specifications. In particular,
it reduces the number of interference points one must consider from
several hundred points per thousand lines of code to roughly 13 per
thousand lines of code. Explicit interference points also serve to
highlight all known concurrency defects in these benchmarks.

1. Introduction
The widespread adoption of multi-core processors necessitates ef-
fective techniques for developing reliable multithreaded software.
However, developing and validating multithreaded software is very
difficult, in large part because of the potential for nondeterministic
interference between concurrent threads. Typically, programmers
use a variety of synchronization idioms to restrict where interfer-
ence may occur. For example, locks, semaphores, or barriers can
be used to prevent interference between threads at program points
within critical sections.

There is, however, a large gap between actual interference
points (where interference actually happens in the given program
due to its synchronization structure) and preemptive interference
points (which potentially can occur at any program point under a
typical preemptive semantics for thread interleaving). Knowledge
of actual interference points is required for almost all reasoning
about program behavior, but these interference points are almost
never documented in the program source code. Thus every pro-
gramming task (code review, refactoring, feature extension, etc)
must typically begin with the programmer manually reconstruct-
ing the actual interference points by analyzing the synchronization
structure of the target program.

Manual reconstruction of actual interference points is tedious
and error-prone. Moreover, actual interference points are quite
sparse in practice, and consequently programmers have a tendency
to optimistically assume that the code being analyzed is free of in-
terference and simply perform sequential reasoning about program

Figure 1: Traveling Salesperson Algorithm

1 Object lock;
2 volatile int shortestPathLength;
3

4 compound void searchFrom(Path path) {
5 if (path .length >= . .shortestPathLength)
6 return;
7

8 if (path .isComplete()) {
9 . .synchronized (lock) {

10 if (path .length < shortestPathLength)
11 shortestPathLength = path .length;
12 }
13 } else {
14 for (Path c: path .children())
15 searchFrom#(c);
16 }
17 }

behavior. This shortcut is sometimes correct, but often results in de-
fects such as race conditions and violations of intended atomicity,
determinism, and ordering constraints.

The central philosophy behind this paper is that actual interfer-
ence points should be explicit in the program source code, avoiding
the need to reconstruct them before each programming task.

To illustrate the benefits of explicit interference annotations,
consider the traveling salesperson algorithm shown in Figure 1.
The function searchFrom recursively searches through all exten-
sions of a salesperson’s path, aborting the search whenever the
path’s length field becomes greater than the length of the short-
est complete path found so far (stored in shortestPathLength).
To exploit multicore processors, multiple instances of searchFrom
execute concurrently, and the code uses the notation “. .” to docu-
ment thread interference in a lightweight manner. For example, the
variable shortestPathLength is protected by the mutex lock
for all writes, but racy reads are permitted to maximize perfor-
mance. Thus, thread interference may occur before the read of
shortestPathLength on line 5 (because of potential concurrent
writes) and before the lock acquire at line 9 (because a concurrent
invocation of searchFrom may be racing on that lock). We refer to
these explicitly annotated points of potential interference as yield
points, and they document where interleaved actions of concurrent
threads may conflict with operations performed by this function.

To facilitate modular reasoning, methods are annotated to indi-
cate their yielding effects. Methods with no internal yield points
are declared atomic, and methods that may yield are declared
compound, as illustrated by the declaration of searchFrom. Calls
to compound methods (as on line 15 above) are highlighted with a
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postfix “#” to indicate that the callee contains yield points, and so
invariants over shared state that hold before the call may not hold
after the call returns.

This paper presents a type and effect system to verify that
explicit interference annotations in a program capture all possible
thread interference. The type system is based on Lipton’s theory of
reduction [34], which characterizes when a sequence of instructions
from one thread forms a serializable transaction. Our type system
guarantees that the instructions of each well-typed thread consists
of a sequence of serializable transactions separated by interference
annotations. Consequently, any well-typed program behaves as if
executing under a cooperative scheduler, where context switches
happen only at explicitly marked interference points.

This approach provides several benefits. First, manual recon-
struction of actual interference points is no longer a required first
step of any programming task, since the type system guarantees
that all interference points are explicitly documented in the source
code. Second, sequential reasoning is applicable to any code frag-
ment that does not include interference annotations. Third, inter-
ference annotations provide an explicit reminder to programmers
about where their natural tendency to apply sequential reasoning is
not applicable, and where they need to account for thread interfer-
ence. Finally, a preliminary user study has shown that documenting
interference points produces a statistically significant improvement
in the ability of programmers to identify defects [44].

We describe a prototype implementation called JCC (Java
cooperability checker) for the Java programming language. This
type checker takes as input a program annotated with interference
annotations (including where races may occur) and verifies that the
specification holds. Experimental results show that JCC requires an-
notating only 13 interference points per thousand lines of code. In
comparison, our prior type system for method-level atomicity [21]
requires the programmer to reason about over 180 interference
points per thousand lines of code, mainly because of interference
points in methods that cannot be verified as atomic.

Contributions. In summary, the primary contributions of our
work include:

• A lightweight and precise notation for specifying interference
points.
• A type and effect system for verifying these interference speci-

fications (Section 5).
• An implementation of this type system for the Java program-

ming language (Section 6).
• Experimental results showing that (1) these interference spec-

ifications highlight all known concurrency bugs in our bench-
marks, and (2) in comparison to prior approaches based on race
conditions or atomicity, the type system reduces the number of
interference points by an order of magnitude (Section 7).

Previous work explored dynamic cooperability analyses [52], a
cooperability type system for a limited imperative calculus [51],
and whether cooperability annotations facilitate program under-
standing [44]. In this paper we extend cooperability to the type sys-
tem for a large, object-oriented language, implement a type checker
for it, and demonstrate that it is effective on a variety of realistic
programs.

Comparison to Atomic Non-Interference Specifications. A method
or code block is atomic if it does not contain any thread interfer-
ence points [30, 36, 35, 15], and previous studies have shown that
as many as 90% of methods are typically atomic [18].

Unfortunately, the notion of atomicity is rather awkward for
specifying interference in non-atomic methods such as searchFrom.
Some particular code blocks in searchFrom, such as the synchro-

Figure 2: Traveling Salesperson Algorithm with atomic blocks

1 Object lock;
2 volatile int shortestPathLength;
3

4 compound void searchFrom(Path path) {
5 atomic {
6 if (path .length >= shortestPathLength)
7 return;
8 }
9

10 if (path .isComplete()) {
11 atomic {
12 synchronized (lock) {
13 if (path .length < shortestPathLength)
14 shortestPathLength = path .length;
15 }
16 }
17 } else {
18 for (Path c: path .children())
19 searchFrom#(c);
20 }
21 }

nized block, can be marked atomic, as shown in Figure 2, but the
result is rather verbose and inadequate, since atomic focuses on de-
limiting blocks where interference does not occur, but still suggests
that interference can occur everywhere outside these atomic code
blocks, such as on the access to path on line 18.

Moreover, the use of atomic blocks requires a bimodal reason-
ing style that combines sequential reasoning inside atomic blocks
with preemptive reasoning (pervasive interference) outside atomic
blocks. The programmer is responsible for choosing the appropri-
ate reasoning mode for each piece of code according to whether it
is inside or outside an atomic block, with obvious room for error.

Comparison to Yield Interference Specifications. An alternative
notation for thread interference is the yield statements of coop-
erative multithreading [3, 4, 9], automatic mutual exclusion [31],
and some of our earlier work [51, 52]. After annotating a variety of
systems with yield statements, we concluded that yield clarifies
where interference may occur, but does not address why interfer-
ence may occur. To illustrate this limitation, consider the following
revised searchFrom implementation that uses yield interference
specifications:

compound void searchFrom(Path path) {
yield;
if (path .length >= shortestPathLength)
. . .

}

Here, the yield suggests that one of the subsequent reads of
path.length or shortestPathLength is interfering or racy, but
it is not immediately obvious which one. By comparison, the inter-
ference annotation at line 5 in Figure 1 precisely documents that
interference occurs on the read of shortestPathLength.

2. Documenting Thread Interference
In a well-typed program, each thread should consist of a sequence
of serializable transactions that are separated by yields. A program-
mer must therefore include a yield point right before the first oper-
ation of each transaction, using the following annotations.

Yielding Field Accesses. The following syntax denotes a yielding
read or write of a racy field f, where the yield is performed just
before the access to f:
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e . .f // yield before racy read

e . .f = e′ // yield before racy write

Yielding Lock Acquires. The following yielding synchronized
block performs a yield after the evaluation of the lock expression e,
but before the lock acquire. Note that a lock release cannot interfere
with any concurrently executing action by another thread and thus
never needs to start a new transaction.

. .synchronized (e) { // yield before acquire

e′

}

Yielding Method Calls. Next, consider an atomic method m()
whose body performs a complete transaction. In order to sequen-
tially compose two calls to this method, a yield point must occur
between in between them. For this purpose, we also allow yield an-
notations on a method call, where the yield occurs after e and e′

have been evaluated and right before the call is performed:

e . .m(e′) // yield before method call

Non-Atomic Method Calls. A method m() is non-atomic or
compound if its body consists of multiple transactions separated
by yield points. In that case, we require calls to m() to document
the potential for yield points inside m(), where the postfix annota-
tion “#” reminds the programmer that invariants over thread-shared
state that hold before the call may not hold after the call, due to the
nested yields.

e .m#(e′) // yields inside m

Self-References. As usual, if the target object of a field access
or a method call is the self-reference variable this, then it can be
omitted as follows:

. .f // yield before racy read on this

. .f = e′ // yield before racy write to this

. .m(e′) // yield before call on this method

3. A Review of Lipton’s Theory of Reduction
Our type and effect system reasons about thread interference using
Lipton’s theory of reduction [34], which describes how certain
adjacent operations by different threads in a program trace can
be swapped without changing the overall behavior of the trace,
and when a sequence of instructions from one thread forms a
serializable transaction.

Suppose a trace contains an acquire operation a on a lock m that
is immediately followed by an operation b of a different thread.
That operation b cannot either acquire or release m (as it is held
by the first thread) and so the two operations commute — the
operations a and b can be swapped without changing the overall
behavior or final state of the trace. Thus, we say that acquire
operations are right-movers.

a b

b a

S1 S2 S3

S1 S'2 S3

Similarly, if a lock release operation b by one thread is immedi-
ately preceded by an operation a of a different thread, again these
two operations can be swapped without changing overall behavior,
so each lock release operation is a left-mover.

Next, consider an access to a variable x. If x is race-free, then
there are no concurrent accesses to x by other threads, so each
access commutes with both preceding and following operations of
other threads. Put differently, race-free accesses are both-movers,
in that they are both left and right movers.

Conversely, if x is a racy variable, then an access to x cannot
in general be swapped with a following (or preceding) operation b,
since b in general could be a conflicting access to x. Thus, we say
that racy accesses are non-movers, since they are neither left nor
right movers. (To avoid the complexities of Java’s relaxed memory
model [37], we assume here that all racy variables are volatile,
but the JCC implementation supports non-volatile racy variables:
see Section 6.)

This classification of operations as various kinds of movers
then allows us to identify serializable code blocks. In particular,
suppose the sequence α = a1. · · · .an of instructions performed
by a particular thread consists of:

1. zero or more right-movers, followed by

2. at most one non-mover, followed by

3. zero or more left-movers.

Any instructions of other threads that are interleaved into α can be
commuted out so that α executes serially, without interleaved op-
erations of other threads. In this case, we consider α a serializable
transaction, or simply a transaction.

4. Effects for Cooperability
Our effect system characterize the behavior of each program subex-
pression using two kinds of effects: mover effects and atomicity ef-
fects.

4.1 Mover Effects
A mover effect µ characterizes the behavior of a program expres-
sion in terms of how operations of that expression commute with
operations of other threads:

µ ::= F | Y | M | R | L | N

F: The mover effect F (for functional) describes expressions whose
result does not depend on any mutable state. Hence, re-evaluating
a functional expression is guaranteed to produce the same re-
sult. (Our type system requires all lock names to be functional
to ensure that it does not confuse distinct locks.)

Y: The mover effect Y describes yield operations, denoted as “. .”.
These expressions mark transactional boundaries where the cur-
rent transaction ends and a new one starts.

M: The mover effect M describes both-mover expressions that
commute both left and right with concurrent operations by other
threads, according to Lipton’s theory.

R: The mover effect R describes right-mover expressions.

L: The mover effect L describes left-mover expressions.

N: The mover effect N describes non-mover code that may perform
a racy access or that may contain right-movers followed by left-
movers.

The following tables define the iterative closure (µ∗) and sequential
composition (µ1;µ2) of mover effects. These operations are partial
(indicated with a “−”) and may fail if the code between two suc-
cessive yields would not be serializable. For example, the sequen-
tial composition (L; R) is undefined, since their composition is not
reducible—code containing a left-mover followed by a right-mover
does not form a serializable transaction. Mover effects are ordered
by the relation < shown via the lattice below.
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µ µ∗

F F
Y M
M M
R R
L L
N −

; F Y M R L N
F F Y M R L N
Y Y Y Y Y L L
M M Y M R L N
R R R R R N N
L L Y L − L −
N N R N − N −

M

N

R L

F Y

4.2 Atomicity Effects
Each program expression also has an atomicity effect τ that sum-
marizes whether the expression performs a yield operation.

τ ::= A | C

Here, A (atomic) means the expression never yields, and C (compound)
means the expression may yield. Ordering (<), iterative closure
(τ∗) and sequential composition (τ1; τ2) for atomicity effects are
defined by:

A < C

τ∗
def
= τ

τ1; τ2
def
= τ1 t τ2

4.3 Combined Effects
A combined effect κ is a pair of a mover effect µ and an atomicity
effect τ :

κ ::= τµ

Note that not all combined effects are meaningful; in particular, AY
and CF are contradictory: an atomic piece of code may not contain
a yield, and code with yields cannot be considered functional.

We define the ordering relation and the join, iterative closure,
and sequential composition operations on combined effects in a
point-wise manner:

τ1µ1 v τ2µ2 iff τ1 v τ2 and µ1 v µ2

τ1µ1 t τ2µ2
def
= τ3µ3 where τ3 = τ1 t τ2 and µ3 = µ1 t µ2

τ1µ1; τ2µ2
def
= τ3µ3 where τ3 = τ1; τ2 and µ3 = µ1;µ2

(τµ)∗
def
= τ∗µ∗

The following diagram summarizes the resulting lattice of com-
bined effects:

CN

CR CL

AM

AN

AR AL

CY

CM

AF

4.4 Conditional Effects
Based on the previous discussion, the effect of acquiring a lock m
is AR, since a lock acquire is a right-mover that contains no yield
operations. However, if the lock m is already held by the current
thread, then the re-entrant lock acquire is actually a no-op and could
be more precisely characterized as a both-mover AM.

Figure 3: YIELDJAVA Syntax

P ∈ Program = defn

defn ∈ Definition ::= class c { field meth }
field ∈ Field ::= c f

meth ∈ Method ::= a c m(c x) { e }

e, ` ∈ Expr ::= x | null
| eγf | eγf = e
| eγm(e) | eγm#(e)
| new c(e) | eγsync e | fork e
| let x = e in e | if e e e | while e e

γ ∈ OptYield ::= . | . .

x, y ∈ Var
c, d ∈ ClassName
f ∈ FieldName = Normal ∪ Final ∪Volatile
m ∈ MethodName
a ∈ Effect

We introduce conditional effects to capture situations like this
where the effect of an operation depends on which locks are held
by the current thread. We use ` to range over expressions that are
functional (F). Such expressions always reliably denote the same
lock. An effect a is then either a combined effect κ or an effect
conditional on whether a lock ` is held:

a ::= κ | ` ? a1 : a2
We extend the calculation of iterative closure, sequential com-

position, and join operations to conditional effects as follows:

(` ? a1 : a2)
∗ = ` ? a∗1 : a

∗
2

(` ? a1 : a2); a = ` ? (a1; a) : (a2; a)
a; (` ? a1 : a2) = ` ? (a; a1) : (a; a2)

(` ? a1 : a2) t a = ` ? (a1 t a) : (a2 t a)
a t (` ? a1 : a2) = ` ? (a t a1) : (a t a2)

We also extend the effect ordering to conditional effects. To
decide a1 v a2, we use an auxiliary relationvhn, where h is a set of
locks known to be held by the current thread, and n is a set of locks
known not to be held by the current thread. We define a1 v a2 to
be a1 v∅∅ a2 and check a1 vhn a2 recursively as follows:

κ1 v κ2

κ1 vhn κ2

` 6∈ n⇒ a1 vh∪{l}n a
` 6∈ h⇒ a2 vhn∪{l} a
` ? a1 : a2 vhn a

` 6∈ n⇒ κ vh∪{l}n a1
` 6∈ h⇒ κ vhn∪{l} a2
κ vhn ` ? a1 : a2

A similar notion of ordering was used for conditional atomicities
in our previous work on atomicity checkers [21].

5. Type and Effect System
We now formalize our type system for the idealized language
YIELDJAVA, a multithreaded subset of Java. This language does not
include some Java features, such as primitive types, arrays, inher-
itance, and interfaces. However, it is sufficient to explore the most
salient aspects of reasoning about thread interference. Section 6 de-
scribes how our implementation extends this idealized type system
to support other Java features.

5.1 Syntax
Figure 3 presents the YIELDJAVA syntax. A program P consists
of a sequence of class definitions defn . Each class definition defn
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associates a name with a body containing field and method decla-
rations.

A field declaration includes a class type and a name. Field
names are syntactically divided into three categories:

• Normal fields are mutable and free of race conditions. They
include thread-local fields as well as thread-shared fields that
are synchronized, for example, via locks.
• Final fields are immutable and thus race-free.
• Volatile fields are mutable, and may have concurrent conflicting

accesses.

We assume that race freedom for Normal fields is verified sepa-
rately by, for example, a race-free type system [10, 25, 1]. While
not permitted in YIELDJAVA, our prototype does support racy ac-
cesses to non-volatile fields, as described in Section 6.

A method declaration

a c m(c x) { e }

defines a method m with return type c that takes parameters x of
type c. The self-reference variable this is implicitly bound to the
receiving object in the method body e. The method declaration also
includes its effect a, which may include lock expressions referring
to any variables in scope, including this and x.

We assume that all programs include a class Unit, which has
no methods or fields. Unit is the type of expressions like while
loops that produce no meaningful value. The language includes the
special constant null, which has any class type, including Unit.

The object allocation expression new c(e) creates a new object
of type c and initializes its fields to the values computed from
the expression sequence e. Other YIELDJAVA expressions include
field read and update, method calls, variable binding and reference,
conditionals, loops, and fork. We also support synchronized blocks
e1.sync e2, which are analogous to Java’s synchronized statements

synchronized (e1) { e2 }

Some of these constructs have special forms to document yield
points, as summarized by the following table.

Expression Form Non-Yielding Yielding
Field Read e.f e. .f
Field Write e.f = e e. .f = e
Atomic Method Call e.m(e) e. .m(e)
Non-Atomic Method Call e.m#(e) e. .m#(e)
Lock Synchronization e.sync e e. .sync e

5.2 Type Rules
The YIELDJAVA type system ensures that thread interference is
observable only at explicitly annotated yield points. The core of
the type system is a set of rules for reasoning about the effect of an
expression, as captured by the judgment:

P ;E ` e : c · a

Here, e is an expression, c is the type of the expression, and a is an
effect describing the behavior of e. The program P is included to
provide access to class declarations, and the environment E maps
free variables in e to their types:

E ::= ε | E, c x

Figure 4 presents the complete set of rules for expressions, as well
as additional judgments for reasoning about well-formed environ-
ments (P ` E), types (P ` c), effects (P ;E ` a), methods
(P ;E ` meth), class declarations (P ` defn), and programs
(P ` OK). We describe the most important rules defining these
judgments:

[EXP VAR] and [EXP NULL] All variables are immutable in YIELDJAVA
and thus have cooperability effect AF. That is, a variable access
is atomic and yields a constant value. The constant null also
has effect AF.

[EXP IF] and [EXP WHILE] The effect of a conditional expression is
the effect of the test expression sequentially composed with
the join of the then and else branches. Similarly, the effect of
a while loop while e1 e2 is the effect of the test e1 composed
with the iterative closure (e2; e1)

∗ of the loop body followed
by a subsequent evaluation of the test.

[EXP NEW] The object allocation rule first retrieves the definition of
the class c from P , and then ensures the arguments e1..n match
the types of the fields of c. The effect of the whole expression
is the composition of effects of evaluating e1..n composed
with the effect AM, reflecting that new is not functional (since
re-evaluating an object allocation would not return the same
object).

[EXP REF] The rule [EXP REF] handles a read e.f of a Normal or
Final field. The rule first checks that e has some type c, and
extracts the type d of the field f from P . If f is Normal
and thus race-free, the effect of accessing the field is AM
because the access is guaranteed to commute with steps by
other threads. If f is Final, the field’s value is constant and the
effect is AF.

[EXP REF RACE] A racy field read is a non-mover operation, since it
may conflict with concurrent accesses by other threads. A racy
read eγf may be annotated with a yield point (if γ = “. .”) or
not (if γ = “.”). We use the auxiliary function JγK to map γ
to the corresponding effect:

J K : OptYield → Effect
J.K = AF
J..K = CY

Thus, if the expression e has effect a, then the non-yielding
racy access e.f has effect (a; AF; AN), whereas the yielding
racy access e..f has effect (a; CY; AN).

[EXP ASSIGN] and [EXP ASSIGN RACE] The rules for field updates
are similar to those for field reads, with the additional require-
ment that Final fields cannot be modified.

[EXP SYNC] The type rule for the synchronized statement `γsync e
first checks that ` is a valid lock expression (P ;E `lock `),
meaning that ` must have effect AF to guarantee that it always
denotes the same lock at run time.
The rule then computes the effect S(`, γ, a), where a is the
atomicity of e, and γ specifies whether there is a yield point.
The function S is defined as follows:

a S(`, γ, a)
κ ` ?κ : (JγK; AR;κ; AL)

` ? a1 : a2 S(`, γ, a1)
`′ ? a1 : a2 `′ ?S(`, γ, a1) :S(`, γ, a2) if ` 6= `′

If the body of the synchronized statement has a basic effect κ
and the lock ` is already held, then the synchronized statement
also has effect κ, since the acquire and release operations are
no-ops. Note that in this case the yield operation is ignored,
since it is unnecessary.
If the body has effect κ and the lock is not already held, then
the synchronized statement has effect (JγK; AR;κ; AL), since
the execution consists of a potential yield point, followed by a
right-mover (the acquire), followed by κ (the body), followed
by a left-mover (the release).
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Figure 4: YIELDJAVA Type Rules

P ;E ` e : c · a

[EXP VAR]
P ` E

E = E1, c x, E2

P ;E ` x : c · AF

[EXP NULL]
P ` E
P ` c

P ;E ` null : c · AF

[EXP IF]
P ;E ` e1 : d · a1

P ;E ` ei : c · ai ∀i ∈ 2..3

P ;E ` if e1 e2 e3 : c · (a1; (a2 t a3))

[EXP WHILE]
P ;E ` e1 : c1 · a1
P ;E ` e2 : c2 · a2

P ;E ` while e1 e2 : Unit · (a1; (a2; a1)∗)

[EXP REF]
P ;E ` e : c · a

class c { . . . d f . . . } ∈ P
f ∈ Normal =⇒ a′ = AM
f ∈ Final =⇒ a′ = AF

P ;E ` e.f : d · (a; a′)

[EXP ASSIGN]
P ;E ` e : c · a P ;E ` e′ : d · a′

class c { . . . d f . . . } ∈ P
f ∈ Normal

P ;E ` (e.f = e′) : d · (a; a′; AM)

[EXP NEW]

class c { di xi
i∈1..n . . . } ∈ P

P ;E ` ei : di · ai ∀i ∈ 1..n

P ;E ` new c(e1..n) : c · (a1; · · · ; an; AM)

[EXP REF RACE]
P ;E ` e : c · a

class c { . . . d f . . . } ∈ P
f ∈ Volatile

P ;E ` eγf : d · (a; JγK; AN)

[EXP ASSIGN RACE]
P ;E ` e : c · a P ;E ` e′ : d · a′

class c { . . . d f . . . } ∈ P
f ∈ Volatile

P ;E ` (eγf = e′) : d · (a; a′; JγK; AN)

[EXP SYNC]

P ;E `lock `
P ;E ` e : c · a

P ;E ` `γsync e : c · S(`, γ, a)

[EXP INVOKE ATOMIC]
P ;E ` e : c · a

class c { . . . meth . . . } ∈ P
meth = a′ c′ m(di xi

i∈1..n) { e′ }
P ;E ` ei : di · ai ∀i ∈ 1..n

P ;E ` a′[this := e, xi := ei
i∈1..n] ↑ a′′ a′′ v AN

P ;E ` eγm(e1..n) : c′ · (a; a1; · · · ; an; JγK; a′′)

[EXP INVOKE COMPOUND]
P ;E ` e : c · a

class c { . . . meth . . . } ∈ P
meth = a′ c′ m(di xi

i∈1..n) { e′ }
P ;E ` ei : di · ai ∀i ∈ 1..n

P ;E ` a′[this := e, xi := ei
i∈1..n] ↑ a′′

P ;E ` eγm#(e1..n) : c′ · (a; a1; · · · ; an; JγK; a′′)

[EXP FORK]

P ;E ` e : c · a
P ;E ` fork e : Unit · AL

[EXP LET]
P ;E ` e1 : c1 · a1 P ;E, c1 x ` e2 : c2 · a2

P ;E ` a2[x := e1] ↑ a′2
P ;E ` let x = e1 in e2 : c2 · (a1; a′2)

P ` E
[ENV EMPTY]

P ` ε

[ENV X]
P ` E

P ` c x 6∈ dom(E)

P ` (E, c x)

P ` c
[CLASS NAME]

class c { . . . } ∈ P
P ` c

P ;E ` a
[AT BASE]

P ` E
P ;E ` κ

[AT COND]
P ;E `lock `

P ;E ` ai ∀i ∈ 1..2

P ;E ` ` ? a1 : a2

P ;E `lock e
[LOCK EXP]

P ;E ` e : c · AF

P ;E `lock e

P ;E ` a ↑ a′

[LIFT BASE]

P ` E
P ;E ` κ ↑ κ

[LIFT GOOD LOCK]
P ;E `lock `

P ;E ` ai ↑ a′i ∀i ∈ 1..2

P ;E ` (` ? a1 : a2) ↑ (` ? a′1 : a′2)

[LIFT BAD LOCK]
P ;E 6`lock `

P ;E ` ai ↑ a′i ∀i ∈ 1..2

P ;E ` (` ? a1 : a2) ↑ (a′1 t a′2)

P ;E ` meth

[METHOD]
P ;E, d x ` e : c · a′

P ;E, d x ` a
a′ v a

P ;E ` a c m(d x) { e }

P ` defn

[CLASS]
field i = di fi ∀i ∈ 1..m

P ` di ∀i ∈ 1..m
P ; c this ` methi ∀i ∈ 1..n

P ` class c { field1..m meth1..n }

P ` OK

[PROGRAM]
P = defn1..n

P ` defni ∀i ∈ 1..n
ClassesOnce(P ) FieldsOnce(P ) MethodsOnce(P )

P ` OK
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If the body has conditional effect ` ? a1 : a2, where ` is the lock
being acquired by this synchronized statement, then we ignore
a2 and recursively apply S to a1, since ` is held within the
synchronized body.
If the body has an effect that is conditional on some other lock
`′, then we recursively apply S to both branches.

[EXP LET] This rule for let x = e1 in e2 infers effects a1 and a2
for e1 and e2, respectively. Care must be taken when construct-
ing the effect for this expression because a2 may refer to the
let-bound variable x.
For example, the body of the following let expression pro-
duces an effect that is conditional on whether the lock x is
held.

let x = e1 in
x .sync . . .

Thus, we apply the substitution [x := e1] to yield a corre-
sponding effect a2[x := e1] that does not mention x. How-
ever, e1 may not have effect AF, in which case a2[x := e1]
may not be a valid effect (because it could contain e1 as part of
a non-constant lock expression). As in our previous work [21],
we use the judgment

P ;E ` a2[x := e1] ↑ a′2
to lift the effect a2[x := e1] to a well-formed effect a′2 that is
greater than or equal to a2[x := e1].
This “lifting” judgment is defined in Figure 4:

[LIFT BASE] Basic effects are always well-formed and remain
unchanged when lifted.

[LIFT LOCK WELL-FORMED] If a conditional effect refers to a
well-formed lock, this rule recursively lifts the two com-
ponent effects.

[LIFT LOCK ILL-FORMED] If a conditional effect refers to an
ill-formed lock expression, this rule removes the depen-
dency on this lock by joining together the two recursively-
lifted component effects.

[EXP INVOKE ATOMIC] This rule handles calls to atomic methods.
The rule first extracts the appropriate method signature from
P based on the receiver’s type, and it verifies that the actual
arguments match the declared parameter types. Finally, the
rule computes the cooperability effect of the invocation. The
method’s specified effect a′ may refer to this or the parameter
names x1..n. Therefore, we substitute
• the actual receiver e for this, and
• the actual arguments e1..n for the parameters x1..n

to produce the effect a′[this := e, xi := ei
i∈1..n], and

ensure that the resulting effect is valid by lifting it to an effect
a′′ that is well-formed in the current environment. This effect
a′′ must be an atomic effect and less than or equal to AN.
Like racy field accesses, a method invocation may be labeled
with a yield point. Thus, the overall effect also includes JγK.

[EXP INVOKE COMPOUND] This rule applies to a method call eγm#(e1..n)
to a non-atomic method. It is similar to [EXP INVOKE ATOMIC],
but removes the requirement that the computed effect a′′ be
atomic.

[EXP FORK] A fork expression fork e creates a new thread to eval-
uate e. Since a fork operation cannot commute past the oper-
ations of its child thread, fork operations are left movers and
thus never start new transactions.

[METHOD], [CLASS], and [PROG] These rules verify the basic well-
formedness requirements of methods, classes, and programs.
The [PROG] rule uses the following additional predicates.
(See [24] for their precise definition.)
• ClassesOnce(P ): no class is declared twice in P .
• FieldsOnce(P ): no field name is declared twice in a class.
• MethodsOnce(P ): no method name is declared twice in a

class.

5.3 Correctness
The appendix presents a formal semantics for YIELDJAVA, where
a run-time state σ contains a program’s class definitions, dynam-
ically allocated objects, and dynamically created threads. This se-
mantics satisfies the standard preservation property, whereby eval-
uation preserves well-typing of the run-time state. We then define
both a preemptive and cooperative semantics for program behavior.
The preemptive semantics interleaves the instructions of the vari-
ous threads at instruction-level granularity, essentially modeling the
behavior of a preemptive scheduler. The cooperative semantics per-
forms context switches between threads only at explicitly marked
yield points in the style of cooperative multitasking [3, 4, 9].

The central correctness result for this type system is that well-
typed programs behave equivalently under both semantics. That
is, if a well-typed program P can reach a final state σ under
the preemptive semantics, then it can also reach that final state
under the cooperative semantics. Therefore, it is sufficient to reason
about the correctness of well-typed programs under the simpler
cooperative semantics, since this correctness result also applies to
executions under the preemptive semantics (and consequently, to
executions on multicore hardware).

6. Implementation
We have developed an implementation called JCC that extends the
YIELDJAVA type system to support the Java language.

JCC uses the standard Java field modifiers final and volatile
to classify fields as either Final or Volatile; all other fields are
considered Normal. We also introduce one new modifier, racy,
to capture intentionally racy Normal fields. Our implementation
assumes that correct field annotations are provided for the input
program. Such annotations could be generated using RCC/JAVA [1]
or any other analysis technique. For our experiments, we leveraged
both that tool, as well as the FASTTRACK [20] race detector, to
identify racy fields.

JCC supports annotations on methods to describe their effects.
The following three keywords are sufficient to annotate most meth-
ods:

• atomic: an atomic non-mover method with effect AN.
• mover: an atomic both-mover method with effect AM.
• compound: a compound non-mover method with effect CN.

These effect annotations appear alongside the standard modifiers
for a method, as in:

atomic public void m() { . . . }

They may also be combined to form conditional effects, such as
(this ? mover : compound).

To further reduce the burden of annotating methods with coop-
erability effects, JCC uses carefully chosen defaults when annota-
tions are absent. In essence, it assumes:

• fields are race free and
• all methods are atomic both-movers.
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Access Type Syntax Effect
racy read e1..f# a1; CL
racy write e1..f# = e2 a1; a2; CL
write-guarded read (lock held) e1.f a1; AM
write-guarded read (lock not held) e1.f a1; AN
write-guarded write (lock held) e1.f = e2 a1; a2; AN
race-free array read e1[e2] a1; a2; AM
race-free array write e1[e2] = e3 a1; a2; a3; AM
racy array read e1[e2]# a1; a2; CL
racy array write e1[e2]# = e3 a1; a2; a3; CL

Figure 5. Effects of additional operations (ai is the effect of ei).

We also permit more expressive (but more verbose) annotations
to describe all elements of the conditional effect lattice when the
keywords are not sufficient. The following illustrates the full syntax
for effect annotations:

atomic non-mover void m1() { . . . }

this .f ? (atomic functional) : (compound non-mover)
void m2() { . . . }

As in YIELDJAVA, field accesses and method invocations may
be written using “..” in place of “.” to indicate interference points.
Yielding synchronized statements use the syntax

. .synchronized(e) { . . . }

The JCC checker verifies that these yield points characterize all
possible thread interference. It reports a warning whenever inter-
ference may occur at a program point not corresponding to a yield,
or if a method’s specification is not satisfied by its implementation.

The remainder of this section describes how JCC extends the
YIELDJAVA type system to support features of Java programs in-
cluding subtyping, intentional races, write-guarded data, and ar-
rays1.

Subtyping and Covariant Cooperability Specifications. One ma-
jor extension to the presented type system is the support for in-
heritance and subtyping. We permit the cooperability effect of the
method to change covariantly, intuitively requiring, for example,
that b v a in the following class definitions:

class C { class D extends C {
a t m() { . . . } b t m() { . . . }

} }

Fields with Races. Although data races should in general be
avoided when possible, large programs often have some intentional
races, which JCC supports via a racy annotation on Normal fields.
A read from a racy field must be written as e..f#. Here, the double
dots as usual indicate a yield point, and the trailing # identifies
the racy nature of the read (and that the programmer needs to
consider the consequences of Java’s relaxed memory model [37]).
The overall effect of e..f# is the composition of a yield and a
non-mover memory access: (CY; AN) = CL. Writes are handled
similarly. The rules for computing the effects of these operations,
and those discussed below are summarized in Figure 5.

Write-Guarded Fields. YIELDJAVA also supports write-guarded
fields (such as the shortestPathLength field in Section 1) for

1 Our implementation does not currently support generic classes due to
limitations in the front-end checker upon which JCC is built, but supporting
generic types would not be fundamentally problematic.

which a protecting lock is held for all writes but not necessarily for
reads. For such fields, a read while holding the protecting lock is
a both-mover, since there can be no concurrent writes. However, a
write with the lock held is still a non-mover, since there may be
concurrent reads (that do not hold the lock).

Arrays. The YIELDJAVA checker handles array accesses in a way
analogous to Normal fields2. Racy array accesses must be annotated
with “#” and are assumed to be yield points.)

7. Experimental Evaluation
To evaluate its effectiveness, we applied JCC to a variety of bench-
mark programs, including:

• a number of standard library classes from Java 1.4.2 19: namely
Inflater, Deflater, StringBuffer, String, PrintWriter,
Vector, and ZipFile;
• sparse, raytracer, sor, and moldyn from the Java Grande

suite [32];
• tsp, a solver for the traveling salesman problem [48];
• and elevator, a real-time discrete event simulator [48].

These programs use a variety of synchronization idioms, and pre-
vious work has revealed a number of interesting concurrency bugs
in these programs. Thus, they show the ability of our annotations
to capture thread interference under various conditions and to high-
light unintended, problematic interference. Three of these programs
(raytracer, sor, and moldyn) use broken barrier implementa-
tions [20]. We discuss those problems below and use versions with
corrected barrier code (named raytracer-fixed, sor-fixed,
and moldyn-fixed) in our experiments.

All experiments were performed on a 2 GHz dual-core com-
puter with 3 GB memory, using the Java HotSpot 64-bit Server
VM, version 1.6.0 24. The JCC checker was able to analyze each
of these benchmarks in under 2 seconds.

Figure 6 shows the size of each benchmark program, the time
required to manually insert the JCC annotations into each program,
and the number of annotations required to enable successful type
checking. This count includes all racy field annotations, method
specifications, and occurrences of “. .” and “#”. Even for programs
comprising several thousand lines, the annotation burden is quite
low. Each program was annotated and checked in about 10 to 30
minutes, and roughly one annotation per 30 lines of code was re-
quired. We did have some previous experience using these pro-
grams, which facilitated the annotation process, but since we in-
tend JCC to be used during development, we believe our experience
reflects the cost incurred by the intended use of our technique.

7.1 Precision of Thread Interference Annotations
Our experiments demonstrate that cooperability annotations serve
as clear documentation of where interference may occur, thereby
simplifying the complex task of reasoning about program behavior.
To quantify this in one specific dimension, we consider the question

“How many potential interference points must a program-
mer consider in a program annotated with various forms of
non-interference specifications?”

Each specification form provides a particular semantic guarantee
about where interference may occur, and we believe that isolating
interference to as few program points as possible facilitates rea-
soning about code. The five different specifications (or semantic
guarantees) we consider are as follows:

2 Note that in Java, it is not possible to indicate that elements of an array are
final or volatile.
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Size Annot. Time Annot. Interference Points Unintended
Program (lines) (min.) Count Preemptive Race Atomic AtomRace Cooperative Yields

java.util.zip.Inflater 317 9 4 36 12 0 0 0 0
java.util.zip.Deflater 381 7 8 49 13 0 0 0 0
java.lang.StringBuffer 1,276 20 10 210 81 9 2 1 1
java.lang.String 2,307 15 5 230 87 6 2 1 0
java.io.PrintWriter 534 40 109 73 99 130 97 26 9
java.util.Vector 1,019 25 43 185 106 44 24 4 1
java.util.zip.ZipFile 490 30 62 120 105 85 53 30 0
sparse 868 15 19 329 98 48 14 6 0
tsp 706 10 45 445 115 437 80 19 0
elevator 1,447 30 64 454 146 241 60 25 0
raytracer-fixed 1,915 10 50 565 200 105 39 26 2
sor-fixed 958 10 32 249 99 128 24 12 0
moldyn-fixed 1,352 10 39 983 130 657 37 30 0
Total 13,570 231 490 3,928 1,291 1,890 432 180 13

Figure 6. Interference Points and Unintended Yields

• Preemptive: If a program has no synchronization specification,
interference must be assumed to possibly occur on any access to
a field or any lock acquire, since these operations may conflict
with operations of concurrent threads. We exclude operations
that do not cause interference, such as accesses to method-local
variables, lock releases, method calls, etc. from this count.
• Race: If a program’s specification distinguishes race-free fields

from potentially racy fields, interference may be assumed to
occur only on any access to a racy field or any lock acquire.
• Atomic: If a program’s specification distinguishes atomic meth-

ods from non-atomic methods, thread interference may be con-
sidered to occur only in non-atomic methods. These interfer-
ence points include field accesses, lock acquires, and also calls
to an atomic method from a non-atomic context.
• AtomicRace: If a program specification distinguishes both racy

fields and atomic methods, interference may be considered to
occur in non-atomic methods at racy accesses, lock acquires,
and calls to atomic methods.
• Cooperative: If a program specification identifies yield points,

interference may be considered to occur only at those explicit
yield points.

Figure 6 shows the number of interference points in each bench-
mark under each semantics. Benchmarks in which all methods are
atomic, such as Inflater, have zero interference points under both
atomic and cooperative semantics.

Overall, the results show that information about race conditions
and atomic methods provides significant benefits over the Preemp-
tive column. In particular, the number of interference points drops
from 3,928 under the Preemptive column (which assumes no non-
interference information) to 432 under AtomRace (which essen-
tially characterizes prior techniques based on method-level atomic-
ity and race condition information).

As shown in the “Cooperative” column, our cooperative type
and effect system further reduces the number of possible interfer-
ence points from 432 to 180, essentially because this analysis rea-
sons more precisely about where thread interference may occur.

We sketch two situations that illustrate why cooperative reason-
ing is significantly more precise than AtomRace. First, for the TSP
algorithm from Figure 1, AtomRace requires an interference point
before each call to the atomic methods path.isComplete() and
path.children() from within a non-atomic method. In contrast,
our type system identifies that these two methods are more pre-

Figure 7: StringBuffer

public final class StringBuffer · · · {
(this?mover:atomic) int length() { . . . }
(this?mover:atomic) void getChars(. . .) { . . . }

compound
synchronized StringBuffer append(StringBuffer sb) {
. . .
int len = sb .length();
int newcount = count + len;
if (newcount > value .length)

expandCapacity(newcount);
sb . .getChars(0, len, value, count);
count = newcount;
return this;

}
}

cisely characterized as both movers (which do not interfere with
other threads), and so no yield point is necessary at these calls.

As a second example, consider a non-atomic method that con-
tains two nested synchronized blocks. Under AtomRace, both ac-
quires are an interference point. Under our analysis, both acquires
are right-movers and so no yield is required before the second.

The method StringBuffer.append() in Figure 7 illustrates
this kind of situation. The append() method acquires the this
lock and then calls sb.length(), which is atomic (since the lock
sb is not held). The lock acquire of this can move right to just
before the sb.length() call, so no yield is required at that call.
Conversely, a yield is required for the call sb..getChars(), since
it is preceded by actions (such as the call to sb.length()) that
are not right movers. This yield at sb..getChars() highlights
that append() is compound, and may behave erroneously if sb
is concurrently modified by other threads.

These two examples illustrate why the notions of race condi-
tions and atomic methods are not by themselves sufficient to iden-
tify interference points in a precise manner, and the experimental
results show that the cooperative type and effect system is signifi-
cantly more precise in its ability to verify interference points.

7.2 Identifying Defects
The final column in Figure 6 shows the number of unintended yield
point in each program. These are program points that suffer from
thread interference in ways that we determined are unintentional or
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Figure 8: RayTracer

class RayTracerRunner implements Runnable {
int id;

compound public void run() {
// init
br .DoBarrier#(id);
// render

. .synchronized (scene) {
for(int i = 0; i < JGFRayTracerBench .nthreads; i++)

if (id == i)
JGFRayTracerBench . .checksum1 =

JGFRayTracerBench . .checksum1 + checksum;
}

br .DoBarrier#(id);
// cleanup

}
}

possibly damaging based on manual code inspection. These unin-
tended yields highlight concurrency bugs, such as atomicity viola-
tions and data races [19, 21]. We illustrate how JCC enables the pro-
grammer to identify several concurrency bugs in our benchmarks.

RayTracer. The raytracer benchmark uses a barrier br to coor-
dinate several rendering threads, as shown in Figure 8. Although
the initial barrier code was incorrect, it did not cause other unin-
tended yields. After rendering, each thread acquires the lock scene
before adding its local checksum to the global shared variable
checksum1. However, each thread creates its own scene object,
and thus acquiring scene fails to ensure mutual exclusion over the
updates to checksum1. This is made clear by the explicit yields on
the reads and writes of checksum1. 3

Vector. A Vector constructor (see Figure 9) takes as argument
a collection c and invokes c’s size method, allocates an array
of that size, and copies elements from c into the array. The two
yield annotations highlight that c may be modified by a con-
current thread in between requesting the size and copying the
data, potentially resulting in an incorrectly initialized Vector or
an ArrayIndexOutOfBounds exception. Similar pitfalls for the
methods removeAll(c) and retainAll(c) [21] are also caught
by JCC.

SOR. In the sor benchmark (see Figure 10), the computation
threads synchronize on a barrier implemented as a shared two-
dimensional array sync. Unfortunately, the barrier is broken, since
the volatile keyword applies only to the array reference, not
the array elements. Thus, the barrier synchronization code at the
bottom of the main processing loop may not properly coordinate
the threads, leading to races on the data array G. This problem is
obvious when using JCC because yield annotations must be added
in dozens of places, essentially to all accesses of sync and G.

When the barrier is fixed, we obtain much cleaner code: the
yield count decreases from 40 to 12. In particular, the accesses to
G between barrier calls are free of yields, signifying that between
barriers, sequential reasoning is applicable. Figure 6 includes data
for sor-fixed, the corrected version of the benchmark, which we
believe is more representative of multithreaded Java programs.

3 We also note that if JCC were extended to identify locks used only by a
single thread, we could remove the yield on the synchronized operation.

Figure 9: Vector

interface Collection {
(this ? mover : atomic) int size();
(this ? mover : atomic) Object[] toArray(Object a[]);

}
class Vector {

protected Object elementData[];
protected int elementCount;

compound public Vector(Collection c) {
elementCount = c . .size();
elementData =

new Object[(int)Math .min( (elementCount*110L)/100,
Integer .MAX_VALUE )];

c . .toArray(elementData);
}

}

Figure 10: Original SOR Algorithm

class SORRunner implements Runnable {
double G[][];
volatile long sync[][];

compound public void run() {
. . .

for (int p = 0; p < 2*num_iterations; p++) {
for (int i = ilow + (p%2); i < iupper; i=i+2) {
. . .
for (int j=1; j < Nm1; j = j+2){

G[i][j]# = omega_over_four *
( G[i-1][j]# + G[i+1][j]# +

G[i][j-1]# + G[i][j+1]# ) +
one_minus_omega * G[i][j]#;

. . .
}

}

sync[id][0]# = sync[id][0]# + 1;
if (id > 0)

while (sync[id-1][0]# < sync[id][0]#) ;
if (id < JGFSORBench .nthreads-1)

while (sync[id+1][0]# < sync[id][0]#) ;
}

}
}

Moldyn. The moldyn benchmark uses a barrier object to synchro-
nize the actions of multiple computation threads. The barrier object
maintains an array

volatile boolean[] IsDone;

to record which threads are currently waiting at the barrier, but the
elements of the array are prone to race conditions because again the
volatile keyword applies only to the array reference and not the
array elements. This bug leads to potential races on all data accesses
intended to be synchronized by the barrier, and a large number
(58) of yield annotations were necessary to document all such
cases. Again, we report on the corrected version moldyn-fixed
in Figure 6.
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8. Related Work
Cooperability. Cooperative multithreading is a thread execution
model in which context switching between threads may occur only
at yield statements [3, 4, 9]. That is, cooperative multithreading
allows concurrency but disallows parallel execution of threads. In
contrast, cooperability guarantees behavior equivalent to coopera-
tive multithreading, but actually allows execution in a preemptive
manner, enabling full use of modern multicore hardware.

Automatic mutual exclusion is an execution model that proposes
ensuring mutual exclusion by default [31]; yield statements de-
marcate where thread interference is permitted. A critical differ-
ence is that these yield statements are enforced at run time to
provide serializability via transactional memory techniques; in con-
trast, the JCC checker guarantee serializability statically.

In prior work, we explored a type and effect system for cooper-
ability [51], and dynamic analyses for checking cooperability and
inferring yield annotations for legacy programs [52]. Others have
explored task types, a data-centric approach to obtaining pervasive
atomicity [33], a notion that is closely related to cooperability.

Race Freedom. A data race occurs when two threads simultane-
ously access a shared variable without synchronization, and at least
one thread writes to that variable. Data races often reflect prob-
lems in synchronization, and expose a weak memory model to pro-
grammers, compromising software reliability. Data race freedom
remedies this issue by guaranteeing behavior equivalent to execut-
ing with sequentially consistent [2].

The JCC checker relies on a race analysis to properly anno-
tate racy variables, used as input to the cooperability analysis.
There is extensive literature on how to find and fix data races ef-
ficiently. Dynamic race detectors may track the happens-before
relation [20], implement the lockset algorithm [45], or combine
both [39]. Sampling techniques are also used to make race detec-
tion more lightweight [8, 16]. Static race detectors may make use of
a type system [10, 1], implement a static lockset algorithm [38, 41],
or use model checking [42].

Atomicity and Transactional Memory. An atomic block is a
lexically-scoped annotation that declares the sequence of instruc-
tions in that block to be free of thread interference. Atomicity and
transactional memory both focus on ensuring that atomic blocks ex-
ecute in a serializable manner, thus enjoying freedom from thread
interference.

Atomicity is an analysis approach that checks if atomic blocks
are serializable. Both static [21, 27, 49] and dynamic tools [18,
50, 22, 17] have been developed to check atomicity. Transactional
memory enforces serializability of atomic blocks (or transactions)
at run time. Both hardware [28, 14] and software [46, 26] imple-
mentation techniques have been developed, and the semantics of
transactional memory have also been explored in depth [6].

While atomic blocks are clearly beneficial to program reason-
ing, one must still ascertain whether a piece of code is inside some
atomic block to enjoy freedom from thread interference, hence
introducing a form of bi-modal reasoning [51]. Furthermore, the
regions of code outside atomic blocks are still subject to uncon-
strained preemptive scheduling, with all the traditional problems
such schedulings pose.

Other Properties. Deterministic parallelism guarantees that the
result of executing multiple threads is invariant across thread
schedulings. There are various approaches to obtaining determin-
istic parallelism: static analyses [7], dynamic analyses [43, 12], as
well as run-time enforcement [40, 13].

Linearizability, a popular correctness criterion, guarantees that
the concurrent calls to a shared object execute atomically and
satisfy a sequential specification [29, 47]. Shape analysis [5] and

abstract interpretation [47] have been used to prove linearizability
for small programs, while model checking has been used to refute
linearizability [11].

9. Summary
Reasoning about the correctness of multithreaded software is noto-
riously difficulty under the preemptive semantics provided by mul-
tiprocessor and multicore architectures. This paper proposes a more
modular approach for reasoning about multithreaded software cor-
rectness.

Under our approach, software is written using traditional syn-
chronization idioms such as locks, but the programmer also explic-
itly documents intended sources of thread interference, which we
refer to as yield points. The type system of this paper then verifies
that these annotations identify all possible situations where inter-
ference may occur. Consequently, any well-typed program behaves
as if it is executing under a cooperative semantics where context
switches between threads happen only at yield points.

This cooperative semantics provides a much nicer foundation
for subsequent reasoning about program behavior and correctness.
In particular, intuitive sequential reasoning is now valid, except at
explicitly marked yield points. One interesting avenue of future
work would be to incorporate cooperative reasoning into a proof
system, such as rely-guarantee reasoning. Another would be to ex-
tend cooperability to reason about determinism properties. Finally,
the formal system described here could be adapted to other lan-
guages, such as C++ or X10.
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A. Formal Semantics of YIELDJAVA

A.1 Runtime Syntax
To characterize the runtime behavior of YIELDJAVA programs, we
extend the syntax of expressions to include object addresses ρ and
the in-sync construct. We assume that addresses are divided into
distinct sets, one for each type of object. The membership relation
ρ ∈ Addrc indicates that the object at address ρ is of type c. The
expression in-sync ρ e describes an expression e that is executing
while holding the lock ρ.

e ∈ Expr ::= · · · | in-sync ρ e
v ∈ Value ::= ρ | null
ρ ∈ Addr =

⋃
c ∈ ClassName

Addrc

T ∈ ThreadState ::= e | ready e |wrong
t ∈ Thread = {1, 2, 3, . . .}

obj ∈ Object ::= { f = v }o
o ∈ Lock ::= ⊥ | Thread
σ ∈ State = Program

∪̂ (Addr ⇀ Object)
∪̂ (Thread ⇀ ThreadState)

where A ∪̂ B def
= {a ∪ b | a ∈ A ∧ b ∈ B}.

A thread state T is either:

• an expression e,
• ready e, which describes a newly created thread ready to exe-

cute an expression e, or
• wrong, which occurs when a thread tries to dereference null.

A thread map is a partial map from threads to thread state. An
object map is a partial map from addresses to objects. An object
is a sequence of field values for a given class, along with a lock o
indicating which thread is holding the lock for that object, if any.
(As in Java, every object has a lock implicitely associated with it at
run time).

Finally, the run-time state σ is a combination of class defini-
tions, an object map, and a thread map.

Figure 11 presents the formal transition rules for the evaluation
of YIELDJAVA programs. Each rule describes a transition step→t

that could be taken by the thread t. We use an evaluation context E ,
an expression with a “hole” [ ], to indicate the next subexpression to
evaluate. We use the form σ[t 7→ T ] to indicate a state that agrees
with σ at all threads except t, where it maps to T . Similarly, we
use σ[ρ 7→ { f = v }o] and σ[ρ.f 7→ v] to indicate updates to
addresses and object fields. Evaluation finishes when each thread
state is either a value or wrong.

To obtain the set of locks held by a particular evaluation context
E , we define the function locks :: EvalCtxt → Lockset , such that

ρ ∈ locks(E)⇔ E ≡ E ′[in-sync ρ E ′′]

Given locksets h1, h2 and h3, we indicate these are pairwise dis-
joint with the notation

h1 6∩ h2 6∩ h3

We define two semantics for states. In the preemptive se-
mantics →, the steps of the various threads are interleaved non-
deterministically, and a thread can perform a step at any time (pro-
vided that thread is not blocked). This nondeterminism means that
reasoning about the behavior of programs under the preemptive
semantics is very difficult.

In the cooperative semantics →c, context switches between
threads can happen only at yield operations, which are indicated
by dots (“. .”), or on thread termination. In more detail, a thread
t is yielding in σ (or simply yielding if the context is clear) if for
σ(t) = T ,

1. T = ready e

2. T ∈ Value ,

3. T = wrong,

4. T = E [ρ..f ],
5. T = E [ρ..f = v],

6. T = E [ρ..sync e ],
7. T = E [ρ..m(v)], or

8. T = E [ρ..m#(v)].

The thread t is cooperatively enabled in a state σ if for all t′ in
Dom(σ) \ {t}, we have t′ is yielding in σ. Thus, t can only take a
cooperative step if all other threads are yielding. This means that if
t takes a cooperative step, then every other thread is either at a yield
operation, is not enabled (either terminated at a value or wrong),
or has not started yet. A state is yielding if all threads are yielding
in that state.
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Figure 11: YIELDJAVA Semantics

Evaluation contexts
E ::= [ ] | new c(v, E, e) | Eγf | Eγf = e | vγf = E

| Eγm(e) | Eγm#(e) | vγm(v, E, e) | vγm#(v, E, e)
| let x = E in e | if E e e | Eγsync e | in-sync ρ E

Transition rules

σ[t 7→ E[ργf ]] →t σ[t 7→ E[v]] if σ(ρ) = { · · · , f = v, · · · }o [RED READ]

σ[t 7→ E[ργf = v]] →t σ[t 7→ E[v], ρ.f 7→ v] [RED WRITE]

σ[t 7→ E[ργm(v1..n)]] →t σ[t 7→ E[e[this := ρ, xi := v i∈1..ni ]]] [RED INVOKE]
if ρ ∈ Addrc and class c { · · · a d′ m(d x) { e } · · · } ∈ P

σ[t 7→ E[ργm#(v1..n)]] →t σ[t 7→ E[e[this := ρ, xi := v i∈1..ni ]]] [RED INVOKE COMPOUND]
if ρ ∈ Addrc and class c { · · · a d′ m(d x) { e } · · · } ∈ P

σ[t 7→ E[new c(v1..n)]] →t σ[t 7→ E[ρ], ρ 7→ { fi = vi
i∈1..n }⊥] [RED NEW]

if ρ 6∈ dom(σ) and ρ ∈ Addrc and class c { t f · · · } ∈ P

σ[t 7→ E[ργsync e ], ρ 7→ { f = v }⊥] →t σ[t 7→ E[in-sync ρ e], ρ 7→ { f = v }t] [RED SYNC]

σ[t 7→ E[ργsync e ], ρ 7→ { f = v }t] →t σ[t 7→ E[e], ρ 7→ { f = v }t] [RED SYNC REENTRANT]

σ[t 7→ E[in-sync ρ v], ρ 7→ { f = v }t] →t σ[t 7→ E[v], ρ 7→ { f = v }⊥] [RED IN-SYNC]

σ[t 7→ E[fork e]] →t σ[t 7→ E[null], t′ 7→ ready e] if t′ 6∈ Dom(σ) [RED FORK]

σ[t 7→ ready e] →t σ[t 7→ [e]] [RED READY]

σ[t 7→ E[let x = v in e]] →t σ[t 7→ E[e[x := v]]] [RED LET]

σ[t 7→ E[if v e2 e3]] →t σ[t 7→ E[e2]] if v 6= null [RED IF-NONNULL]

σ[t 7→ E[if null e2 e3]] →t σ[t 7→ E[e3]] [RED IF-NULL]

σ[t 7→ E[while e1 e2]] →t σ[t 7→ E[if e1 (e2; while e1 e2) null]] [RED WHILE]

σ[t 7→ E[e]] →t σ[t 7→ wrong] [RED WRONG]
if e ∈ {nullγf, nullγf = v, nullγm(v), nullγm#(v), nullγsync e′ }

Transition relations
(preemptive semantics) σ → σ′ if σ →t σ′

(cooperative semantics) σ →c σ′ if σ →t σ′

and σ(t) is cooperatively enabled
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A.2 Type Rules for Run-Time Constructs
We expand the type rules to include run-time constructs; these rules
are shown in Figure 12. We extend the definition of an environment
to include allocated addresses, like such:

E ::= ε | E, c x | E, c ρ

• Addresses have effect AF, the constant effect, and have the
appropriate type c for the object at address ρ.
• The rule [EXP INSYNC] first checks that the lock expression ρ

and enclosed expression e are both valid. If so, the effect for
an in-sync expression depends on what the effect a of e is, as
determined by the following function SI(ρ, a).

a SI(ρ, a)
κ κ; AL

ρ ? a1 : a2 SI(ρ, a1)
ρ′ ? a1 : a2 ρ′ ?SI(ρ, a1) :SI(ρ, a2) if ρ 6= ρ′

Briefly, if a is a combined effect κ, then the overall effect is
κ sequentially followed by AL, the effect for a lock release
operation. If a is an effect conditional on holding lock ρ, and
the in-sync expression is also holding ρ, then we simplify a
by having SI recurse down the holding branch. However, if a
is a conditional effect on some different lock ρ′, then we recurse
SI down both branches of the conditional.
• The judgment P ` E is expanded to include well-formedness

constraints on addresses in the environment E. An address must
have a valid type and not already be listed in the environment.
• The judgment P ;E ` T simply checks if a thread state is

well-formed. If a thread state is an expression e or the con-
struct ready e, then the rule checks if e is well-formed in its
antecedent. Otherwise, the thread state is wrong, which is al-
ways well-formed.
• The judgment P ;E ` obj : c checks if a given type c is a

class in the program, and verifies that the sequence of types for
the object values matches the sequence of types for the class
definition.
• Finally, the state judgment ` σ ensures the program is well-

formed, and also that each object and thread state in the state is
well-formed. This judgment takes all objects in the object map
and creates a well-formed environment E of allocated objects,
and uses E to judge objects and thread states.

B. Correctness of Type System
B.1 Preservation
We prove that at each step of the evaluation, the program remains
well-typed.

THEOREM 1 (Preservation). If ` σ and σ → σ′ then ` σ′.

Proof Suppose σ →t σ
′. Let:

σ = P ∪ [ ρi 7→ obj i∈1..ni ] ∪ [ tj 7→ T j∈1..m
j ]

From the rule [STATE] we have:

P ` OK
E = c1 ρ1, . . . , cn ρn
ρi ∈ Addrci ∀i ∈ 1..n
P ;E ` obj i : ci ∀i ∈ 1..n
P ;E ` Tj ∀j ∈ 1..m

Figure 12: Additional YIELDJAVA Type Rules

P ;E ` e : c · a

[EXP ADDR]
P ` E

E = E1, c ρ, E2

ρ ∈ Addrc
P ;E ` ρ : c · AF

[EXP INSYNC]
P ;E `lock ρ P ;E ` e : c · a
P ;E ` in-sync ρ e : c · SI(ρ, a)

P ` E
[ENV ADDR]

P ` E
P ` c ρ 6∈ dom(E)

P ` (E, c ρ)

P ;E ` T

[THREAD OK]

P ;E ` e : c · a
P ;E ` e

[THREAD READY]

P ;E ` e : c · a
P ;E ` ready e

[THREAD WRONG]

P ;E ` wrong

P ;E ` obj : c

[OBJECT]
class c { di fi

i∈1..n . . . } ∈ P
P ;E ` vi : di · ai ∀i ∈ 1..n

P ;E ` { fi = vi
i∈1..n }o : c

` σ
[STATE]

P ` OK
E = c1 ρ1, . . . , cm ρm
ρj ∈ Addrcj ∀j ∈ 1..m
P ;E ` obj j : cj ∀j ∈ 1..m
P ;E ` Tk ∀k ∈ 1..n

` P ∪ [ ρj 7→ obj j
j∈1..m ] ∪ [ tk 7→ Tk

k∈1..n ]

Since the program component of the state remains unchanged
(i.e. P = P ′), we need to show, for some n′ and m′,

P ;E′ ` obj i : ci ∀i ∈ 1..n′

P ;E′ ` Tj ∀j ∈ 1..m′

in the environment E′ capturing all allocated objects in σ′:

E′ = c1 ρ1, . . . , cn ρn′

such that ∀i ∈ 1..n′ . ρi ∈ Addrci .
Proof is by case analysis on the reduction rule used for σ →t σ

′.

• [RED READ] In this case we have:

σ(t) = E [ργf ]
σ′(t) = E [v]
σ(ρ) = { . . . f = v . . . }o

The object map remains constant, hence E = E′. Since all
other threads and the object map does not change, it is sufficient
to show P ;E ` σ′(t).
From [THREAD OK] we know:

P ;E ` E [ργf ] : c · a

15 2011/8/12



By Lemma 2 we have

P ;E ` ργf : crd · ard
Since this can only be concluded by [EXP REF] or [EXP REF RACE]
we also know

P ;E ` ρ : d · AF
class d { . . . crd f . . . } ∈ P

Since we know σ(ρ) = { . . . , f = v, . . . }o is well-formed, we
can conclude from [OBJECT]

P ;E ` v : crd · av
av = AF

By rules [EXP REF] and [EXP REF RACE], we know that ard must
be one of AF, AM, AN, or CL. Since AF is a subeffect of any one
of these effects, av v ard and we can conclude by Lemma 4

P ;E ` E [v] : c · a′

• [RED WRITE] For this case we have:
σ(t) = E [ργf = v]
σ′(t) = E [v]
σ′(ρ) = { . . . f = v . . . }o

Since the object map in σ′ does not add or remove objects, and
all objects do not change their type, we have E′ = E. Since all
other threads do not change it is sufficient to show:

P ;E ` σ′(t)
P ;E ` σ′(ρ)

From [THREAD OK] we know:

P ;E ` E [ργf = v] : c · a
By Lemma 2 we have:

P ;E ` ργf = v : cwr · awr

This judgment can only be concluded with [EXP ASSIGN] or
[EXP ASSIGN RACE], so we also know:

P ;E ` ρ : d1 · AF
P ;E ` v : cwr · AF
class d1 { . . . cwr f . . . } ∈ P

From [EXP ASSIGN] and [EXP ASSIGN RACE], we know awr must
be one of AM, AN, or CL. Since we know P ;E ` v : cwr · AF
and AF v awr , by Lemma 4 we can conclude:

P ;E ` E [v] : d · a′

Thus we have shown P ;E ` σ′(t). To show P ;E ` σ′(ρ) we
note that P ;E ` σ(ρ) : ca and σ′(ρ) = { . . . f = v . . . }o.
Since we know by [EXP ASSIGN] and [EXP ASSIGN RACE] that
P ;E ` v : d2 · AF we can conclude by [OBJECT]:

P ;E ` σ′(ρ) : ca
• [RED INVOKE] In this case, let θ = [this := ρ, xi := v i∈1..ni ],

where
σ(t) = E [ργm(v1..n)]
σ′(t) = E [θ(e)]

ρ ∈ Addrc
class c { . . . am dm m(di xi

i∈1..n){ e } . . . } ∈ P

The object map remains constant, hence E = E′. Since all
other threads and the object map do not change it is sufficient
to show P ;E ` σ′(t). From [THREAD OK] we have:

P ;E ` E [ργm(v1..n)] : d · a
By Lemma 2 we have:

P ;E ` ργm(v1..n) : dm · aiv

This can only be concluded by the rules [EXP INVOKE] so we
also have:

P ;E ` ρ : c · AF
P ;E ` vi : di · ai ∀i ∈ 1..n
P ;E ` θ(am) ↑ a′′
aiv = (AF; a1; . . . ; an; a

′′)
class c { . . .M . . . } ∈ P
M = am dm m(di xi

i∈1..n){ e }

From [CLASS] we know P ; c this `M and from [METHOD]:

P ; c this, di xi
i∈1..n ` e : dm · a′m

P ; di xi
i∈1..n ` am

a′m v am
By Lemma 6:

P ; ∅ ` θ(e) : dm · θ(a′m)

Since a′m v am, by Lemma 1 we have θ(a′m) v θ(am) and
therefore θ(a′m) v aiv . Thus by Lemma 4:

P ;E ` E [e[this := ρ, xi := vi∈1..ni ]] : d · a′

• [RED INVOKE COMPOUND] Similar to previous case.
• [RED NEW] In this case we have:

σ(t) = E [new c(v1..n)]
σ′(t) = E [ρ]
σ′(ρ) = { fi = vi

i∈1..n }⊥
ρ 6∈ Dom(σ)
ρ ∈ Addrc

class c { di fi
i∈1..n . . . } ∈ P

Since ρ is the only new address in the environment, we have
E′ = (E, c ρ). Since all other threads do not change it is
sufficient to show

P ;E′ ` σ′(t)
P ;E′ ` σ′(ρ) : c

From [THREAD OK] we have:

P ;E ` E [new c(v1..n)] : d · a

By Lemma 2 we know:

P ;E ` new c(v1..n) : c · anew
This can only be concluded by [EXP NEW] so we also know:

P ;E ` vi : di · AF ∀i ∈ 1..n
anew = (AF; AM)

From the transition rules we know that ρ ∈ Addrc so we can
conclude, via rule [EXP ADDR],

P ;E′ ` ρ : c · aρ
aρ = AF

Since aρ v anew we can conclude from Lemma 4:

P ;E′ ` E [ρ] : d · a′

So we have shown P ;E′ ` σ′(t). To show P ` σ′(ρ) : c
we note that from the transition rules we know ρ ∈ Addrc
and class c { d f . . . } ∈ P . Also from [EXP NEW] we know
P ;E ` vi : di · ai for all i ∈ 1..n. Therefore by [OBJECT] we
can conclude P ;E′ ` { f = v }o : c. Thus we have shown
P ;E′ ` σ′(ρ) : c.
• [RED SYNC] In this case we have:

σ(t) = E [ργsync e ]
σ(ρ) = { f = v }⊥
σ′(t) = E [in-sync ρ e]
σ′(ρ) = { f = v }t
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Since only the lock state of the object at ρ changes, we have
E′ = E. Since all other threads and objects besides ρ do not
change it is sufficient to show:

P ;E ` σ′(t)
P ;E ` σ′(ρ)

From [THREAD OK] we know:

P ;E ` E [ργsync e ] : c · a

By Lemma 2 we have:

P ;E ` ργsync e : csyn · asyn
This can only be concluded by [EXP SYNC] so we also know:

P ;E `lock ρ
P ;E ` e : csyn · ae
asyn = S(ρ, γ, ae)

By [LOCK EXP] we know P ;E ` ρ : d · AF. From this and the
antecedents of [EXP INSYNC] we may conclude:

P ;E ` in-sync ρ e : csyn · ains
ains = SI(ρ, ae)

Observe that ρ is not held by thread t in state σ. Then since the
following satisfies the preconditions of Lemma 14,

P ;E `lock ρ
P ;E ` ae
ρ ∈ n for some lockset n

where n is disjoint from locks held by E , we obtain the subeffect
relation

JγK;SI(ρ, ae) vn S(ρ, γ, ae)
Since the following satisfies the preconditions of Lemma 5,

P ;E ` E [ργsync e ] : c · a
P ;E ` ργsync e : csyn · S(ρ, γ, ae)
ργsync e is not a value
P ;E ` in-sync ρ e : csyn · SI(ρ, ae)
∃ n . JγK;SI(ρ, ae) vn S(ρ, γ, ae)

we obtain our desired result

P ;E ` E [in-sync ρ e] : c · a′

and hence we have shown

P ;E′ ` σ′(t)
From [OBJECT] we know

P ;E ` { f = v }⊥ : co
class co { d f . . . } ∈ P
P ;E ` v : d · a

From this we can also conclude P ;E ` { f = v }t : co and
thus we have P ;E ` σ′(ρ).
• [RED SYNC REENTRANT] In this case we have

σ(t) = E [ργsync e ]
σ(ρ) = { f = v }t
σ′(t) = E [e]
σ′(ρ) = { f = v }t

Since the object map does not change, we have E′ = E.
Since all other threads besides t and objects do not change, it is
sufficient to show

P ;E ` σ′(t)
From [THREAD OK] we know

P ;E ` E [ργsync e ] : c · a

By Lemma 2, the expression in the hole is well-typed:

P ;E ` ργsync e : csyn · asyn
This can only be concluded by rule [EXP SYNC] so we also
know:

P ;E `lock ρ
P ;E ` e : csyn · ae
asyn = S(ρ, γ, ae)

By Lemma 15, we have

ae v{ρ} S(ρ, γ, ae)
Observe that ρ is held by thread t at states σ and σ′, thus
ρ ∈ locks(E). It follows that

AF; ae v∅∪locks(E)∅ S(ρ, γ, ae)
By Lemma 5, we may conclude

P ;E ` E [e] : c · a′

and hence we have shown our desired result

P ;E′ ` σ′(t)
• [RED IN-SYNC] In this case we have

σ(t) = E [in-sync ρ v]
σ(ρ) = { f = v }t
σ′(t) = E [v]
σ′(ρ) = { f = v }⊥

Since only the lock state of the object at ρ changes, we have
E′ = E. Since all other threads and objects besides ρ do not
change it is sufficient to show:

P ;E ` σ′(t)
P ;E ` σ′(ρ)

From [THREAD OK] we know:

P ;E ` E [in-sync ρ v] : c · a

By Lemma 2 we have:

P ;E ` in-sync ρ v : cins · ains
This can only be concluded by [EXP INSYNC] so we also know:

P ;E `lock ρ
P ;E ` v : cins · AF
ains = SI(ρ, AF) = AF; AL

Since AF v AF; AL, by Lemma 4 we have P ;E ` E [v] : c · a′.
Thus we have shown P ;E ` σ′(t).
From [OBJECT] we know

P ;E ` { f = v }t : co
class co { d f . . . } ∈ P
P ;E ` v : d · a

From this we can also conclude P ;E ` { f = v }⊥ : co and
thus we have P ;E ` σ′(ρ).
• [RED FORK] In this case we have:

σ(t) = E [fork e]
σ′(t) = E [null]
σ′(t′) = ready e

where t′ 6∈ Dom(σ).
The object map remains constant, hence E = E′. Since all
threads other than t and t′ and the object map do not change it
is sufficient to show:

P ;E ` σ′(t)
P ;E ` σ′(t′)
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From [THREAD OK] we know

P ;E ` E [fork e] : c · a

By Lemma 2 we have

P ;E ` fork e : cf · af
Since this can only be concluded by [EXP FORK] we also know:

P ;E ` e : d · ae
cf = Unit
af = AL

From [EXP NULL] we can conclude P ;E ` null : Unit · AF.
Since AF v AL, we can conclude by Lemma 4:

P ;E ` E [null] : c · a′

This shows P ;E ` σ′(t) and since we know P ;E ` e : d · ae,
by rule [THREAD READY] we have P ;E ` σ′(t′).
• [RED READY] In this case we have

σ(t) = ready e
σ′(t) = [e]

Since the object map does not change, we have E′ = E.
Since all other threads besides t and objects do not change, it is
sufficient to show

P ;E ` σ′(t)
From [THREAD READY] we know

P ;E ` e : c · a

By [THREAD OK] we may conclude

P ;E ` e

Thus we have shown P ;E ` σ′(t).
• [RED LET] In this case we have:

σ(t) = E [let x = v in e]
σ′(t) = E [e[x := v]]

The object map remains constant, hence E = E′. Since all
other threads and the object map does not change, it is sufficient
to show P ;E ` σ′(t).
From [THREAD OK] we know

P ;E ` E [let x = v in e] : c · a

By Lemma 2 we have:

P ;E ` let x = v in e : clet · alet
Since this judgment can only be concluded from [EXP LET] we
also have:

P ;E ` v : cv · AF
P ;E, cv x ` e : clet · ae
P ;E ` ae[x := v] ↑ a′e
alet = (AF; a′e)

From Lemma 6 we have:

P ;E ` e[x := v] : clet · ae[x := v]

By Lemma 7 we know:

P ;E, cv x ` ae
This allows us to conclude via Lemma 9 and P ;E ` v : cv · AF
that:

P ;E ` ae[x := v] ↑ ae[x := v]

By Lemma 8 we know that a′e is well-typed: P ;E ` a′e. Thus
a′e = ae[x := v] (since lifting only changes effects if locks are
not held and we know that all locks in ae[x := v] are held).

This allows us to conclude that ae[x := v] v alet and thus by
Lemma 4 we have:

P ;E ` E [e[x := v]] : c · a′

• [RED IF-NULL] In this case we have
σ(t) = E [if null e2 e3]
σ′(t) = E [e3]

The object map remains constant, hence E = E′. Since all
other threads and the object map does not change, it is sufficient
to show P ;E ` σ′(t).
From [THREAD OK] we know:

P ;E ` E [if null e2 e3] : c · a

By Lemma 2 we know that:

P ;E ` if null e2 e3 : cif · aif
which can only be concluded by [EXP IF] so we also have:

P ;E ` null : d · AF
P ;E ` e2 : cif · a2
P ;E ` e3 : cif · a3
aif = (AF; a2 t a3)

By Lemma 1 we know that a3 v aif so by Lemma 4 we can
conclude that

P ;E ` E [e3] : c · a′

• [RED IF-NONNULL] In this case we have
σ(t) = E [if v e2 e3]
σ′(t) = E [e3]

The object map remains constant, hence E = E′. Since all
other threads and the object map does not change, it is sufficient
to show P ;E ` σ′(t).
From [THREAD OK] we know:

P ;E ` E [if v e2 e3] : c · a

By Lemma 2 we know that:

P ;E ` if v e2 e3 : cif · aif
which can only be concluded by [EXP IF] so we also have:

P ;E ` v : d · AF
P ;E ` e2 : cif · a2
P ;E ` e3 : cif · a3
aif = (AF; a2 t a3)

By Lemma 1 we know that a2 v aif so by Lemma 4 we can
conclude that

P ;E ` E [e2] : c · a′

• [RED WHILE] In this case we have:
σ(t) = E [while e1 e2]
σ′(t) = E [if e1(e2; while e1 e2) null]

The object map remains constant, hence E = E′. Since all
other threads and the object map does not change it is sufficient
to show P ;E ` σ′(t). From [THREAD OK] we know:

P ;E ` E [while e1 e2] : c · a

By Lemma 2 we know that:

P ;E ` while e1 e2 : Unit · aw
and from [EXP WHILE] we have

P ;E ` e1 : d · a1
P ;E ` e2 : d′ · a2
aw = (a1; (a2; a1)

∗)
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By Lemma 10 we know:

P ;E ` if e1(e2; while e1 e2) null : Unit · aw
So by Lemma 4 we can conclude

P ;E ` E [if e1(e2; while e1 e2) null] : c · a′

• [RED WRONG] In this case we have
σ(t) = E [e]
σ′(t) = wrong

Since the object map does not change, we have E′ = E. Since
all other threads and the object map do no change it is sufficient
to show

P ;E ` σ′(t)
Since σ′(t) = wrong we can conclude P ;E ` wrong
directly from the rule [THREAD WRONG].

B.2 Mutual Exclusion
In this section, we demonstrate that evaluation preserves the mu-
tually exclusive usage of locks: at any time, at most only a single
thread is in a critical section on a lock.

The judgment ls `cs T relates locksets ls to thread states T :
if T contains an expression e, the judgment holds if ls contains all
locks ρ for which e ≡ E [in-sync ρ e′]. We abuse notation slightly
to say in-sync ∈ e and in-sync ∈ E if e ≡ E ′[in-sync ρ e′] or
E ≡ E ′[in-sync ρ E ′′], respectively, for some e, e′, ρ, E ′, and E ′′.

The judgment `cs σ checks the well-formedness of states: the
judgment holds if for every thread t, when we obtain the set of locks
ls held by t in the state, then for the thread state T corresponding to
t, the judgment ls `cs T holds. Informally, the set of locks held by
t in the state describes all critical sections that t is in. Since every
lock in the state is held by at most one thread, this implies that at
most one thread is in a critical section for that lock.

Figure 13: Judgments for Mutual Exclusion

ls `cs T
[CS EXP]
in-sync 6∈ e
∅ `cs e

[CS IN-SYNC]
ls `cs e ρ 6∈ ls

ls ∪ {ρ} `cs in-sync ρ e

[CS NOT IN-SYNC]
ls `cs e in-sync 6∈ E

ls `cs E[e]

[CS READY]
∅ `cs e

∅ `cs ready e

[CS WRONG]

ls `cs wrong

`cs σ
[CS STATE]

lsk `cs Tk ∀k ∈ 1..n

lsk = {ρ | σ(ρ) = { f = v }tk} ∀k ∈ 1..n

`cs P ∪ [ ρj 7→ obj j
j∈1..m ] ∪ [ tk 7→ Tk

k∈1..n ]

We show that well-formed critical sections are preserved under
evaluation:

THEOREM 2 (Mutual Exclusion). If `cs σ and σ → σ′, then
`cs σ′.

Proof Suppose that σ →t σ
′. Let

σ = P ∪ [ ρj 7→ obj j∈1..mj ] ∪ [ tk 7→ T k∈1..n
k ]

From the rule [CS STATE] we have
lsk `cs Tk ∀k ∈ 1..n
lsk = {ρ | σ(ρ) = { f = v }tk} ∀k ∈ 1..n

We need to show

lsk `cs Tk ∀k ∈ 1..n′

for some n′, where

lsk = {ρ | σ(ρ) = { f = v }tk} ∀k ∈ 1..n′

in the state

σ′ = P ∪ [ ρj 7→ obj j∈1..m
′

j ] ∪ [ tk 7→ T k∈1..n′

k ]

Proof is by case analysis on the reduction rule used for σ →t σ
′.

• [RED READ]. In this case, we have
σ(t) = E [ργf ]
σ′(t) = E [v]
σ(ρ) = { . . . f = v . . . }o

All objects and all threads other than t do not change, hence it
is sufficient to show

ls `cs E [v]

where ls = {ρ | σ(ρ) = { f = v }t}.
We have, by assumption,

ls `cs E [ργf ]
By Lemma 21, the derivation for this judgment includes the
following judgment

lsr `cs ργf
where, by rule [CS EXP], we have lsr = ∅.
Also, we know the following, by rule [CS EXP]:

lsv `cs v
lsv = ∅

Then by Lemma 22, we may conclude with our desired result

ls ′ `cs E [v]
ls ′ = ls

• [RED WRITE]. In this case, we have
σ(t) = E [ργf = v]
σ′(t) = E [v]
σ′(ρ) = { . . . f = v . . . }o

No object has a lock changed, and all threads other than t do
not change, hence it is sufficient to show

ls `cs E [v]

where ls = {ρ | σ(ρ) = { f = v }t}.
We have, by assumption,

ls `cs E [ργf = v]

By Lemma 21, the derivation for this judgment includes the
following judgment

lsw `cs ργf = v
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where, by rule [CS EXP], we have lsw = ∅.
Also, we know the following, by rule [CS EXP]:

lsv `cs v
lsv = ∅

Then by Lemma 22, we may conclude with our desired result

ls ′ `cs E [v]
ls ′ = ls

• [RED INVOKE]. In this case, let θ = [this := ρ, xi := v i∈1..ni ],
where

σ(t) = E [ργm(v1..n)]
σ′(t) = E [θ(e)]

ρ ∈ Addrc
class c { . . . am dm m(di xi

i∈1..n){ e } . . . } ∈ P
All objects and all threads other than t do not change; hence it
is sufficient to show

ls `cs E [θ(e)]

where ls = {ρ | σ(ρ) = { f = v }t}.
We have, by assumption,

ls `cs E [ργm(v1..n)]

By Lemma 21, the derivation for this judgment includes the
following judgment

lsm `cs ργm(v1..n)

where, by rule [CS EXP], we have lsm = ∅.
Also, the method body e cannot contain an in-sync run-time
expression (due to well-formedness), and the θ substitution
does not replace any part of e with an in-sync expression.
Hence we know the following, by rule [CS EXP]:

lsb `cs θ(e)
lsb = ∅

Then by Lemma 22, we may conclude with our desired result

ls ′ `cs E [θ(e)]
ls ′ = ls

• [RED INVOKE COMPOUND]. Similar to previous argument.
• [RED NEW]. In this case, we have

σ(t) = E [new c(v1..n)]
σ′(t) = E [ρ]
σ′(ρ) = { fi = vi

i∈1..n }⊥
ρ 6∈ Dom(σ)
ρ ∈ Addrc

class c { di fi
i∈1..n . . . } ∈ P

We have a new object in the environment that is not locked by
any thread. All other objects and all threads other than t do not
change, hence it is sufficient to show

ls `cs E [ρ]

where ls = {ρ | σ(ρ) = { f = v }t}.
We have, by assumption,

ls `cs E [new c(v1..n)]
By Lemma 21, the derivation for this judgment includes the
following judgment

lsn `cs new c(v1..n)
where, by rule [CS EXP], we have lsn = ∅.
Also, we know the following, by rule [CS EXP]:

lsv `cs ρ
lsv = ∅

Then by Lemma 22, we may conclude with our desired result

ls ′ `cs E [ρ]
ls ′ = ls

• [RED SYNC]. In this case we have:

σ(t) = E [ργsync e ]
σ(ρ) = { f = v }⊥
σ′(t) = E [in-sync ρ e]
σ′(ρ) = { f = v }t

The object at ρ changes from being unlocked by any thread to
being locked by t. All other objects and all threads other than t
do not change; hence it is sufficient to show

ls ∪ {ρ} `cs E [in-sync ρ e]

where ls = {ρ | σ(ρ) = { f = v }t}. Observe that we have
ρ 6∈ ls .
We have, by assumption,

ls `cs E [ργsync e ]

By Lemma 21, the derivation for this judgment includes the
following judgment

lss `cs ργsync e

where, necessarily, we have lss = ∅ by rule [CS EXP]: by
inspection of the reduction rules, e cannot contain an in-sync
expression.
By rule [CS IN-SYNC], we have

{ρ} `cs in-sync ρ e

Then by Lemma 22, we may conclude with our desired result

ls ′ `cs E [in-sync ρ e]
ls ′ = ls ∪ {ρ}

• [RED SYNC REENTRANT]. In this case we have

σ(t) = E [ργsync e ]
σ(ρ) = { f = v }t
σ′(t) = E [e]
σ′(ρ) = { f = v }t

All objects and all threads other than t do not change; hence it
is sufficient to show

ls `cs E [e]

where ls = {ρ | σ(ρ) = { f = v }t}.
We have, by assumption,

ls `cs E [ργsync e ]

By Lemma 21, the derivation for this judgment includes the
following judgment

lss `cs ργsync e

where, necessarily, we have lss = ∅ by rule [CS EXP]: by
inspection of the reduction rules, e cannot contain an in-sync
expression.
Again by rule [CS EXP], we have

lse `cs e

where lse = ∅.
Then by Lemma 22, we may conclude with our desired result

ls ′ `cs E [e]
ls ′ = ls

20 2011/8/12



• [RED IN-SYNC]. In this case we have
σ(t) = E [in-sync ρ v]
σ(ρ) = { f = v }t
σ′(t) = E [v]
σ′(ρ) = { f = v }⊥

The object at ρ changes from being locked by t to being un-
locked by any thread. All other objects and all threads other
than t do not change; hence it is sufficient to show

ls \ {ρ} `cs E [v]

where ls = {ρ | σ(ρ) = { f = v }t}.
We have, by assumption,

ls `cs E [in-sync ρ v]

By Lemma 21, the derivation for this judgment includes the
following judgment

lss `cs in-sync ρ v

where, by rule [CS IN-SYNC], we have lss = {ρ}.
Also, we know the following, by rule [CS EXP]:

lsv `cs v
lsv = ∅

Then by Lemma 22, we may conclude with our desired result

ls ′ `cs E [v]
ls ′ = ls \ {ρ}

• [RED FORK]. In this case we have:
σ(t) = E [fork e]
σ′(t) = E [null]
σ′(t′) = ready e

where t′ 6∈ Dom(σ).
Here, a new thread t′ is introduced into the state σ′. All objects
and all threads other than t and t′ do not change; hence it is
sufficient to show

ls `cs E [null]
∅ `cs ready e

where ls = {ρ | σ(ρ) = { f = v }t}.
We have, by assumption,

ls `cs E [fork e]

By Lemma 21, the derivation for this judgment includes the
following judgment

lsf `cs fork e

where, necessarily, we have lsf = ∅ by rule [CS EXP]: inspec-
tion of the typing rules indicates that e cannot contain a runtime
in-sync sub-expression.
Also, we know the following, by rule [CS EXP]:

lsv `cs null
lsv = ∅

Then by Lemma 22, and by rule [CS READY], we may conclude
with our desired result

ls ′ `cs E [null]
ls ′ = ls
∅ `cs ready e

• [RED READY]. In this case we have
σ(t) = ready e
σ′(t) = [e]

All objects and all threads other than t do not change; hence it
is sufficient to show

ls `cs [e]

where ls = {ρ | σ(ρ) = { f = v }t}.
By inspection of the reduction rules, we observe that no lock
is held by t in σ: a ready expression is created only with
rule [RED FORK] with no locks held, and no thread manipulates
another thread’s lock. Also, by inspection of the typing rules,
we observe that a ready expression may not contain a runtime
in-sync sub-expression.
Thus we have, by assumption,

∅ `cs ready e

This judgment may be derived only through rule [CS READY];
hence we obtain our desired result:

∅ `cs e
• [RED LET]. In this case we have:

σ(t) = E [let x = v in e]
σ′(t) = E [e[x := v]]

All objects and all threads other than t do not change; hence it
is sufficient to show

ls `cs E [e[x := v]]

where ls = {ρ | σ(ρ) = { f = v }t}.
We have, by assumption,

ls `cs E [let x = v in e]

By Lemma 21, the derivation for this judgment includes the
following judgment

ls` `cs let x = v in e

where, necessarily, we have ls` = ∅ by rule [CS EXP]: inspection
of the reduction rules indicates that e cannot contain a runtime
in-sync sub-expression.
Also, the substitution [x := v] performed does not replace
any part of e with an in-sync expression. Hence we know the
following, by rule [CS EXP]:

∅ `cs e[x := v]

Then by Lemma 22, we may conclude with our desired result

ls ′ `cs E [e[x := v]]
ls ′ = ls

• [RED IF-NONNULL]. Similar to previous argument.
• [RED IF-NULL]. Similar to previous argument.
• [RED WHILE]. Similar to previous argument.
• [RED WRONG]. In this case we have

σ(t) = E [e]
σ′(t) = wrong

All objects and all threads other than t do not change; hence it
is sufficient to show

ls `cs wrong

where ls = {ρ | σ(ρ) = { f = v }t}.
Immediately by rule [CS WRONG], we obtain our desired result:

ls `cs wrong

B.3 Reduction Theorem
We prove that for a well-typed program, preemptive and coopera-
tive semantics coincide: if a program, starting from a yielding state,
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can reach a yielding state σ under→, then it can reach σ under→c

as well.
We depend on the following reduction theorem for this re-

sult. This theorem is stated in terms of an arbitrary transition sys-
tem, and requires some additional notation: For any state predicate
S ⊆ State and transition relation T ⊆ State × State , the left re-
striction of T to S, or S/T , is the transition relation T with each
pair’s first component contained in S. Similarly, the right restric-
tion of T to S, or T\S, is the transition relation T with each pair’s
second component contained in S. The composition of two tran-
sition relations T and U , or T ◦ U , is the set of all transitions
(p, r) such that there exists a state q with transitions (p, q) ∈ T
and (q, r) ∈ U . For transition relations T and U , we say that T
right-commutes with U , and U left-commutes with T , if we have
T ◦ U ⊆ U ◦ T .

Each thread executes in a series of transactions, each of which
consists of a sequence of right-movers, followed by at most one
non-mover, followed by a sequence of left-movers. For each thread
i, we describe four predicates that partition the set of states:

• Ni is the set of states where the thread i is not in any transac-
tion;
• Ri is the set of states where the thread i is in the right-mover

part of some transaction;
• Li is the set of states where the thread i is in the left-mover part

of some transaction; and
• Wi is the set of states where the thread i has gone wrong.

The reduction theorem relates the following three transition
relations:

• ↪→i is the transition relation that describes the behavior of the
thread i.
• ↪→ is the transition relation where, at each state, one may

choose a thread i and use the transition ↪→i.
• ↪→c is the transition relation that describes the serial behavior of

a program, in which at most one thread may be in a transaction
at any time.

THEOREM 3 (Reduction Theorem). For all threads i, let Ri, Li,
andWi be sets of states, and ↪→i be a transition relation. Suppose
for all i that the following is true:

1. Ri, Li, andWi are pairwise disjoint,
2. (Li/ ↪→i \Ri) is false,
3. Wi/ ↪→i is false,

and for all j 6= i,

4. ↪→i and ↪→j are disjoint,
5. (↪→i \Ri) right-commutes with ↪→j ,
6. (Li/ ↪→i) left-commutes with ↪→j , and
7. if p ↪→i q, then Rj(p) ⇔ Rj(q), Lj(p) ⇔ Lj(q), and
Wj(p)⇔Wj(q).

We defineNi,N ,W , ↪→, and ↪→c as follows:

• Ni = ¬(Ri ∨ Li)
• N = ∀i .Ni
• W = ∃i .Wi

• ↪→= ∃i . ↪→i

• ↪→c= ∃i . ((∀j 6= i .Nj)/ ↪→i)

Now suppose p ∈ N and p ↪→∗ q. Then the following statements
are true.

1. If q ∈ N , then p ↪→∗c q.
2. If q ∈ W and ∀i . q 6∈ Li, then p ↪→∗c q′ and q′ ∈ W .

Proof Refer to [23].

We now turn our attention to the specific case of YIELDJAVA.
Consider a fixed program P . Any well-typed state σ with an object
map [ρj 7→ obj j

j∈1..m] has a corresponding object environment
Eσ = c1 ρ1, . . . , cn ρn where ρj ∈ Addrcj .

For an expression e that occurs at an evaluation context position
within a thread of σ, we define the function α :: State × Expr →
Effect

α(σ, e) = a

if we have
P ;Eσ ` e : c · a

Let WT be the set of well-typed states for P :

WT = {σ | ` σ}
We define the states:
Ni=WT ∩ {σ | i 6∈ dom(σ)

∨(i is yielding in σ ∧ σ(i) 6≡ wrong)}
Wi=WT ∩ {σ | σ(i) ≡ wrong}
Ri=WT ∩ {σ | α(σ, σ(i)) 6v CL} \Ni
Li=WT ∩ {σ | α(σ, σ(i)) v CL} \Ni

Then we define the auxiliary states N and W :

• N =
⋂
i∈N

Ni. That is, N is the set of well-typed states that are

yielding.

• W =
⋃
i∈N

Wi. That is, W is the set of well-typed states for

which some thread is wrong.

We increase the precision of conditional effects by the function
Y :: EvalCtxt × Expr → Effect , defined as follows:

Y (E , κ) = κ
Y (E , ρ ? a1 : a2) = Y (E , a1) if ρ ∈ locks(E)
Y (E , ρ ? a1 : a2) = ρ ?Y (E , a1) :Y (E , a2) otherwise

That is, we take lockset information from the evaluation context
and simplify the conditional effect under that lockset.

THEOREM 4 (Cooperability). Let σ be a state such that ` σ.
Suppose σ ∈ N , and there exists state σ′ such that σ →∗ σ′.
Then the following statements are true:

1. If σ′ ∈ N , then σ →∗c σ′.
2. If σ′ ∈ W and ∀i . σ′ 6∈ Li, then there exists a state σ′′ such

that σ →∗c σ′′ and σ′′ ∈W .

Proof We show that for all threads i, the seven preconditions for
instantiating the Reduction Theorem hold:

1. Ri, Li, and Wi are pairwise disjoint,
2. Li/→i \Ri is false,
3. Wi/→i is false,
4. →i and→j are disjoint for all j 6= i,
5. (→i \Ri) right-commutes with→j for all j 6= i,
6. (Li/→i) left-commutes with→j for all j 6= i,
7. if p →i q, then Rj(p) ⇔ Rj(q), Lj(p) ⇔ Lj(q), and
Wj(p)⇔Wj(q), for all j 6= i.

We apply the Reduction Theorem by substituting the following:
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• the set Wi forWi,
• the set Ri forRi,
• the set Li for Li,
• the relation→i for ↪→i,
• the relation→c for ↪→c,
• the state σ for p,
• the state σ′ for q.

1. Ri, Li, and Wi are pairwise disjoint.
Proof: Inspection of definitions.

2. Li/→i \Ri is false.
Proof: Case analysis on σ →i σ

′.
(a) Cases [RED NEW], [RED READ], [RED WRITE], [RED FORK],

and [RED IN-SYNC]: We assume that σ′(i) ∈ Ri and thus
α(σ′, σ′(i)) 6v CL. For some well-formed state σ0,
• [RED NEW]: We have

σ = σ0[i 7→ E [new c(v)]]
σ′ = σ0[i 7→ E [ρ], ρ 7→ { f = v }⊥]

where ρ 6∈ Dom(σ) and ρ ∈ Addrc and
class c { d f · · · } ∈ P .
• [RED READ]: We have

σ = σ0[i 7→ E [ργf ]]
σ′ = σ0[i 7→ E [v]]

where σ(ρ.f) = v.
• [RED WRITE]: We have

σ = σ0[i 7→ E [ργf = v]]
σ′ = σ0[i 7→ E [v], ρ.f 7→ v]

• [RED FORK]: We have
σ = σ0[i 7→ E [fork e]]
σ′ = σ0[i 7→ E [null], i′ 7→ ready e]

where i′ 6∈ Dom(σ).
• [RED IN-SYNC]: We have

σ = σ0[i 7→ E [in-sync ρ v], ρ 7→ { f = v }i]
σ′ = σ0[i 7→ E [v], ρ 7→ { f = v }⊥]

For cases [RED READ] and [RED WRITE], γ = . since σ ∈ Li,
which excludes any yield by thread i. Let σ(i) = E [e] for
each case, where e is some redex e, and σ′(i) = E [v]. Then
we have α(σ, E [e]) v CL and α(σ′, E [v]) 6v CL. Since

α(σ′, v) v α(σ, e)
we obtain, by Lemma 4,

α(σ′, E [v]) v α(σ, E [e]) v CL

which contradicts our assumption of σ′(i) ∈ Ri.
(b) [RED INVOKE]: For some well-formed state σ0, we have

σ = σ0[i 7→ E [ργm(v)]]
σ′ = σ0[i 7→ E [e[this := ρ, x := v]]]

where
ρ ∈ Addrd′

class d′ { · · · a′ c m(d x){ e } · · · } ∈ P
Here, γ = . since Li excludes yielding thread states for i.
We show that

α(σ′, e[this := ρ, x := v]) v α(σ, ρ.m(v))

and use Lemma 4 to obtain a contradiction. Fromα(σ, ρ.m(v))
being well-defined, we know the following judgment must
hold for the well-formed environment Eσ:

P ;Eσ ` ρ.m(v) : c · a

and from the antecedents of this judgment we know that

P ;Eσ ` a′[this := ρ, x := v] ↑ a
where a′ is the annotation for method m. Hence, by defini-
tion of ↑, we know that

a′[this := ρ, x := v] v a (1)

Since P is well-typed, m is well-typed:

P ; c this ` a′ c m(d x){ e }

and by inversion on this judgment, we know

P ; c this, d x ` e : c · a′′

such that
a′′ v a′ (2)

By the substitution lemma, we have

P ; ∅ ` e[this := ρ, x := v] : c ·
(
a′′[this := ρ, x := v]

)
Thus we have the equality

α(σ′, e[this := ρ, x := v]) = a′′[this := ρ, x := v]

By Lemma 1 and Formula 2,

a′′[this := ρ, x := v] v a′[this := ρ, x := v] (3)

The combination of Formulas 3 and 1 gives us our desired
result

a′′[this := ρ, x := v] v a
Applying Lemma 4, we get

α(σ′, E [e[this := ρ, x := v]]) v α(σ, E [ρ.m(v)]) (4)

And by assumption of σ ∈ Li, we get

α(σ, E [ρ.m(v)]) v CL (5)

We have obtained a contradiction: by assumption of σ′ ∈
Ri,

α(σ′, E [e[this := ρ, x := v]]) 6v CL

but by Formulas 4 and 5, we have

α(σ′, E [e[this := ρ, x := v]]) v CL

Hence this case is trivially true.
(c) [RED INVOKE COMPOUND]: Similar to [RED INVOKE].
(d) [RED SYNC]: For some well-formed state σ0, we have

σ = σ0[i 7→ E [ργsync e ], ρ 7→ { f = v }⊥]
σ′ = σ0[i 7→ E [in-sync ρ e], ρ 7→ { f = v }i]

We have γ = . since σ ∈ Li excludes yielding thread states
for i. By S and SI, we have

α(σ, ρ.sync e ) = S(ρ, ., α(σ, e))
α(σ′, in-sync ρ e) = SI(ρ, α(σ′, e))

The thread i may only transition from E [ργsync e ] to
E [in-sync ρ e] if i does not hold lock ρ. Hence we may
apply Lemma 14 and get the subeffect relation

α(σ′, in-sync ρ e) v{ρ} α(σ, ρ.sync e )
We use Lemma 5 to obtain the subeffect relation

α(σ′, E [in-sync ρ e]) v{ρ} α(σ, E [ρ.sync e ])
But this is a contradiction: By assumption of σ ∈ Li, we
know

α(σ, E [ρ.sync e ]) v CL

and so
α(σ′, E [in-sync ρ e]) v{ρ} CL
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But also σ′ ∈ Ri by assumption, and we have

α(σ′, E [in-sync ρ e]) 6v CL

Hence this case is trivially true.
(e) [RED SYNC REENTRANT]: For some well-formed state σ0, we

have

σ = σ0[i 7→ E [ργsync e ], ρ 7→ { f = v }i]
σ′ = σ0[i 7→ E [e], ρ 7→ { f = v }i]

We have γ = . since σ ∈ Li and thus non-yielding. Thread
i may transition from E [ρ.sync e ] to E [e] only if ρ is held
by i. Hence we have ρ ∈ locks(E). By Lemma 15, we have

α(σ′, e) v{ρ} S(ρ, ., α(σ, e))

This implies

AF;α(σ′, e) v∅∪locks(E)∅ S(ρ, ., α(σ, e))

Applying Lemma 5, we obtain

AF;α(σ′, E [e]) v∅∅ α(σ, E [ρ.sync e ])

which is equivalent to

α(σ′, E [e]) v α(σ, E [ρ.sync e ])

This is a contradiction: By assumption of σ ∈ Li, we know

α(σ, E [ρ.sync e ]) v CL

and so

α(σ′, E [e]) v CL

But also σ′ ∈ Ri by assumption, and we have

α(σ′, E [e]) 6v CL

Hence this case is trivially true.
(f) [RED READY]: σ(i) = E [ready e] and is yielding, thus we

ignore this case.
(g) [RED LET]: For some well-formed state σ0, we have

σ = σ0[i 7→ E [let x = v in e]]
σ′ = σ0[i 7→ E [e[x := v]]]

We show that

α(σ′, e[x := v]) v α(σ, let x = v in e)

and use Lemma 4 to obtain a contradiction. Becauseα(σ, let x = v in e)
is well-defined, we know the following judgment must hold
for the well-formed environment Eσ:

P ;Eσ ` let x = v in e : c · a

and the following antecedents in this judgment must also be
true:

P ;Eσ ` v : AF · c′
P ;Eσ, c

′ x ` e : c · a′
P ;Eσ ` a′[x := v] ↑ a

Applying the substitution lemma on the second antecedent,
we get

P ;Eσ ` e[x := v] : c · a′[x := v]

By definition of ↑, we have

a′[x := v] v a

(h) [RED IF-NONNULL] and [RED IF-NULL]: For some well-formed
state σ0, we have

σ = σ0[i 7→ E [if v e2 e3]]
σ′ = σ0[i 7→ E [ej ]] for j = 2..3

and by assumption, σ ∈ Li and σ′ ∈ Ri. Then by definition
of t, for j = 2..3,

α(σ′, ej) v α(σ, if v e2 e3) = (α(σ, e2) t α(σ, e3))

By Lemma 4, we obtain a contradiction for σ′(i).
(i) [RED WRONG]: Since σ′(i) = wrong, we have σ′ 6∈ Ri.

3. Wi/→i is false.
Proof: By definition ofWi =WT ∩{σ | σ(i) ≡ wrong} and
inspection of transition rules, we see that the thread i cannot
advance.

4. →i and→j are disjoint for all j 6= i. That is, no states p, q exist
such that p→i q and p→j q.
Proof: Observe that the transition relation →i changes the
thread i, and leaves all other existing threads unchanged. Since
j 6= i, when starting from some state p, we have p →i q and
p→j q

′ and q 6= q′.
5. (→i \Ri) right-commutes with→j for all j 6= i.

Proof: We proceed by case analysis on p1 →i p2, assuming
p2 ∈ Ri, and p2 →j p3. In the arguments that follow, we
assume a well-formed state σ.
• [RED READ]: Let p1 = σ[i 7→ E [ργf ]] and p2 = σ[i 7→
E [v]], where σ(ρ.f) = v. We proceed by case analysis on γ
and field type.
(a) γ = . and f ∈ Normal : In this case, no other thread

reads or writes to ρ.f . Thus→i \Ri and→j commute,
since they operate on disjoint data.

(b) γ = . and f ∈ Final : In this case, other threads may
only read ρ.f . Thus →i \Ri and →j commute, since
reads of ρ.f by threads i and j commute.

(c) γ = . and f ∈ Volatile: By Lemma 3, we have

Y (E , α(p1, ρ.f));α(p1, E [v]) v α(p1, E [ρ.f ])

This is a contradiction: we have

Y (E , α(p1, ρ.f)) = α(p1, ρ.f) = AN

and AN sequentially composed with α(p1, E [v]) =
α(p2, E [v]) 6v CL is undefined.

(d) γ = .. and f ∈ Volatile: By Lemma 3, we have

Y (E , α(p1, ρ..f));α(p1, E [v]) v α(p1, E [ρ..f ])

By rule [EXP REF RACE], we have

Y (E , α(p1, ρ..f)) = α(p1, ρ..f) = (CY; AN) = CL

while by assumption we have

α(p1, E [v]) = α(p2, E [v]) 6v CL

This is a contradiction, since this sequential composition
is undefined.

• [RED WRITE]: Let p1 = σ[i 7→ E [ργf = v]] and p2 =
σ[i 7→ E [v]]. We proceed by case analysis on γ and field
type.
(a) γ = . and f ∈ Normal : In this case, the threads i and j

operate on disjoint data – hence the operations commute.
(b) γ = . and f ∈ Volatile: By Lemma 3, we have

Y (E , α(p1, ρ.f = v));α(p1, E [v])
v α(p1, E [ρ.f = v])

This is a contradiction, since

Y (E , α(p1, ρ.f = v)) = α(p1, ρ.f = v) = AN

and AN sequentially composed with α(p1, E [v]) =
α(p1, E [v]) 6v CL is undefined.
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(c) γ = .. and f ∈ Volatile: By Lemma 3, we have

Y (E , α(p1, ρ..f = v));α(p1, E [v])
v α(p1, E [ρ..f = v])

By rule [EXP ASSIGN VOLATILE], we have

Y (E , α(p1, ρ..f = v)) = α(p1, ρ..f = v) = CL

while by assumption we have

α(p1, E [v]) = α(p2, E [v]) 6v CL

This is a contradiction, since this sequential composition
is undefined.

• [RED NEW]: Suppose the step →i creates a new object at
address ρ. Then observe that the step→j cannot access ρ,
since thread j must be well-typed in an environment that
does not contain ρ. Thus, →i \Ri changes only thread i
and ρ, and→j changes only the thread j and maybe some
other address ρ′ 6= ρ. So (→i \Ri) and→j commute.
• [RED SYNC]: Let p1 = σ[i 7→ E [ρ.sync e ]] and p2 =
σ[i 7→ E [in-sync ρ v]]. To interfere with →i, the step
→j would need to obtain the lock ρ. By inspection, ob-
serve that only rules [RED SYNC], [RED SYNC REENTRANT],
and [RED IN-SYNC] hold ρ, all three of which cannot occur.
• [RED SYNC REENTRANT]: Similar to previous case.
• [RED IN-SYNC]: Let p1 = σ[i 7→ E [in-sync ρ v]] and
p2 = σ[i 7→ E [v]]. By Lemma 3, we have

Y (E , α(p1, in-sync ρ v));α(p1, E [v])
v α(p1, E [in-sync ρ v])

The function SI tells us that
Y (E , α(p1, in-sync ρ v))

= α(p1, in-sync ρ v)
= SI(ρ, AF)
= AF; AL = AL

However, α(p1, E [v]) = α(p2, E [v]) 6v CL. Hence the
sequential composition is undefined, a contradiction.
• [RED FORK]: Let p1 = σ[i 7→ E [fork e]] and p2 = σ[i 7→
E [null]]. By Lemma 3, we have

Y (E , α(p1, fork e));α(p1, E [null]) v α(p1, E [fork e])
The rule [EXP FORK] tells us that

Y (E , α(p1, fork e)) = α(p1, fork e) = AL

However, α(p1, E [null]) = α(p2, E [null]) 6v CL. Hence
the sequential composition is undefined, a contradiction.
• [RED INVOKE], [RED INVOKE COMPOUND], [RED LET], [RED IF-NONNULL],

[RED IF-NULL], [RED WHILE], [RED READY], [RED WRONG]:
Since the operation by thread i is entirely local, it commutes
with the operation of any other thread j.

6. (Li/→i) left-commutes with→j for all j 6= i.
Proof: We proceed by case analysis on p2 →i p3, assuming
p2 ∈ Li, and p1 →j p2. In the arguments that follow, we
assume a well-formed state σ.
• [RED READ]: Let p2 = σ[i 7→ E [ργf ]] and p3 = σ[i 7→
E [v]]. We proceed by case analysis on γ and field type.
(a) γ = . and f ∈ Normal : In this case, field f is synchro-

nized, and thread j may not read or write to ρ.f . Since
the two operations access disjoint data, they commute.

(b) γ = . and f ∈ Final : In this case, thread j may read
from (but not write to) ρ.f . Since two reads commute
freely, the two operations commute.

(c) γ = . and f ∈ Volatile: By the Lemma 13, we have

α(p2, E [v]) = α(p3, E [v])

By Lemma 3, we have

Y (E , α(p2, ρ.f));α(p2, E [v]) v α(p2, E [ρ.f ])
where σ(ρ.f) = v. By rule [EXP REF RACE], we have

Y (E , α(p2, ρ.f)) = α(p2, ρ.f) = AN

Since sequential composition of N with any mover effect
is either undefined or 6v L, this contradicts our assump-
tion of p2 ∈ Li.

(d) γ = .. and f ∈ Volatile: Since γ = .., we have
p2 ∈ Ni and also p2 ∈ Li: a contradiction.

• [RED WRITE]: Let p2 = σ[i 7→ E [ργf = v]] and p3 =
σ[i 7→ E [v]]. We proceed by case analysis on γ and field
type.
(a) γ = . and f ∈ Normal : In this case, field f is synchro-

nized, and thread j may not read or write to ρ.f . Since
the two operations access disjoint data, they commute.

(b) γ = . and f ∈ Volatile: By Lemma 13, we have

α(p2, E [v]) = α(p3, E [v])
By Lemma 3, we have

Y (E , α(p2, ρ.f = v));α(p2, E [v]) v α(p2, E [ρ.f = v])

By rule [EXP WRITE VOLATILE], we have

Y (E , α(p2, ρ.f = v)) = α(p2, ρ.f = v) = AN

Since sequential composition of N with any mover effect
is either undefined or 6v L, this contradicts our assump-
tion of p2 ∈ Li.

(c) γ = .. and f ∈ Volatile: Since γ = .., we have
p2 ∈ Ni and also p2 ∈ Li: a contradiction.

(d) [RED NEW]: Let p2 = σ[i 7→ E [new c(v)]] and p3 =
σ[i 7→ E [ρ]]. Observe that the step by thread j cannot
refer to ρ and yet σ(j) is well-typed. Hence, threads i
and j access disjoint data, and the operations commute.

• [RED SYNC]: Let p2 = σ[i 7→ E [ργsync e ], ρ 7→ { f =
v }⊥] and p3 = σ[i 7→ E [in-sync ρ e], ρ 7→ { f = v }i].
We have γ = . since p2 ∈ Li. By Lemma 3, we have, for
some value v,

Y (E , α(p2, ρ.sync e ));α(p2, E [v])
v α(p2, E [ρ.sync e ]) (6)

By rule [EXP SYNC] and the definition of function S,

Y (E , α(p2, ρ.sync e )) = Y (E ,S(ρ, ., α(p2, e))) (7)

Thread i’s transition from E [ργsync e ] to E [in-sync ρ e]
may occur only if ρ is not held; hence we have ρ 6∈
locks(E). Then by Lemma 16,

Y (E ,S(ρ, ., α(p2, e))) 6v CL (8)

This is a contradiction: By assumption of p2 ∈ Li, we have

α(p2, E [ρ.sync e ]) v CL

but by Formulas 6 and 7 and 8, we get

α(p2, E [ρ.sync e ]) 6v CL

Hence this case is trivially true.
• [RED IN-SYNC]: Let p2 = σ[i 7→ E [in-sync ρ v], ρ 7→
{ f = v }i] and p3 = σ[i 7→ E [v], ρ 7→ { f =
v }⊥]. The step by thread j cannot be one of [RED SYNC],
[RED SYNC REENTRANT], or [RED IN-SYNC] that operate on
lock ρ: at p2, the lock ρ is held by i, which contradicts
the lock state if one of these operations was performed.
These are the only operations that may interfere with
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[RED IN-SYNC], and any other operation by j successfully
commutes with→i.
• [RED SYNC REENTRANT]: Let p2 = σ[i 7→ E [ργsync e ], ρ 7→
{ f = v }i] and p3 = σ[i 7→ E [e], ρ 7→ { f = v }i]. The
argument proceeds similar to the previous case.
• [RED FORK]: Let p2 = σ[i 7→ E [fork e]] and p3 = σ[i 7→
E [null], i′ 7→ ready e], where i′ 6∈ Dom(p2). Then p1
cannot refer to i′ and i′ is not executing; hence the fork
operation can left-commute with→j .
• [RED READY]: Since p2 = σ[i 7→ ready e], we have
p2 ∈ Ni: a contradiction.
• [RED INVOKE], [RED INVOKE COMPOUND], [RED LET], [RED IF-NONNULL],

[RED IF-NULL], [RED WHILE], [RED WRONG]: If there is a γ in
any of these operations, we have γ = . since p2 is non-
yielding in Li. For these operations, all modifications to
state are local, and cannot be affected by→j . Thus→j and
→i commute.

7. If p →i q, then Rj(p) ⇔ Rj(q), Lj(p) ⇔ Lj(q), and
Wj(p)⇔Wj(q), for all j 6= i.
Proof: We proceed by case analysis on the expansion of p’s
thread map.
• Assume i does not fork a new thread. By inspection of the

transition rules, we see that thread i does not change the
thread state of another thread j. Thus Rj(p) ⇔ Rj(q) and
Lj(p)⇔ Lj(q) and Wj(p)⇔Wj(q).
• Assume i forks a new thread k. Since only these two threads

have changes, for all threads j other than i and k, we have
Rj(p) ⇔ Rj(q) and Lj(p) ⇔ Lj(q) and Wj(p) ⇔
Wj(q). For thread k, we have Nk(p), since k 6∈ Dom(p),
and Nk(q), since the thread state at k is yielding in q.
This implies Rk(p) ⇔ Rk(q) and Lk(p) ⇔ Lk(q) and
Wk(p)⇔Wk(q).

LEMMA 1 (Effect Monotonicity).

1. If a1 v a2, then for all a:

a1; ava2; a
a; a1va; a2

a1 t ava2 t a

a t a1va t a2
a∗1va∗2

θ(a1)vθ(a2)
where θ is a set of substitutions [x := e].

2. If a1 v a2 and P ;E ` a1 ↑ a′1 and P ;E ` a2 ↑ a′2 then
a′1 v a′2.

3. If a1 vhn a2, then for any valid lock expression ` such that
` 6∈ h and ` 6∈ n, we have

a1 vh∪{`}n a2
a1 vhn∪{`} a2

4. If a1 vhn a2, then for all a:

a1; a vhn a2; a
a; a1 vhn a; a2

Proof Follows from the definitions of these operations.

LEMMA 2 (Context Subexpression). Suppose there is a deduction
that concludes P ;E ` E [e] : c · a. Then that deduction contains,
at a position corresponding to the hole in E , a subdeduction that
concludes P ;E ` e : c′ · a′.

Proof Induction over the derivation of P ;E ` E [e] : c · a.

LEMMA 3 (Sequentiality). Let E a context, E a well-formed envi-
ronment, e an expression, and v a value. Suppose the following:

P ;E ` E [e] : c · a
P ;E ` E [v] : c · a′
e is not a value

Then we may conclude

P ;E ` e : c′ · a′′
Y (E , a′′); a′ v a

Proof By induction over the derivation of P ;E ` E [e] : c · a.
First, by Lemma 2, we obtain P ;E ` e : c′ · a′′.
• E ≡ [ ]: As assumptions, we have

P ;E ` [e] : c · a
P ;E ` [v] : c · a′

where a′ = AF. From the first assumption, we immediately
have a′′ = a. Also AF is the right identity for sequential
composition. Hence we have the equality

(a′′; a′) = (a;AF ) = a

By Lemma 17, we know

Y (E , a′′) v a′′

so by Lemma 1, we have

Y (E , a′′); a′ v a′′; a′

and we may conclude with our desired result

Y (E , a′′); a′ v a
• E ≡ new c(v, E ′, e): As assumptions, we have

P ;E ` new c(v, E ′[e], e) : c · a
P ;E ` new c(v, E ′[v], e) : c · a′

Let us take E ′[e] to be in the kth position in the argument list.
These assumptions are derivable only through rule [EXP NEW];
hence, we know

class c { di xi
i∈1..n} ∈ P

P ;E ` vi : ci · ai ∀i ∈ 1..k − 1
P ;E ` E ′[e] : ck · ak
P ;E ` E ′[v] : ck · a′k
P ;E ` ei : ci · ai ∀i ∈ k + 1..n
ai = AF ∀i ∈ 1..k − 1
a = (a1; . . . ; ak; . . . ; an; AM)
a′ = (a1; . . . ; a

′
k; . . . ; an; AM)

Since AF is identity for sequential composition, we can simplify
a and a′ as follows:

a = (ak; . . . ; an; AM)
a′ = (a′k; . . . ; an; AM)

By IH, we have
Y (E ′, a′′); a′k v ak

Since locks(E ′) = locks(E), we have

Y (E , a′′); a′k v ak
By Lemma 1, we get

(Y (E , a′′); a′k; . . . ; an; AM) v (ak; . . . ; an; AM)

Hence, by substitution, we obtain our desired result

Y (E , a′′); a′ v a
• E ≡ E ′γf : As assumptions, we have

P ;E ` E ′[e]γf : c · a
P ;E ` E ′[v]γf : c · a′
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These assumptions are derivable only through rules [EXP REF]
and [EXP REF RACE]; hence, we know

P ;E ` E ′[e] : co · ao
P ;E ` E ′[v] : co · a′o
class co { . . . c f . . . } ∈ P
a = ao; af
a′ = a′o; af

where af is one of four cases

AM if f ∈ Normal and γ = .
AF if f ∈ Final and γ = .
AN if f ∈ Volatile and γ = .
CL if f ∈ Volatile and γ = ..

By IH, we have

Y (E ′, a′′); a′o v ao
Since locks(E ′) = locks(E), we have

Y (E , a′′); a′o v ao

By Lemma 1, we get

(Y (E , a′′); a′o; af ) v (ao; af )

Hence we obtain our desired result

Y (E , a′′); a′ v a

• E ≡ E ′γf = e′: As assumptions, we have

P ;E ` E ′[e]γf = e′ : c · a
P ;E ` E ′[v]γf = e′ : c · a′

These assumptions are derivable only through rules [EXP ASSIGN]
and [EXP ASSIGN RACE]; hence, we know

P ;E ` E ′[e] : co · ao
P ;E ` E ′[v] : co · a′o
P ;E ` e′ : c · at
class co { . . . c f . . . } ∈ P
a = ao; at; af
a′ = a′o; at; af

where af is one of four cases

AM if f ∈ Normal and γ = .
AF if f ∈ Final and γ = .
AN if f ∈ Volatile and γ = .
CL if f ∈ Volatile and γ = ..

By IH, we have

Y (E ′, a′′); a′o v ao
Since locks(E ′) = locks(E), we have

Y (E , a′′); a′o v ao

By Lemma 1, we get

(Y (E , a′′); a′o; at; af ) v (ao; at; af )

Hence, by substitution, we obtain our desired result

Y (E , a′′); a′ v a

• E ≡ v′γf = E ′: As assumptions, we have

P ;E ` v′γf = E ′[e] : c · a
P ;E ` v′γf = E ′[v] : c · a′

These assumptions are derivable only through rules [EXP ASSIGN]
and [EXP ASSIGN RACE]; hence, we know

P ;E ` v′ : co · ao
P ;E ` E ′[e] : c · at
P ;E ` E ′[v] : c · a′t
class co { . . . c f . . . } ∈ P
ao = AF
a = ao; at; af
a′ = ao; a

′
t; af

where af is one of four cases

AM if f ∈ Normal and γ = .
AF if f ∈ Final and γ = .
AN if f ∈ Volatile and γ = .
CL if f ∈ Volatile and γ = ..

By IH, we have

Y (E ′, a′′); a′t v at
Since locks(E ′) = locks(E), we have

Y (E , a′′); a′t v at
By Lemma 1, and since AF is identity for sequential composi-
tion, we get

(Y (E , a′′); ao; a′t; af ) v (ao; at; af )

Hence, by substitution, we obtain our desired result

Y (E , a′′); a′ v a
• E ≡ E ′γm(e): As assumptions, we have

P ;E ` E ′[e]γm(e) : c · a
P ;E ` E ′[v]γm(e) : c · a′

These assumptions are derivable only through the rule [EXP INVOKE];
hence, we know

P ;E ` E ′[e] : co · ao
P ;E ` E ′[v] : co · a′o
class co { . . .meth . . . }
meth = am c m(di xi

i∈1..n){ e′ }
P ;E ` ei : di · ai ∀i ∈ 1..n
P ;E ` am[this := E ′[e], xi := ei

i∈1..n] ↑ a`
P ;E ` am[this := E ′[v], xi := ei

i∈1..n] ↑ a′`
a = ao; a1; . . . ; an; JγK; a`
a′ = a′o; a1; . . . ; an; JγK; a′`
a` v AN
a′` v AN

By IH, we have

Y (E ′, a′′); a′o v ao
Since locks(E ′) = locks(E), we have

Y (E , a′′); a′o v ao
By Lemma 1, we get

(Y (E , a′′); a′) = (Y (E , a′′); a′o; a1; . . . ; an; JγK; a′`)
v (ao; a1; . . . ; an; JγK; a′`)

Since E ′[e] cannot be a value due to the presence of e, by
Lemma 11, we have a′` v a`. Again by Lemma 1, we get

(ao; a1; . . . ; an; JγK; a′`) v (ao; a1; . . . ; an; JγK; a`) = a

Combining, we get our desired result

Y (E , a′′); a′ v a
• E ≡ E ′γm#(e): Similar argument to previous case.
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• E ≡ v′γm(v, E ′, e): As assumptions, we have

P ;E ` v′γm(v, E ′[e], e) : c · a
P ;E ` v′γm(v, E ′[v], e) : c · a′

These assumptions are derivable only through the rule [EXP INVOKE];
hence, we know the following, where we take E ′[e] to be in the
kth position in the list of arguments.

P ;E ` v′ : co · ao
class co { . . .meth . . . }
meth = am c m(di xi

i∈1..n){ e′ }
P ;E ` vi : di · ai ∀i ∈ 1..k − 1
P ;E ` E ′[e] : ck · ak
P ;E ` E ′[v] : ck · a′k
P ;E ` ei : di · ai ∀i ∈ k + 1..n
P ;E ` am[this := v′, xi := vi

i∈1..k−1,
xk := E ′[e], xi := ei

i∈k+1..n] ↑ a`
P ;E ` am[this := v′, xi := vi

i∈1..k−1,
xk := E ′[v], xi := e)i i∈k+1..n] ↑ a′`

ao = AF
ai = AF ∀i ∈ 1..k − 1
a = ao; a1; . . . ; ak; . . . ; an; JγK; a`
a′ = ao; a1; . . . ; a

′
k; . . . ; an; JγK; a′`

a` v AN
a′` v AN

Both a and a′ simplify to the following, due to AF being the
identity of sequential composition:

a = ak; . . . ; an; JγK; a`
a′ = a′k; . . . ; an; JγK; a′`

By IH, we have
Y (E ′, a′′); a′k v ak

Since locks(E ′) = locks(E), we have

Y (E , a′′); a′k v ak
By Lemma 1, we get

(Y (E , a′′); a′)
= (Y (E , a′′); a′k; . . . ; an; JγK; a′`)
v (ak; . . . ; an; JγK; a′`)

Since E ′[e] cannot be a value due to the presence of e, by
Lemma 11, we have a′` v a`. Again by Lemma 1, we get

(ak; . . . ; an; JγK; a′`) v (ak; . . . ; an; JγK; a`) = a

Combining, we get our desired result

Y (E , a′′); a′ v a
• E ≡ ργm#(v, E ′, e): Similar argument to previous case.
• E ≡ let x = E ′ in e′: As assumptions, we have

P ;E ` let x = E ′[e] in e′ : c · a
P ;E ` let x = E ′[v] in e′ : c · a′

These assumptions are derivable only through rule [EXP LET];
hence we know

P ;E ` E ′[e] : cx · ax
P ;E ` E ′[v] : cx · a′x
P ;E, cx x ` e′ : c · ab
P ;E ` ab[x := E ′[e]] ↑ a`
P ;E ` ab[x := E ′[v]] ↑ a′`
a = (ax; a`)
a′ = (a′x; a

′
`)

By IH, we have
Y (E ′, a′′); a′x v ax

Since locks(E ′) = locks(E), we have

Y (E , a′′); a′x v ax
By Lemma 1, we get

(Y (E , a′′); a′) = (Y (E , a′′); a′x; a′`) v (ax; a
′
`)

Since E ′[e] cannot be a value due to the presence of e, by
Lemma 11, we have a′` v a`. Applying Lemma 1, we get

(ax; a
′
`) v (ax; a`) = a

Combining, we get our desired result

Y (E , a′′); a′ v a
• E ≡ if E ′ e1 e2: As assumptions, we have

P ;E ` if E ′[e] e1 e2 : c · a
P ;E ` if E ′[v] e1 e2 : c · a′

These assumptions are derivable only through rule [EXP IF];
hence we know

P ;E ` E ′[e] : cg · ag
P ;E ` E ′[v] : cg · a′g
P ;E ` e1 : c · a1
P ;E ` e2 : c · a2
a = (ag; (a1 t a2))
a′ = (a′g; (a1 t a2))

By IH, we have

Y (E ′, a′′); a′g v ag
Since locks(E ′) = locks(E), we have

Y (E , a′′); a′g v ag
By Lemma 1, we get

(Y (E , a′′); a′g; (a1 t a2)) v (ag; (a1 t a2))

Hence we obtain our desired result

Y (E , a′′); a′ v a
• E ≡ E ′γsync e′ : As assumptions, we have

P ;E ` E ′[e]γsync e′ : c · a
P ;E ` E ′[v]γsync e′ : c · a′

We encounter a contradiction in the first assumption. The judg-
ment P ;E ` E ′[e]γsync e′ : c · a can only be derived with
rule [EXP SYNC], and hence it must be that

P ;E `lock E ′[e]

However, with non-value e contained in this lock expression,
we cannot actually make this judgment. Thus by contradiction
we conclude this case is trivially true.
• E ≡ in-sync ρ E ′: As assumptions, we have

P ;E ` in-sync ρ E ′[e] : c · a
P ;E ` in-sync ρ E ′[v] : c · a′

These assumptions are derivable only through rule [EXP INSYNC];
hence we know

P ;E `lock ρ
P ;E ` E ′[e] : c · ab
P ;E ` E ′[v] : c · a′b
a = SI(ρ, ab)
a′ = SI(ρ, a′b)

By IH, we have

Y (E ′, a′′); a′b v ab
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By repeated application of Lemma 17, we have

Y (E , a′′) v a′′
Y (E ′,Y (E , a′′)) v Y (E ′, a′′)

Since locks(E ′) ⊂ locks(E), we have

Y (E , a′′) = Y (E ′,Y (E , a′′))
and so by transitivity and Lemma 1,

Y (E , a′′) v Y (E ′, a′′)
Y (E , a′′); a′b v ab

We may strengthen the last relation by inclusion of {ρ} in the
held lockset:

Y (E , a′′); a′b v{ρ} ab
Then by Lemma 20, we have

Y (E , a′′);SI(ρ, a′b) v{ρ} SI(ρ, ab)
Since the left and right hand effects both are not conditional on
ρ, by Lemma 18 we have

Y (E , a′′);SI(ρ, a′b) v SI(ρ, ab)
Hence we obtain our desired result

Y (E , a′′); a′ v a

LEMMA 4 (Context Replacement). Suppose the following:

P ;E ` E [e1] : c · a, and
P ;E ` e1 : d · a1, and
e1 not a value, and
P ;E ` e2 : d · a2, and
a2 v a1.

Then P ;E ` E [e2] : c · a′ and a′ v a.

Proof Let h = ∅, n = ∅, and κy = AF. The assumption
a2 v a1 implies

κy; a2 vh∪locks(E)n a1

Then applying Lemma 5, we obtain the judgment P ;E ` E [e2] : c·
a′ where a′ v a.

LEMMA 5 (Context Replacement 2). Suppose the following:

P ;E ` E [e1] : c · a′1, and
P ;E ` e1 : d · a1, and
e1 not a value, and
P ;E ` e2 : d · a2, and
∃ h, n . h 6∩ n 6∩ locks(E)
κy; a2 vh∪locks(E)n a1

Then P ;E ` E [e2] : c · a′2 and (κy; a
′
2) vhn a′1.

Proof By induction over the structure of E .

• E ≡ [ ]: As assumptions, we have

P ;E ` [e1] : c · a′1
P ;E ` e2 : d · a2

and may obtain the equalities

a′1 = a1
a′2 = a2

Since E ≡ [ ], we have locks(E) = ∅. From the assumption
κy; a2 vh∪locks(E)n a1 and substituting, we obtain

κy; a
′
2 vhn a′1

which is our desired result.
• E ≡ new c ( v, E ′, e): As an assumption, we have

P ;E ` new c ( v, E ′[e1], e) : c · a′1
Let us take E ′[e1] to be in the kth position in the list of
arguments. This assumption is derivable only through rule
[EXP NEW]; hence we know

class c { di xi
i∈1..n} ∈ P

P ;E ` vi : ci · ai ∀i ∈ 1..k − 1
P ;E ` E ′[e1] : ck · ak
P ;E ` ei : ci · ai ∀i ∈ k + 1..n
ai = AF ∀i ∈ 1..k − 1
a′1 = (a1; . . . ; ak; . . . ; an; AM)

We have locks(E) = locks(E ′), since the E 6≡ in-sync ` E ′.
By IH, we get

P ;E ` E ′[e2] : ck · a′k
(κy; a

′
k) vhn ak

Using rule [EXP NEW], we may conclude

P ;E ` new c ( v, E ′[e2], e) : c · a′2
a′2 = (a1; . . . ; a

′
k; an; AM)

Since AF is the identity for sequential composition, we may
simplify a′1 and a′2 as follows:

a′1 = (ak; . . . ; an; AM)
a′2 = (a′k; . . . ; an; AM)

By Lemma 1 and (κy; a
′
k) vhn ak, we have

(κy; a
′
k; . . . ; an; AM) vhn (ak; . . . ; an; AM)

Hence we obtain our desired result

(κy; a
′
2) vhn a′1

• E ≡ E ′γf : As an assumption, we have

P ;E ` E ′[e1]γf : c · a′1
This assumption is derivable only through rules [EXP REF] and
[EXP REF RACE]; hence we know

P ;E ` E ′[e1] : co · ao
class co { . . . c f . . . } ∈ P
a′1 = (ao; af )

where af is one of four cases

AM if f ∈ Normal and γ = .
AF if f ∈ Final and γ = .
AN if f ∈ Volatile and γ = .
CL if f ∈ Volatile and γ = ..

We have locks(E) = locks(E ′), since E 6≡ in-sync ` E ′. By
IH, we have

P ;E ` E ′[e2] : co · a′o
(κy; a

′
o) vhn ao

Using rules [EXP REF] and [EXP REF RACE], we may conclude

P ;E ` E ′[e1]γf : c · a′2
a′2 = (a′o; af )

By Lemma 1 and (κy; a
′
o) vhn ao, we get

(κy; a
′
o; af ) vhn (ao; af )
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Hence we obtain our desired result

(κy; a
′
2) vhn a′1

• E ≡ E ′γf = e: As an assumption, we have

P ;E ` E ′[e1]γf = e : c · a′1
This assumption is derivable only through rules [EXP ASSIGN]
and [EXP ASSIGN RACE]; hence we know

P ;E ` E ′[e1] : co · ao
P ;E ` e : c · at
class co { . . . c f . . . } ∈ P
a′1 = (ao; at; af )

where af is one of three cases

AM if f ∈ Normal and γ = .
AN if f ∈ Volatile and γ = .
CL if f ∈ Volatile and γ = ..

We have locks(E) = locks(E ′), since E 6≡ in-sync ` E ′. By
IH, we have

P ;E ` E ′[e2] : co · a′o
(κy; a

′
o) vhn ao

Using rules [EXP ASSIGN] and [EXP ASSIGN RACE], we may con-
clude

P ;E ` E ′[e1]γf = e : c · a′2
a′2 = (a′o; at; af )

By Lemma 1 and (κy; a
′
o) vhn ao, we get

(κy; a
′
o; at; af ) vhn (ao; at; af )

Hence we obtain our desired result

(κy; a
′
2) vhn a′1

• E ≡ vγf = E ′: As an assumption, we have

P ;E ` vγf = E ′[e1] : c · a′1
This assumption is derivable only through rules [EXP ASSIGN]
and [EXP ASSIGN RACE]; hence we know

P ;E ` v : co · ao
P ;E ` E ′[e1] : c · at
class co { . . . c f . . . } ∈ P
ao = AF
a′1 = (ao; at; af )

where af is one of three cases

AM if f ∈ Normal and γ = .
AN if f ∈ Volatile and γ = .
CL if f ∈ Volatile and γ = ..

We have locks(E) = locks(E ′), since E 6≡ in-sync ` E ′. By
IH, we have

P ;E ` E ′[e2] : c · a′t
(κy; a

′
t) vhn at

Using rules [EXP ASSIGN] and [EXP ASSIGN RACE], we may con-
clude

P ;E ` vγf = E ′[e2] : c · a′2
a′2 = (ao; a

′
t; af )

Since AF is the identity for sequential composition, we may
simplify a′1 and a′2 as follows:

a′1 = (at; af )
a′2 = (a′t; af )

By Lemma 1 and (κy; a
′
t) vhn at, we get

(κy; a
′
t; af ) vhn (at; af )

Hence we obtain our desired result

(κy; a
′
2) vhn a′1

• E ≡ E ′γm(e): As an assumption, we have

P ;E ` E ′[e1]γm(e) : c · a′1
This assumption is derivable only through rule [EXP INVOKE];
hence we know

P ;E ` E ′[e1] : co · ao
class co { . . .meth . . . } ∈ P
meth = am c m(di xi

i∈1..n){ e′}
P ;E ` ei : di · ai ∀i ∈ 1..n
P ;E ` am[this := E ′[e1], xi := ei

i∈1..n] ↑ a′m
a′m v AN
a′1 = (ao; a1; . . . ; an; JγK; a′m)

We have locks(E) = locks(E ′), since E 6≡ in-sync ` E ′. By
IH, we have

P ;E ` E ′[e2] : co · a′o
(κy; a

′
o) vhn ao

From P ` E and the lifting rules we may derive

P ;E ` am[this := E ′[e2], xi := ei
i∈1..n] ↑ a′′m

By Lemma 11 and the fact that E ′[e1] cannot be a value, we
have

a′′m v a′m
Using rule [EXP INVOKE], we may conclude

P ;E ` E ′[e2]γm(e) : c · a′2
a′2 = (a′o; a1; . . . ; an; JγK; a′′m)

By Lemma 1 and (κy; a
′
o) vhn ao we have

(κy; a
′
o; a1; . . . ; an; JγK; a′′m) vhn (ao; a1; . . . ; an; JγK; a′′m)

By a separate application of Lemma 1 to a′′m v a′m, we have

(ao; a1; . . . ; an; JγK; a′′m) v (ao; a1; . . . ; an; JγK; a′m)

Combining these, and substituting definitions of a′1 and a′2, we
obtain our desired result

(κy; a
′
2) vhn a′1

• E ≡ E ′γm#(e): Similar argument to previous case.
• E ≡ vγm(v, E ′, e): As an assumption, we have

P ;E ` vγm(v, E ′[e1], e) : c · a′1
Let us take E ′[e1] to be in the kth position in the list of
arguments. This assumption is derivable only through rule
[EXP INVOKE]; hence we know

P ;E ` v : co · ao
class co { . . .meth . . . } ∈ P
meth = am c m(di xi

i∈1..n){ e′}
P ;E ` vi : di · ai ∀i ∈ 1..k − 1
P ;E ` E ′[e1] : dk · ak
P ;E ` ei : di · ai ∀i ∈ k + 1..n
P ;E ` am[this := v, xi := vi

i∈1..k−1,
xk := E ′[e1], xi := ei

i∈k+1..n] ↑ a′m
ao = AF
a′m v AN
a′1 = (ao; a1; . . . ; ak; . . . ; an; JγK; a′m)

We have locks(E) = locks(E ′), since E 6≡ in-sync ` E ′. By
IH, we have

P ;E ` E ′[e2] : dk · a′k
(κy; a

′
k) vhn ak
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From P ` E and the lifting rules we may derive

P ;E ` am[this := v, xi := vi
i∈1..k−1,

xk := E ′[e2], xi := ei
i∈k+1..n] ↑ a′′m

By Lemma 11 and the fact that E ′[e1] cannot be a value, we
have

a′′m v a′m
Using rule [EXP INVOKE], we may conclude

P ;E ` vγm(v, E ′[e2], e) : c · a′2
a′2 = (ao; a1; . . . ; a

′
k; . . . ; an; JγK; a′′m)

Since AF is the identity for sequential composition, we may
simplify a′1 and a′2 to the following:

a′1 = ak; . . . ; an; JγK; a′m
a′2 = a′k; . . . ; an; JγK; a′′m

By Lemma 1 and (κy; a
′
k) vhn ak we have

(κy; a
′
k; . . . ; an; JγK; a′′m) vhn (ak; . . . ; an; JγK; a′′m)

By a separate application of Lemma 1 to a′′m v a′m, we have

(ak; . . . ; an; JγK; a′′m) v (ak; . . . ; an; JγK; a′m)

Combining these, and substituting definitions of a′1 and a′2, we
obtain our desired result

(κy; a
′
2) vhn a′1

• E ≡ ργm#(v, E ′, e): Similar argument to previous case.
• E ≡ let x = E ′ in e: As an assumption, we have

P ;E ` let x = E ′[e1] in e : c · a′1
This assumption is derivable only through rule [EXP LET]; hence
we know

P ;E ` E ′[e1] : cx · ax
P ;E, cx x ` e : c · ab
P ;E ` ab[x := E ′[e1]] ↑ a`
a′1 = (ax; a`)

We have locks(E) = locks(E ′), since E 6≡ in-sync ` E ′. By
IH, we have

P ;E ` E ′[e2] : cx · a′x
(κy; a

′
x) vhn ax

From P ` E and the lifting rules we may derive

P ;E ` ab[x := E ′[e2]] ↑ a′`
By Lemma 11 and the fact that E ′[e1] cannot be a value, we
have

a′` v a`
Using rule [EXP LET], we may conclude

P ;E ` let x = E ′[e2] in e : c · a′2
a′2 = (a′x; a

′
`)

By Lemma 1 and (κy; a
′
x) vhn ax, we get

(κy; a
′
2) = (κy; a

′
x; a
′
`) vhn (ax; a

′
`)

By a separate application of Lemma 1 to a′` v a`, we have

(ax; a
′
`) v (ax; a`) = a′1

Combining these, we get our desired result

(κy; a
′
2) vhn a′1

• E ≡ if E ′ e1 e2: As an assumption, we have

P ;E ` if E ′[e1] e` er : c · a′1

This assumption is derivable only through rule [EXP IF]; hence
we know

P ;E ` E ′[e1] : d · ag
P ;E ` e` : c · a`
P ;E ` er : c · ar
a′1 = (ag; (a` t ar))

We have locks(E) = locks(E ′), since E 6≡ in-sync ` E ′. By
IH, we have

P ;E ` E ′[e2] : c · a′g
(κy; a

′
g) vhn ag

Using rule [EXP IF], we may conclude

P ;E ` if E ′[e1] e` er : c · a′2
a′2 = (a′g; (a` t ar))

By Lemma 1 and (κy; a
′
g) vhn ag , we get

(κy; a
′
g; (a` t ar)) vhn (ag; (a` t ar))

By substituting definitions of a′1 and a′2, we obtain our desired
result

(κy; a
′
2) vhn a′1

• E ≡ E ′γsync e : As an assumption, we have

P ;E ` E ′[e1]γsync e : c · a′1
We encounter a contradiction in this assumption. This assump-
tion is derivable only through rule [EXP SYNC]; hence it must be
that

P ;E `lock E ′[e1]
However, with non-value e1 contained in this lock expression,
we cannot actually make this judgment. Thus by contradiction
this case is trivially true.
• E ≡ in-sync ρ E ′: As an assumption, we have

P ;E ` in-sync ρ E ′[e1] : c · a′1
This assumption is derivable only through rule [EXP INSYNC];
hence we know

P ;E `lock ρ
P ;E ` E ′[e1] : c · ab
a′1 = SI(ρ, ab)

Rewriting our assumption, since

locks(E) = {ρ} ∪ locks(E ′)
{ρ} 6∩ locks(E ′)

we have
κy; a2 vh∪{ρ}∪locks(E

′)
n a1

By IH, we have

P ;E ` E ′[e2] : c · a′b
(κy; a

′
b) v

h∪{ρ}
n ab

By Lemma 20, we have

κy;SI(ρ, a′b) vh∪{ρ}n SI(ρ, ab)
Since the left and right sides both do not contain a conditional
on ρ, by Lemma 18, we have

κy;SI(ρ, a′b) vhn SI(ρ, ab)
By substituting definitions of a′1 and a′2, we obtain our desired
result

κy; a
′
2 vhn a′1
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LEMMA 6 (Substitution). Suppose we haveP ;E ` v : c·AF. Then
the following is true:

1. If P ` (E, c x,E′) then P ` (E,E′[x := v]).
2. If P ; (E, c x,E′) ` meth then P ; (E,E′[x := v]) `

meth[x := v].
3. If P ; (E, c x,E′) ` a then P ; (E,E′[x := v]) ` a[x := v].
4. If P ; (E, c x,E′) `lock ` then P ; (E,E′[x := v]) `lock
`[x := v].

5. If P ; (E, c x,E′) ` a ↑ a′ then P ; (E,E′[x := v]) ` a[x :=
v] ↑ a′[x := v].

6. If P ; (E, c x,E′) ` e : c′ ·a then P ; (E,E′[x := v]) ` e[x :=
v] : c′ · a[x := v].

Proof By simultaneous induction on all parts of the lemma.

• Assume P ` (E, c x,E′). Then we know, by rule [ENV X] and
by induction on length of E′, that for all (d y) ∈ E′, we have
y 6= x. Furthermore, a type d does not capture variables. Hence
x is not referred to in E′. By rule [ENV X], removing (c x) does
not affect the well-formedness of the remaining environment
bindings,

P ` (E,E′)

and hence we obtain our desired result

P ` (E,E′[x := v])

• AssumeP ; (E, c x,E′) ` meth , where meth = a d m(d x){ e }.
Then we know, by rule [METHOD], that

P ; (E, c x,E′, d x) ` e : d · a′
P ; (E, c x,E′, d x) ` a
a′ v a

By IH, we have

P ; (E,E′[x := v], (d x)[x := v]) ` e[x := v] : d · a′[x := v]
P ; (E,E′[x := v], (d x)[x := v]) ` a[x := v]

By Lemma 1,

a′[x := v] v a[x := v]

By rule [METHOD], we may conclude

P ; (E,E′[x := v]) ` a[x := v] dm((d x)[x := v]){ e[x := v] }

and hence we obtain our desired result

P ; (E,E′[x := v]) ` meth[x := v]

• Assume P ; (E, c x,E′) ` a. We proceed by case analysis on
the structure of effect a.

a = b. Then we know by rule [AT BASE] that

P ` (E, c x,E′)

By IH, we have

P ` (E,E′[x := v])

Thus by rule [AT BASE] we may conclude

P ; (E,E′[x := v]) ` b

Since b = (b[x := v]), we obtain our desired result

P ;E,E′[x := v] ` a[x := v]

a = ` ? a1 : a2. Then we know by rule [AT COND] that

P ; (E, c x,E′) `lock `
P ; (E, c x,E′) ` a1
P ; (E, c x,E′) ` a2

By IH, we have

P ; (E,E′[x := v]) `lock `[x := v]
P ; (E,E′[x := v]) ` a1[x := v]
P ; (E,E′[x := v]) ` a2[x := v]

By rule [AT COND], we may conclude

P ; (E,E′[x := v]) ` `[x := v] ? a1[x := v] : a2[x := v]

Hence we obtain our desired result

P ; (E,E′[x := v]) ` a[x := v]

• Assume P ; (E, c x,E′) `lock `. Then we know by rule
[LOCK EXP] that

P ; (E, c x,E′) ` ` : d · AF

By IH, we have

P ; (E,E′[x := v]) ` `[x := v] : d · AF[x := v]

By rule [LOCK EXP], we may conclude

P ; (E,E′[x := v]) `lock `[x := v]

• Assume P ; (E, c x,E′) ` a ↑ a′. We proceed by case analysis
on the structure of effect a.

a = b. By rule [LIFT BASE], we know

P ` (E, c x,E′)
a′ = a

By IH, we know

P ` (E,E′[x := v])

By rule [LIFT BASE], we may conclude

P ; (E,E′[x := v]) ` a ↑ a′

Since both a and a′ are combined (basic) effects, we have

a = a[x := v]
a′ = a′[x := v]

By substituting these equalities into our judgmentP ; (E,E′[x :=
v]) ` a ↑ a′, we obtain our desired result

P ; (E,E′[x := v]) ` a[x := v] ↑ a′[x := v]

a = ` ? a1 : a2. We proceed by case analysis on `.
− P ; (E, c x,E′) `lock `. By rule [LIFT GOOD LOCK], we

know
P ; (E, c x,E′) ` a1 ↑ a′1
P ; (E, c x,E′) ` a2 ↑ a′2

By IH, we have

P ; (E,E′[x := v]) `lock `[x := v]
P ; (E,E′[x := v]) ` a1[x := v]] ↑ a′1[x := v]
P ; (E,E′[x := v]) ` a2[x := v] ↑ a′2[x := v]

By rule [LIFT GOOD LOCK], we may conclude

P, (E,E′[x := v]) `
`[x := v] ? a1[x := v] : a2[x := v] ↑
`[x := v] ? a′1[x := v] : a′2[x := v]

Hence we obtain our desired result

P ; (E,E′[x := v]) ` a[x := v] ↑ a′[x := v]

− P ; (E, c x,E′) 6`lock `. Then by rule [LIFT BAD LOCK]
we know

P ; (E, c x,E′) ` a1 ↑ a′1
P ; (E, c x,E′) ` a2 ↑ a′2

Since the lock judgment does not hold, ` must contain
some non-constant expression e. Thus `[x := v] would
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still contain e and hence the locking judgment will not
hold for `[x := v]. By IH, we have

P ; (E,E′[x := v]) 6`lock `[x := v]
P ; (E,E′[x := v]) ` a1[x := v]] ↑ a′1[x := v]
P ; (E,E′[x := v]) ` a2[x := v] ↑ a′2[x := v]

Then by rule [LIFT BAD LOCK], we may conclude

P, (E,E′[x := v]) `
(`[x := v] ? a1[x := v] : a2[x := v]) ↑
(a′1[x := v] t a′2[x := v]])

Hence we obtain our desired result

P ; (E,E′[x := v]) ` a[x := v] ↑ a′[x := v]

• Assume P ; (E, c x,E′) ` e : d · a. We proceed by induction
over the derivation of this judgment.

e ≡ y. Then our assumption is

P ; (E, c x,E′) ` y : d · a
Since y is a variable, this assumption is derivable only
through rule [EXP VAR]; hence we know

P ` (E, c x,E′)
a = AF

We proceed by case analysis of membership of (d y) in the
environment; one of three cases holds:

(d y) ∈ E
(d y) = (c x)
(d y) ∈ E′

− (d y) ∈ E. By IH, we have

P ` E,E′[x := v]

so we may still conclude, by [EXP VAR],

P ; (E,E′[x := v]) ` y : d · AF

Since y 6= x and AF is a combined (basic) effect, we
have

P ; (E,E′[x := v]) ` y[x := v] : d · AF[x := v]

Hence we obtain our desired result

P ; (E,E′[x := v]) ` e[x := v] : d · a[x := v]

− (d y) = (c x). By assumption, we have

P ;E ` v : c · AF

By Lemma 12, we can strengthen the environment, so
we have

P ; (E,E′[x := v]) ` v : c · AF

Since v = x[x := v] and AF = AF[x := v], by
substituting we have

P ; (E,E′[x := v)] ` x[x := v] : c · AF[x := v]

Hence we obtain our desired result

P ; (E,E′[x := v]) ` e[x := v] : d · a[x := v]

− (d y) ∈ E′. By IH, we have

P ` E,E′[x := v]

Furthermore, (d y) ∈ E′[x := v], since y 6= x and
type d does not capture x. By rule [EXP VAR], we may
conclude

P ; (E,E′[x := v]) ` y : d · AF

Since y = y[x := v] and AF = AF[x := v], we have

P ; (E,E′[x := v]) ` y[x := v] : d · AF[x := v]

Hence we obtain our desired result

P ; (E,E′[x := v]) ` e[x := v] : d · a[x := v]

e ≡ null. Then our assumption is

P ; (E, c x,E′) ` null : d · a

This assumption is derivable only with rule [EXP NULL];
hence we know

P ` (E, c x,E′)
P ` d
a = AF

By IH, we have

P ` (E,E′[x := v])

By rule [EXP NULL], we may conclude

P ; (E,E′[x := v]) ` null : d · AF

Since null = null[x := v] and AF = AF[x := v], we
have

P ; (E,E′[x := v]) ` null[x := v] : d · AF[x := v]

Hence we obtain our desired result

P ; (E,E′[x := v]) ` e[x := v] : d · a[x := v]

e ≡ ρ. Then our assumption is

P ; (E, c x,E′) ` ρ : d · a

This assumption is derivable only with rule [EXP ADDR];
hence we know

P ` (E′, c x, E′′)
(E, c x,E′) = (E′′, d ρ, E′′′)
ρ ∈ Addrd
a = AF

Since ρ is an address, and x is a variable, it must be, by the
structure of environments (where for some state σ,Eσ is the
environment initially passed), that ρ ∈ E. Hence we have

(E, c x,E′) = (E1, d ρ, E2, c x, E3)

By IH, we have

P ` (E1, d ρ, E2, E3[x := v])

By rule [EXP ADDR], we may conclude

P ; (E1, d ρ, E2, E3[x := v]) ` ρ : d · AF

Since ρ = ρ[x := v] and AF = AF[x := v], we have

P ; (E1, d ρ, E2, E3[x := v]) ` ρ[x := v] : d · AF[x := v]

Hence we obtain our desired result

P ; (E,E′[x := v]) ` e[x := v] : d · a[x := v]

e ≡ e′γf . Then our assumption is

P ; (E, c x,E′) ` e′γf : d · a

This assumption is derivable only through rules [EXP REF]
and [EXP REF RACE]; hence we know

P ; (E, c x,E′) ` e′ : do · ao
class do { . . . d f . . . } ∈ P
a = (ao; af )
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where af is one of four cases

AM if f ∈ Normal and γ = .
AF if f ∈ Final and γ = .
AN if f ∈ Volatile and γ = .
CL if f ∈ Volatile and γ = ..

By IH, we have

P ; (E,E′[x := v]) ` e′[x := v] : do · ao[x := v]

By rule [EXP REF]/[EXP REF RACE], we may conclude

P ; (E,E′[x := v]) ` e′[x := v]γf : d · a′
a′ = (ao[x := v]; af )

Since f = f [x := v] (f is not a variable), and af =
af [x := v] (af is a combined (basic) effect for all cases),
we have

P ; (E,E′[x := v]) `
(e′γf)[x := v] : d · (ao; af )[x := v]

Hence we obtain our desired result

P ; (E,E′[x := v]) ` e[x := v] : d · a[x := v]

e ≡ e′γf = e′′. Then our assumption is

P ; (E, c x,E′) ` e′γf = e′′ : d · a
This assumption is derivable only through rules [EXP ASSIGN]
and [EXP ASSIGN RACE]; hence we know

P ; (E, c x,E′) ` e′ : do · ao
P ; (E, c x,E′) ` e′′ : d · av
class do { . . . d f . . . } ∈ P
a = (ao; av; af )

where af is one of three cases

AM if f ∈ Normal and γ = .
AN if f ∈ Volatile and γ = .
CL if f ∈ Volatile and γ = ..

By IH, we have

P ; (E,E′[x := v]) ` e′[x := v] : do · ao[x := v]
P ; (E,E′[x := v]) ` e′′[x := v] : d · av[x := v]

By rule [EXP ASSIGN]/[EXP ASSIGN RACE], we may conclude

P ; (E,E′[x := v]) ` e′[x := v]γf = e′′[x := v] : d · a′
a′ = (ao[x := v]; av[x := v]; af )

Since f = f [x := v] (f is not a variable), and af =
af [x := v] (af is a combined (basic) effect for all cases),
we have

P ; (E,E′[x := v]) `
(e′γf = e′′)[x := v] : d · (ao; av; af )[x := v]

Hence we obtain our desired result

P ; (E,E′[x := v]) ` e[x := v] : d · a[x := v]

e ≡ e′γm(e1..n). Then our assumption is

P ; (E, c x,E′) ` e′γm(e1..n) : d · a
This assumption is derivable only through rule [EXP INVOKE];
hence we know
P ; (E, c x,E′) ` e′ : do · ao
class do { . . .meth . . . }
meth = a′′ d m(di xi

i∈1..n){ e′′ }
P ; (E, c x,E′) ` ei : di · ai ∀i ∈ 1..n
P ; (E, c x,E′) ` a′′[this := e′, xi := ei

i∈1..n] ↑ a′′′
a′′′ v AN
a = ao; a1; . . . ; an; JγK; a′′′

By IH, we have

P ; (E,E′[x := v]) ` e′[x := v] : do · ao[x := v]
P ; (E,E′[x := v]) ` ei[x := v] : di · ai[x := v] ∀i ∈ 1..n
P ; (E,E′[x := v]) `
a′′[this := e′, xi := ei

i∈1..n][x := v] ↑ a′′′[x := v]

Also from Lemma 1 and a′′′ v AN, we have

(a′′′[x := v]) v (AN[x := v]) = AN

By rule [EXP INVOKE], we may conclude

P ; (E,E′[x := v]) `
e′[x := v]γm(ei[x := v] i∈1..n) : d · a′

a′ = (ao[x := v]; a1[x := v]; . . . ; an[x := v]; a′′′[x := v])

Hence we obtain our desired result

P ; (E,E′[x := v]) ` e[x := v] : d · a[x := v]

e ≡ e′γm#(e1..n). Similar to previous case.
e ≡ new d (e1..n). Then our assumption is

P ; (E, c x,E′) ` new d (e1..n) : d · a

This assumption is derivable only through rule [EXP NEW];
hence we know

class d { di xi
i∈1..n . . . } ∈ P

P ; (E, c x,E′) ` ei : di · ai ∀i ∈ 1..n
a = (a1; . . . ; an; AM)

By IH, we have

P ; (E,E′[x := v]) ` ei[x := v] : di · ai[x := v] ∀i ∈ 1..n

By rule [EXP NEW], we may conclude

P ; (E,E′[x := v]) ` new d (ei[x := v] i∈1..n) : d · a′
a′ = (a1[x := v]; . . . ; an[x := v]; AM)

Since we have the following equalities,

AM = AM[x := v]
new d (ei[x := v] i∈1..n)

= (new d (ei
i∈1..n))[x := v]

= e[x := v]
(a1[x := v]; . . . ; an[x := v]; AM[x := v])

= (a1; . . . ; an; AM)[x := v]
= a[x := v]

we obtain our desired result

P ; (E,E′[x := v]) ` e[x := v] : d · a[x := v]

e ≡ `γsync e′ . Then our assumption is

P ; (E, c x,E′) ` `γsync e′ : d · a

This assumption is derivable only through rule [EXP SYNC];
hence we know

P ; (E, c x,E′) `lock `
P ; (E, c x,E′) ` e′ : d · ab
a = S(`, γ, ab)

By IH, we have

P ; (E,E′[x := v]]) `lock `[x := v]
P ; (E,E′[x := v]) ` e′[x := v] : d · ab[x := v]

By rule [EXP SYNC], we may conclude

P ;E,E′[x := v] ` `[x := v]γsync e
′[x := v] : d · a′

a′ = S(`[x := v], γ, ab[x := v])

We proceed by case analysis on the structure of effect ab.
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− ab = b. In this case, since b′ = b′[x := v] for any
combined (basic) effect, including ab, AR, and AL, we
have
a′ = S(`[x := v], γ, ab[x := v])

= `[x := v] ? ab[x := v] : (JγK; AR; ab[x := v]; AL)
= (` ? ab : (JγK; AR; ab; AL))[x := v]
= a[x := v]

− ab = ` ? a1 : a2. Then applying the substitution, we get

ab[x := v] = `[x := v] ? a1[x := v] : a2[x := v]

Proceeding with a′,

a′

= S(`[x := v], γ, ab[x := v])
= S(`[x := v], γ, `[x := v] ? a1[x := v] : a2[x := v])
= S(`[x := v], γ, a1[x := v])
= S(`, γ, a1)[x := v]
= S(`, γ, ab)[x := v]
= a[x := v]

− ab = `′ ? a1 : a2, where `′ 6= `. Then applying the
substitution, we get

ab[x := v] = `′[x := v] ? a1[x := v] : a2[x := v]

Let θ(E) = E[x := v], for any expression or effect E.
Proceeding with a′,

a′

= S(θ(`), γ, θ(ab))
= S(θ(`), γ, θ(`′) ? θ(a1) : θ(a2))
= θ(`′) ?S(θ(`), γ, θ(a1)) :S(θ(`), γ, θ(a2))
= θ(`′) ? θ(S(`, γ, a1)) : θ(S(`, γ, a2))
= θ(`′ ?S(`, γ, a1) :S(`, γ, a2))
= θ(S(`, γ, `′ ? a1 : a2))
= a[x := v]

Hence we obtain our desired result

P ; (E,E′[x := v]) ` e[x := v] : d · a[x := v]

e ≡ in-sync ρ e′. Then our assumption is

P ; (E, c x,E′) ` in-sync ρ e′ : d · a
This assumption is derivable only through rule [EXP INSYNC];
hence we know

P ; (E, c x,E′) `lock ρ
P ; (E, c x,E′) ` e′ : d · ab
a = SI(ρ, ab)

By IH, we have

P ; (E,E′[x := v]) `lock ρ[x := v]
P ; (E,E′[x := v]) ` e′[x := v] : d · ab[x := v]

Then by rule [EXP INSYNC] we may conclude

P ; (E,E′[x := v]) ` in-sync ρ[x := v] e′[x := v] : d · a′
a′ = SI(ρ[x := v], ab[x := v])

We proceed by case analysis on the structure of effect ab.
− ab = b. In this case, since b′ = b′[x := v] for any

combined (basic) effect, including ab, ρ, and AL, we
have

a′ = SI(ρ[x := v], ab[x := v])
= ab[x := v]; AL
= (ab; AL)[x := v]
= a[x := v]

− ab = ρ ? a1 : a2. Then applying the substitution, we get

ab[x := v] = ρ[x := v] ? a1[x := v] : a2[x := v]

Proceeding with a′,

a′

= SI(ρ[x := v], ab[x := v])
= SI(ρ[x := v], ρ[x := v] ? a1[x := v] : a2[x := v])
= SI(ρ[x := v], a1[x := v])
= SI(ρ, a1)[x := v]
= SI(ρ, ab)[x := v]
= a[x := v]

− ab = ρ′ ? a1 : a2, where ρ′ 6= ρ. Then applying the
substitution, we get

ab[x := v] = ρ′[x := v] ? a1[x := v] : a2[x := v]

Let θ(E) = E[x := v], for any expression or effect E.
Proceeding with a′,

a′

= SI(θ(ρ), θ(ab))
= SI(θ(ρ), θ(ρ′) ? θ(a1) : θ(a2))
= θ(ρ′) ?SI(θ(ρ), θ(a1)) :SI(θ(ρ), θ(a2))
= θ(ρ′) ? θ(SI(ρ, a1)) : θ(SI(ρ, a2))
= θ(ρ′ ?SI(ρ, a1) :SI(ρ, a2))
= θ(SI(ρ, ρ′ ? a1 : a2))
= a[x := v]

Hence we obtain our desired result

P ; (E,E′[x := v]) ` e[x := v] : d · a[x := v]

e ≡ fork e′. Then our assumption is

P ; (E, c x,E′) ` fork e′ : d · a

This assumption is derivable only through rule [EXP FORK];
hence we know

P ; (E, c x,E′) ` e′ : db · ab
d = Unit
a = AL

By IH, we have

P ; (E,E′[x := v]) ` e′[x := v] : db · ab[x := v]

Then by rule [EXP FORK] we have

P ; (E,E′[x := v]) ` fork e′[x := v] : d · a′
a′ = AL

Since AL = AL[x := v] and fork (e′[x := v]) =
(fork e′)[x := v], we obtain our desired result

P ; (E,E′[x := v]) ` e[x := v] : d · a[x := v]

e ≡ let x1 e1 in e2. Then our assumption is

P ; (E, c x,E′) ` let x1 = e1 in e2 : d · a

This assumption is derivable only through rule [EXP LET];
hence we know

P ; (E, c x,E′) ` e1 : c1 · a1
P ; (E, c x,E′, c1 x1) ` e2 : d · a2
P ; (E, c x,E′) ` a2[x1 := e1] ↑ a′2
a = (a1; a

′
2)

By well-formedness of the environment, and because types
do not capture variables, we have

(c1 x1)[x := v] = (c1 x1)
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By IH, we have

P ; (E,E′[x := v]) `
e1[x := v] : c1 · a1[x := v]

P ; (E,E′[x := v], (c1 x1)[x := v]) `
e2[x := v] : d · a2[x := v]

P ; (E,E′[x := v]) ` a2[x1 := e1][x := v] ↑ a′2[x := v]

In the last judgment, since x 6= x1, we have

P ; (E,E′[x := v]) `
(a2[x := v])[x1 := e1[x := v]] ↑ a′2[x := v]

By rule [EXP LET], we may conclude

P ; (E,E′[x := v]) `
let x1 = (e1[x := v]) in (e2[x := v]) : d · a′

a′ = (a1[x := v]; a′2[x := v]) = a[x := v]

Hence we obtain our desired result

P ; (E,E′[x := v]) ` e[x := v] : d · a[x := v]

e ≡ if e1 e2 e3. Then our assumption is

P ; (E, c x,E′) ` if e1 e2 e3 : d · a
This assumption is derivable only through rule [EXP IF];
hence we know

P ; (E, c x,E′) ` e1 : d′ · a1
P ; (E, c x,E′) ` e2 : d · a2
P ; (E, c x,E′) ` e3 : d · a3
a = (a1; (a2 t a3))

By IH, we have

P ; (E,E′[x := v]) ` e1[x := v] : d′ · a1[x := v]
P ; (E,E′[x := v]) ` e2[x := v] : d · a2[x := v]
P ; (E,E′[x := v]) ` e3[x := v] : d · a3[x := v]

By rule [EXP IF], we may conclude

P ; (E,E′[x := v]) `
if e1[x := v] e2[x := v] e3[x := v] : d · a′

a′ = (a1[x := v]; (a2[x := v] t a3[x := v]))

Since the following equalities hold

(if e1[x := v] e2[x := v] e3[x := v])
= (if e1 e2 e3)[x := v]
= e[x := v]

a′ = (a1[x := v]; (a2[x := v] t a3[x := v]))
= (a1; (a2 t a3)[x := v]
= a[x := v]

by substituting, we obtain our desired result

P ; (E,E′[x := v]) ` e[x := v] : d · a[x := v]

e ≡ while e1 e2. Then our assumption is

P ; (E, c x,E′) ` while e1 e2 : d · a
This assumption is derivable only with rule [EXP WHILE];
hence we know

P ; (E, c x,E′) ` e1 : c1 · a1
P ; (E, c x,E′) ` e2 : c2 · a2
a = (a1; (a2; a1)

∗)

By IH, we have

P ; (E,E′[x := v]) ` e1[x := v] : c1 · a1[x := v]
P ; (E,E′[x := v]) ` e2[x := v] : c2 · a2[x := v]

By rule [EXP WHILE], we may conclude

P ; (E,E′[x := v]) ` while e1[x := v] e2[x := v] : d · a′
a′ = (a1[x := v]; (a2[x := v]; a1[x := v])∗)

Since the following equalities hold

while e1[x := v] e2[x := v]
= (while e1 e2)[x := v]
= e[x := v]

a′ = (a1[x := v]; (a2[x := v]; a1[x := v])∗)
= (a1; (a2; a1)

∗)[x := v]
= a[x := v]

by substituting, we obtain our desired result

P ; (E,E′[x := v]) ` e[x := v] : d · a[x := v]

LEMMA 7 (Well-Typed Effects). If P ;E ` e : c·a then P ;E ` a.

Proof By induction on derivation of P ;E ` e : c · a. For cases
involving the following rules:

• [EXP VAR]: e ≡ x
• [EXP NULL]: e ≡ null
• [EXP ADDR]: e ≡ ρ
• [EXP REF]: e ≡ e′.f
• [EXP REF RACE]: e ≡ e′γf
• [EXP ASSIGN]: e ≡ e′.f = e′′

• [EXP ASSIGN RACE]: e ≡ e′γf = e′′

• [EXP NEW]: e ≡ new c (e1..n)
• [EXP FORK]: e ≡ fork e′

• [EXP IF]: e ≡ if e1 e2 e3
• [EXP WHILE]: e ≡ while e1 e2

In these cases, a is either a combined (basic) effect or the product
of sequentially composition, iterative closure, or join of inductively
well-typed sub-effects. We proceed by case analysis on the struc-
ture of a.

• a = b. In this case, the rule [AT BASE] applies, and we may
conclude

P ;E ` a
• a = ` ? a1 : a2. In this case, all lock expressions contained

in a, including `, are constant, by IH. Sequential composition,
iterative closure, and join operations do not change or add lock
expressions. Hence, by rule [AT COND], we may conclude

P ;E ` a

There are five remaining cases to consider.

• [EXP SYNC] As an assumption, we have

P ;E ` `γsync e′ : c · a

This assumption may be derived only through rule [EXP SYNC];
hence we know

P ;E `lock `
P ;E ` e′ : c · a′

By IH, we have P ;E ` a′. We proceed by case analysis on the
structure of effect a′.

a′ = b. In this case, by the first case of function S, we know

a = ` ? a′ : (JγK; AR; a′; AL)

Since `, the only lock expression in a, is constant, and since
both branches in a are well-typed effects, by rule [AT COND]
we may conclude

P ;E ` a
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a′ = ` ? a1 : a2. In this case, by the second case of function
S, we know

a = S(`, γ, a1)
Since by IH a′ is a well-typed effect, we know that a1 is also
well-typed. Hence all locks in a1 are constant. Furthermore,
` is a constant lock expression. Thus any lock expression in
S(`, γ, a1) is constant. By rule [AT COND], we may conclude

P ;E ` a

a′ = `′ ? a1 : a2 where ` 6= `′. In this case, by the third case
of function S, we know

a = `′ ?S(`, γ, a1) :S(`, γ, a2)

Since by IH a′ is a well-typed effect, we know that `′ is
constant, and that a1 and a2 are well-typed. Thus any lock
expression in S(`, γ, a1) and S(`, γ, a2) is constant. By
rule [AT COND], we may conclude

P ;E ` a
• [EXP INSYNC] As an assumption, we have

P ;E ` in-sync ρ e′ : c · a

This assumption may be derived only through rule [EXP INSYNC];
hence we know

P ;E `lock ρ
P ;E ` e′ : c · a′

By IH, we have
P ;E ` a′

We proceed by case analysis on the structure of effect a′.
a′ = b. In this case, by the first case of function SI, we
know

a = a′; AL

Since a′ is a combined (basic) effect, a = a′; AL is also a
combined effect. Then by rule [AT BASE] we may conclude

P ;E ` a

a′ = ρ ? a1 : a2. In this case, by the second case of function
SI, we know

a = SI(ρ, a1)
Since a′ is well-typed, inductively a1 is also well-typed.
Thus we know any lock expression contained in SI(ρ, a1)
is constant. Thus by rule [AT COND], we may conclude

P ;E ` a

If SI(ρ, a1) contains no lock expression, then by rule
[AT BASE], we may similarly conclude

P ;E ` a

a′ = ρ′ ? a1 : a2 where ρ 6= ρ′. In this case, by the third
case of function SI, we know

a = ρ′ ?SI(ρ, a1) :SI(ρ, a2)

By IH, a′ is well-typed; hence inductively ρ′ is a constant
lock expression and a1 and a2 are well-typed. Since SI
may at most introduce ρ′ as a lock expression and poten-
tially reduce the number of lock expressions, we may con-
clude by rule [AT COND] that

P ;E ` a
• [EXP INVOKE] As an assumption, we have

P ;E ` e′γm(e1..n) : c · a

This assumption is derivable only through rule [EXP INVOKE];
hence we know

P ;E ` e′ : c′ · a′
class c′ { . . .meth . . . } ∈ P
meth = a′′ c m(ci xi

i∈1..n) { e′′}
P ;E ` ei : ci · ai ∀i ∈ 1..n
P ;E ` a′′[this := e′, xi := ei

i∈1..n] ↑ a′′′
a′′′ v AN

By IH, we have

P ;E ` a′
P ;E ` ai ∀i ∈ 1.n
P ;E ` a′′′

In particular, for the last judgment, if any lock expression `′ in
a′′[this := e′, xi := ei

i∈1..n] is not constant, the lift will
eliminate `′. Then by rule [EXP INVOKE], we have

a = (a′; a1; . . . ; an; JγK; a′′′)

Since sequential composition does not change lock expressions
or add new lock expressions, we may conclude all lock expres-
sions in a (if any) are constant. Hence by rules [AT BASE] and
[AT COND], we may conclude

P ;E ` a
• [EXP INVOKE COMPOUND] As an assumption, we have

P ;E ` e′γm#(e1..n) : c · a
The argument proceeds in a similar manner to the previous case.
• [EXP LET] As an assumption, we have

P ;E ` let x = e′ in e′′ : c · a
This assumption is derivable only through rule [EXP LET]; hence
we know

P ;E ` e′ : c′ · a′
P ; (E, c′ x) ` e′′ : c · a′′
P ;E ` a′′[x := e′] ↑ a′′′

By IH, we know
P ;E ` a′
P ;E ` a′′′

In particular, for the last judgment, if any lock expression `′ in
a′′[x := e′] is not constant, the lift will eliminate `′. By rule
[EXP LET], we may conclude

a = (a′; a′′′)

Since sequential composition does not change lock expressions
or add new lock expressions, we may conclude al lock expres-
sions in a (if any) are constant. Hence by rules [AT BASE] and
[AT COND], we may conclude

P ;E ` a

LEMMA 8 (Well-Typed Lift). If P ;E ` a ↑ a′ then P ;E ` a′.

Proof By induction on the structure of effect a.

• a = b. In this case, by rule [LIFT BASE], we know

P ` E
a′ = a

Then by rule [AT BASE], we may obtain our desired result

P ;E ` a′
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• a = ` ? a1 : a2. We proceed by case analysis on the constancy
of `.

P ;E `lock `. Then P ;E ` a ↑ a′ is only derivable with
rule [LIFT GOOD LOCK]; hence we know

P ;E ` a1 ↑ a′1
P ;E ` a2 ↑ a′2
a′ = (` ? a′1 : a

′
2)

By IH, we have
P ;E ` a′1
P ;E ` a′2

By rule [AT COND], we may conclude

P ;E ` a′

P ;E 6`lock `. Then P ;E ` a ↑ a′ is only derivable with
rule [LIFT BAD LOCK]; hence we know

P ;E ` a1 ↑ a′1
P ;E ` a2 ↑ a′2
a′ = (a′1 t a′2)

By IH, we have
P ;E ` a′1
P ;E ` a′2

Since all locks in a′1 and a′2 are constant, and joining does
not change or add lock expressions, by rules [AT BASE] and
[AT COND] we may conclude

P ;E ` a′

LEMMA 9 (Substitution with well-formed lock). If we have

P ;E, c x ` a
P ;E `lock `

then we can conclude P ;E ` a[x := `] ↑ a[x := `].

Proof The judgment P ;E `lock ` is derivable only through rule
[LOCK EXP]; hence we know

P ;E ` ` : c · AF

We proceed by induction on the structure of effect a.

• a = b. In this case, our assumption of P ; (E, c x) ` a is
derivable only through rule [AT BASE]; hence we know

P ` (E, c x)

We may further weaken the environment by rule [ENV X]:

P ` E
Then by rule [LIFT BASE] we may conclude

P ;E ` a ↑ a
Since a does not mention x, we have the equality

a = a[x := `]

Substituting, we obtain our desired result

P ;E ` a[x := `] ↑ a[x := `]

• a = `′ ? a1 : a2. In this case, our assumption of P ; (E, c x) ` a
is derivable only through rule [AT COND]; hence we know

P ; (E, c x) `lock `′
P ; (E, c x) ` a1
P ; (E, c x) ` a2

By IH, we have

P ;E ` a1[x := `] ↑ a1[x := `]
P ;E ` a2[x := `] ↑ a2[x := `]

By Lemma 6 and P ; (E, c x) `lock `′, we may conclude

P ;E `lock `′[x := `]

By rule [LIFT COND], we may conclude

P ;E `
`′[x := `] ? a1[x := `] : a2[x := `] ↑
`′[x := `] ? a1[x := `] : a2[x := `]

Simplifying, we obtain our desired result

P ;E ` a[x := `] ↑ a[x := `]

LEMMA 10 (While equivalence). If we have a judgment P ;E `
while e1 e2 : c·a then we can also concludeP ;E ` if e1 (e2; while e1 e2) null : c·
a

Proof We start with an alternative, but equivalent, definition of
iterative closure. For effect a,

a∗
def
= (AF t (a) t (a; a) t (a; a; a) t . . . )

It is easy to verify that this alternative definition is equivalent to the
original definition.

The while judgment assumption is derivable only through rule
[EXP WHILE]; hence we know

P ;E ` e1 : c1 · a1
P ;E ` e2 : c2 · a2
a = (a1; (a2; a1)

∗)

Then by expanding the iterative closure, we get the equality

a = a1; (AF t (a2; a1) t (a2; a1; a2; a1) t . . . )
Using rule [EXP IF], we may conclude

P ;E ` if e1 (e2; while e1 e2) null : c · a′
a′ = a1; ((a2; a) t AF)

Expanding a and distributing a2; a1 across the joins, we get the
equality

a′ = a1; (a2; a1; (AF t (a2; a1) t (a2; a1; a2; a1) t . . . ) t AF)
= a1; (AF t (a2; a1) t (a2; a1; a2; a1) t . . . )
= a

Thus we obtain our desired result.

LEMMA 11 (Lifting After Substitution). Suppose the following:

P ;E ` a[x := e′] ↑ a′
P ;E ` a[x := e′′] ↑ a′′
e′ not a value

Then we can conclude a′′ v a′.

Proof By induction on structure of effect a.

• a = b. In this case, the following holds:

a′′ = (b[x := e′′]) = b = (b[x := e′]) = a′

Hence we may conclude

a′′ v a′
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• a = ` ? a1 : a2. The assumptions P ;E ` a[x := e′] ↑ a′ and
P ;E ` a[x := e′′] ↑ a′′ are derivable only through rules
[LIFT GOOD LOCK] and [LIFT BAD LOCK]. Hence, we know the
following must hold:

P ;E ` a1[x := e′] ↑ a′1
P ;E ` a1[x := e′′] ↑ a′′1

and
P ;E ` a2[x := e′] ↑ a′2
P ;E ` a2[x := e′′] ↑ a′′2

By IH, we know
a′′1 v a′1
a′′2 v a′2

We proceed by case analysis on whether x is free in `.
x is free in `. In this case, `[x := e′] is not a value, since e′

is not a value. The lock judgment does not hold:

P ;E 6`lock `[x := e′]

Hence, by rule [LIFT BAD LOCK] we get

a′ = a′1 t a′2
Case analysis on lock judgment for `[x := e′′]:
− P ;E `lock `[x := e′′]. In this case,

a′′ = (`[x := e′′] ? a′′1 : a′′2 ) v (a′1 t a′2) = a′

− P ;E 6`lock `[x := e′′]. In this case,

a′′ = (a′′1 t a′′2 ) v (a′1 t a′2) = a′

x is not free in `. In this case, the following holds:

`[x := e′] = ` = `[x := e′′]

Case analysis on lock judgment for `.
− P ;E `lock `. In this case, we may conclude

a′′ = (` ? a′′1 : a′′2 ) v (` ? a′1 : a
′
2) = a′

− P ;E 6`lock `. In this case, we may conclude

a′′ = (a′′1 t a′′2 ) v (a′1 t a′2) = a′

LEMMA 12 (Environment Strengthening). SupposeE = E′, c x, E′′.
If P ` E, then the following hold:

1. If P ` (E′, E′′) then P ` E.
2. If P ; (E′, E′′) ` meth then P ;E ` meth .
3. If P ; (E′, E′′) ` a then P ;E ` a.
4. If P ; (E′, E′′) `lock ` then P ;E `lock `.
5. If P ; (E′, E′′) ` a ↑ a′ then P ;E ` a ↑ a′.
6. If P ; (E′, E′′) ` e : c′ · a then P ;E ` e : c′ · a.

Proof By simultaneous induction on all parts of the lemma.

LEMMA 13 (Object Map). Let e an expression, and both σ and
σ′ well-formed states. If we have α(σ, e) and α(σ′, e) both well-
defined, and the object maps in both σ and σ′ have equivalent
domains, then

α(σ, e) = α(σ′, e)

Proof Since α(σ, e) and α(σ′, e) are both well-defined, we have
the judgments

P ;Eσ ` e : c · a
P ;Eσ′ ` e : c · a′

Because both σ and σ′ have equivalent domains, every address ρ
has the same type d in both σ and σ′. The second judgment we
have, then, is equivalent to

P ;Eσ ` e : c · a′

We conclude with our desired result:

a = a′

LEMMA 14 (Sequentiality for Sync). Assume for some state σ the
following

P ;Eσ `lock ρ
P ;Eσ ` a
disjoint locksets h and n
ρ ∈ n

Then we may conclude

JγK;SI(ρ, a) vhn S(ρ, γ, a)

Proof By induction over structure of effect a.

• a = κ. In this case,

SI(ρ, a) = κ; AL
S(ρ, γ, a) = ρ ? a : (JγK; AR;κ; AL)

With ρ 6∈ h, we can show for any κ:

JγK;κ; AL vhn JγK; AR;κ; AL

Hence we obtain our desired result

JγK;SI(ρ, a) vhn S(ρ, γ, a)
• a = ρ ? a1 : a2. In this case,

SI(ρ, a) = SI(ρ, a1)
S(ρ, γ, a) = S(ρ, γ, a1)

By IH,

JγK;SI(ρ, a1) vhn S(ρ, γ, a1)
Hence we obtain our desired result

JγK;SI(ρ, a) vhn S(ρ, γ, a)
• a = ρ′ ? a1 : a2 where ρ′ 6= ρ. In this case,

SI(ρ, a) = ρ′ ?SI(ρ, a1) :SI(ρ, a2)
S(ρ, γ, a) = ρ′ ?S(ρ, γ, a1) :S(ρ, γ, a2)

Assume that ρ′ 6∈ n. Then by IH,

JγK;SI(ρ, a1) vh∪{ρ
′}

n S(ρ, γ, a1)
Assume that ρ′ 6∈ h. Then by IH,

JγK;SI(ρ, a2) vhn∪{ρ′} S(ρ, γ, a2)
Combining these, we may conclude

ρ′ ? (JγK;SI(ρ, a1)) : (JγK;SI(ρ, a2))
vhn ρ′ ?S(ρ, γ, a1) :S(ρ, γ, a2)

By definition of conditional effects, we extract JγK:

JγK; ρ′ ?SI(ρ, a1) :SI(ρ, a2)
vhn ρ′ ?S(ρ, γ, a1) :S(ρ, γ, a2)

Substituting, we obtain our desired result

JγK;SI(ρ, a) vhn S(ρ, γ, a)
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LEMMA 15 (Subeffect Relation for Sync). Assume the following:

P ;E `lock ρ
∃ h, n . h 6∩ n 6∩ {ρ}
P ;E ` a

Then we may conclude

a vh∪{ρ}n S(ρ, γ, a)

Proof By induction over structure of effect a.

• a = κ. In this case,

S(ρ, γ, a) = ρ ?κ : (JγK; AR;κ; AL)

We can conclude the following

κ vh∪{ρ}n ρ ?κ : (JγK; AR;κ; AL)

only if the following are true:

ρ 6∈ n⇒ κ vh∪{ρ}n κ

ρ 6∈ h ∪ {ρ} ⇒ κ vh∪{ρ}n∪{ρ} (JγK; AR;κ; AL)

The first statement is true since it relates two combined (basic)
effects. The second statement is true vacuously. Hence we ob-
tain our desired result

a vh∪{ρ}n S(ρ, γ, a)
• a = ρ ? a1 : a2. In this case,

S(ρ, γ, a) = S(ρ, γ, ρ ? a1 : a2) = S(ρ, γ, a1)
By IH, we have

a1 vh∪{ρ}n S(ρ, γ, a1)
We can conclude the following

ρ ? a1 : a2 vh∪{ρ}n S(ρ, γ, ρ ? a1 : a2)
only if the following are true:

ρ 6∈ n⇒ a1 vh∪{ρ}n S(ρ, γ, ρ ? a1 : a2)
ρ 6∈ h ∪ {ρ} ⇒ a2 vh∪{ρ}n∪{ρ} S(ρ, γ, ρ ? a1 : a2)

The first statement is true due to IH. The second statement is
true vacuously. Hence we obtain our desired result

a vh∪{ρ}n S(ρ, γ, a)
• a = ρ′ ? a1 : a2, where ρ′ 6= ρ. In this case,

S(ρ, γ, a) = S(ρ, γ, ρ′ ? a1 : a2) = ρ′ ?S(ρ, γ, a1) :S(ρ, γ, a2)
We can conclude the following

ρ′ ? a1 : a2 vh∪{ρ}n S(ρ, γ, ρ′ ? a1 : a2)
only if the following are true:

ρ′ 6∈ n⇒ a1 vh∪{ρ,ρ
′}

n S(ρ, γ, a1)
ρ′ 6∈ h ∪ {ρ} ⇒ a2 vh∪{ρ}n∪{ρ′} S(ρ, γ, a2)

Assume ρ′ 6∈ n. Then by IH,

a1 vh∪{ρ
′,ρ}

n S(ρ, γ, a1)
Assume ρ′ 6∈ h ∪ {ρ}. Then by IH,

a2 vh∪{ρ}n∪{ρ′} S(ρ, γ, a2)

Hence we obtain our desired result

a vh∪{ρ}n S(ρ, γ, a)

LEMMA 16 (Sync Not a Left Mover). Let σ a state, E an evalua-
tion context, ρ a lock, and a an effect. Assume the following:

P ;Eσ ` a
P ;Eσ `lock ρ
ρ 6∈ locks(E)

Then we may conclude

Y (E ,S(ρ, ., a)) 6v CL

Proof By induction on structure of effect a.

• a = κ. In this case,

S(ρ, ., a) = ρ ?κ : (AR;κ; AL)

Substituting and simplifying, we have

Y (E ,S(ρ, ., a))
= Y (E , ρ ?κ : (AR;κ; AL))
= ρ ?κ : (AR;κ; AL)

We have Y (E ,S(ρ, ., a)) v CL only if this holds under any
lockset h. However, if ρ 6∈ h, then we get

AR;κ; AL = AN 6v CL

Hence we obtain our desired result

Y (E ,S(ρ, ., a)) 6v CL

• a = ρ ? a1 : a2. In this case,

S(ρ, ., a) = S(ρ, ., ρ ? a1 : a2) = S(ρ, ., a1)
By IH, we have

Y (E ,S(ρ, ., a1)) 6v CL

Hence we obtain our desired result

Y (E ,S(ρ, ., a)) 6v CL

• a = ρ′ ? a1 : a2, where ρ′ 6= ρ. In this case,

S(ρ, ., a) = S(ρ, ., ρ′ ? a1 : a2) = ρ′ ?S(ρ, ., a1) :S(ρ, ., a2)
By IH, we have

Y (E ,S(ρ, ., a1)) 6v CL
Y (E ,S(ρ, ., a2)) 6v CL

Then we may conclude with

ρ′ ?Y (E ,S(ρ, ., a1)) :Y (E ,S(ρ, ., a2)) 6v CL

By Lemma 17, we can simplify this to be:

Y (E ,S(ρ, ., ρ′ ? a1 : a2))
= Y (E , ρ′ ?S(ρ, ., a1) :S(ρ, ., a2))
= Y (E , ρ′ ?Y (E ,S(ρ, ., a1)) :Y (E ,S(ρ, ., a2)))
v ρ′ ?Y (E ,S(ρ, ., a1)) :Y (E ,S(ρ, ., a2))
6v CL

Hence we obtain our desired result

Y (E ,S(ρ, ., a)) 6v CL

LEMMA 17 (Y Subeffect). Let a an effect and E an evaluation
context. If P ;E ` a, then Y (E , a) v a.

Proof By induction over the structure of effect a.

• a = κ. In this case, since we cannot simplify κ any further, we
have

Y (E , κ) = κ
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Hence we obtain our desired result

Y (E , a) v a
• a = ρ ? a1 : a2. We proceed by case analysis on ρ:

ρ ∈ locks(E). In this case,

Y (E , ρ ? a1 : a2) = Y (E , a1)

By IH, we have
Y (E , a1) v a1

Also, may conclude the following

a1 v ρ ? a1 : a2
only if the following hold:

ρ 6∈ n⇒ a1 v{ρ} a1
ρ 6∈ h⇒ a1 v{ρ} a2

The first statement is trivially true. The second statement is
vacuously true, due to a contradiction: ρ cannot be in the
not-held lockset, since we know ρ is held in E .
Hence we obtain our desired result

Y (E , a) v a

ρ 6∈ locks(E). In this case,

Y (E , ρ ? a1 : a2) = ρ ?Y (E , a1) :Y (E , a2)

By IH, we have

Y (E , a1) v a1
Y (E , a2) v a2

We may conclude the following:

ρ ?Y (E , a1) :Y (E , a2) v ρ ? a1 : a2
only if the following hold:

ρ 6∈ n⇒ Y (E , a1) v{ρ} a1
ρ 6∈ h⇒ Y (E , a2) v{ρ} a2

Both these statements are true due to IH. Since ρ 6∈
locks(E), we have the equality

Y (E , ρ ? a1 : a2) = ρ ?Y (E , a1) :Y (E , a2)

Hence we obtain our desired result

Y (E , a) v a

LEMMA 18 (Lock Removal). Let h and n be lock sets, and ρ a
lock. Let a1 and a2 be effects. Assume the following:

P ;E `lock ρ
P ;E ` a1
P ;E ` a2
∃ h, n . h 6∩ n 6∩ {ρ}
a1 and a2 are not conditional on ρ
a1 vh∪{ρ}n a2

Then we may conclude

a1 vhn a2

Proof By induction on the structure of effects a1 and a2.

• (a1, a2) = (κ1, κ2). In this case, we assume

κ1 vh∪{ρ}n κ2

By inversion on this derivation, we know

κ1 v κ2

Then by definition of effect ordering on conditionals, we may
conclude

κ1 vhn κ2

• (a1, a2) = (κ, ρ′ ? a2L : a2R), where ρ′ 6= ρ. In this case, we
assume

κ vh∪{ρ}n ρ′ ? a2L : a2R

By inversion on this derivation, we know

(ρ′ 6∈ n)⇒ κ vh∪{ρ,ρ
′}

n a2L
(ρ′ 6∈ h ∪ {ρ})⇒ κ vh∪{ρ}n∪{ρ′} a2R

By IH, we have

(ρ′ 6∈ n)⇒ κ vh∪{ρ
′}

n a2L
(ρ′ 6∈ h)⇒ κ vhn∪{ρ′} a2R

By definition of effect ordering on conditionals, we may con-
clude

κ vhn ρ′ ? a2L : a2R

• a1 = ρ′ ? a1L : a1R, where ρ′ 6= ρ. In this case, we assume

ρ′ ? a1L : a1R vh∪{ρ}n a2

By inversion on this derivation, we know

(ρ′ 6∈ n)⇒ a1L vh∪{ρ,ρ
′}

n a2
(ρ′ 6∈ h ∪ {ρ})⇒ a1R vh∪{ρ}n∪{ρ′} a2

By IH, we have

(ρ′ 6∈ n)⇒ a1L vh∪{ρ
′}

n a2
(ρ′ 6∈ h)⇒ a1R vhn∪{ρ′} a2

By definition of effect ordering on conditionals, we may con-
clude

ρ′ ? a1L : a1R vhn a2

LEMMA 19 (Yet Another In-Sync Subeffect Relation). Let a be
an effect, and ρ a lock. Assume the following:

P ;E `lock ρ
P ;E ` a
∃ h, n . h 6∩ n ∧ ρ ∈ h

Then we may conclude

a; AL vhn SI(ρ, a)

Proof By induction over structure of effect a.

• a = κ. In this case, by definition of vhn,

κ vhn κ
By Lemma 1,

κ; AL vhn κ; AL

By definition of SI,

κ; AL vhn SI(ρ, κ)
We obtain our desired result

a; AL vhn SI(ρ, a)
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• a = ρ ? a1 : a2. In this case, our conclusion, which is

ρ ? a1 : a2; AL vhn SI(ρ, ρ ? a1 : a2)
⇔ ρ ? (a1; AL) : (a2; AL) vhn SI(ρ, a1)

can only be true if the antecedents are true, by inversion on the
derivation:

(ρ 6∈ n)⇒ a1; AL vhn SI(ρ, a1)
(ρ 6∈ h)⇒ a2; AL vhn∪{ρ} SI(ρ, a1)

The first statement is true by IH. The second statement is vac-
uously true, since ρ ∈ h. Hence we may conclude our desired
result

a; AL vhn SI(ρ, a)
• a = ρ′ ? a1 : a2 where ρ′ 6= ρ. In this case, our conclusion,

which is

ρ′ ? a1 : a2; AL vhn SI(ρ, ρ′ ? a1 : a2)
⇔ ρ′ ? (a1; AL) : (a2; AL) vhn ρ′ ?SI(ρ, a1) :SI(ρ, a2)

can only be true if the antecedents are true, by inversion on the
derivation:

(ρ′ 6∈ n)⇒ a1; AL vh∪{ρ
′}

n SI(ρ, a1)
(ρ′ 6∈ h)⇒ a2; AL vhn∪{ρ′} SI(ρ, a2)

Both statements are true by IH. Hence we may conclude our
desired result

a; AL vhn SI(ρ, a)
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LEMMA 20 (Subeffect Relation for In-Sync). Let ay , a and a′ be effects, and ρ be a lock. Assume the following:

P ;E `lock ρ
P ;E ` ay and P ;E ` a and P ;E ` a′
∃ h, n . h 6∩ n ∧ ρ ∈ h
ay; a

′ vhn a
Then we may conclude

ay;SI(ρ, a′) vhn SI(ρ, a)

Proof By induction over structure of effect a′.

• a′ = κ. In this case, we have
ay;κ vhn a by assumption

⇔ ay;κ; AL vhn a; AL by Lemma 1
⇒ ay;κ; AL vhn SI(ρ, a) by Lemma 19
⇔ ay;SI(ρ, κ) vhn SI(ρ, a) by definition of SI
⇔ ay;SI(ρ, a′) vhn SI(ρ, a) our conclusion

• a′ = ρ ? a1 : a2.
ay; (ρ ? a1 : a2) vhn a by assumption

⇔ ρ ? (ay; a1) : (ay; a1) vhn a by sequential composition
⇒ (ρ 6∈ n)⇒ ay; a1 vhn a by inversion on derivation
⇒ ay;SI(ρ, a1) vhn SI(ρ, a) by IH
⇔ ay;SI(ρ, ρ ? a1 : a2) vhn SI(ρ, a) by definition of SI
⇔ ay;SI(ρ, a′) vhn SI(ρ, a) our conclusion

• a′ = ρ′ ? a1 : a2 where ρ′ 6= ρ.

ay; (ρ
′ ? a1 : a2) vhn a by assumption

⇔ ρ′ ? (ay; a1) : (ay; a1) vhn a by sequential composition
⇒ (ρ′ 6∈ n)⇒ ay; a1 vh∪{ρ

′}
n a ∧

(ρ′ 6∈ h)⇒ ay; a2 vhn∪{ρ′} a by inversion on derivation

⇒ (ρ′ 6∈ n)⇒ ay;SI(ρ, a1) vh∪{ρ
′}

n SI(ρ, a) ∧
(ρ′ 6∈ h)⇒ ay;SI(ρ, a2) vhn∪{ρ′} SI(ρ, a) by IH

⇒ ρ′ ? (ay;SI(ρ, a1)) : (ay;SI(ρ, a2)) vhn SI(ρ, a) by definition of vhn
⇔ ay; ρ

′ ?SI(ρ, a1) :SI(ρ, a2) vhn SI(ρ, a) by sequential composition
⇔ ay;SI(ρ, ρ′ ? a1 : a2) vhn SI(ρ, a) by definition of SI
⇔ ay;SI(ρ, a′) vhn SI(ρ, a) our conclusion
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LEMMA 21 (CS Context Subexpression). Suppose there is a de-
duction that concludes ls `cs E [e]. Then that deduction contains,
at a position corresponding to the hole in E , a subdeduction that
concludes ls ′ `cs e, where ls ′ ⊆ ls .

Proof Induction over the derivation of ls `cs E [e].

LEMMA 22 (CS Context Replacement). Suppose the following:

ls `cs E [e], and
lse `cs e, and
ls ′e `cs e′, and
ls ′e 6∩ (ls \ lse)

Then ls ′ `cs E [e′] and ls ′ = (ls \ lse) ∪ ls ′e.

Proof By induction over the structure of E .

• E ≡ [ ]: In this case, we assume

ls `cs [e]
lse `cs e
ls ′e `cs e′
ls ′e 6∩ (ls \ lse)

and may immediately conclude our desired result

ls ′ `cs [e′]
ls ′ = ls ′e = (ls \ lse) ∪ ls ′e

• E ≡ new c(v, E ′, e): In this case, we assume

ls `cs new c (v, E ′[e], e)
lse `cs e
ls ′e `cs e′
ls ′e 6∩ (ls \ lse)

In the first assumption, this judgment may be concluded only
by rule [CS NOT IN-SYNC]; hence we know

ls `cs E ′[e]
By IH, we may conclude

ls ′ `cs E ′[e′]
ls ′ = (ls \ lse) ∪ ls ′e

Since in-sync 6∈ new c (v, [ ], e), by rule [CS NOT IN-SYNC]
we obtain our desired result

ls ′ `cs new c (v, E ′[e′], e)
ls ′ = (ls \ lse) ∪ ls ′e

• E ≡ E ′γf : Similar to previous argument.
• E ≡ E ′γf = e′: Similar to previous argument.
• E ≡ v′γf = E ′: Similar to previous argument.
• E ≡ E ′γm(e): Similar to previous argument.
• E ≡ E ′γm#(e): Similar to previous argument.
• E ≡ ργm(v, E ′, e): Similar to previous argument.
• E ≡ ργm#(v, E ′, e): Similar to previous argument.
• E ≡ let x = E ′ in e′: Similar to previous argument.
• E ≡ if E ′ e1 e2: Similar to previous argument.
• E ≡ E ′γsync e′ : Similar to previous argument.
• E ≡ in-sync ρ E ′: In this case, we assume

ls `cs in-sync ρ E ′[e]
lse `cs e
ls ′e `cs e′
ls ′e 6∩ (ls \ lse)

In the first assumption, this judgment may be concluded only
by rule [CS IN-SYNC]; hence we know

ls \ {ρ} `cs E ′[e]

From this judgment and Lemma 21, we know that ρ 6∈ lse. By
IH, we may conclude

ls ′ `cs E ′[e′]
ls ′ = (ls \ {ρ} \ lse) ∪ ls ′e

Since ρ 6∈ ls ′, by rule [CS IN-SYNC] we obtain our desired result

ls ′ ∪ {ρ} `cs in-sync ρ E ′[e′]
ls ′ ∪ {ρ} = (ls \ {ρ} \ lse) ∪ ls ′e ∪ {ρ}

= (ls \ lse) ∪ ls ′e
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