
A Formal Framework for the Java Bytecode Language and Verifier

Stephen N. Freund∗ John C. Mitchell∗

Department of Computer Science
Stanford University

Stanford, CA 94305-9045
{freunds, mitchell}@cs.stanford.edu

Phone: (650) 723-8634, Fax: (650) 725-4671

Abstract

This paper presents a sound type system for a large
subset of the Java bytecode language including classes,
interfaces, constructors, methods, exceptions, and byte-
code subroutines. This work serves as the foundation
for developing a formal specification of the bytecode lan-
guage and the Java Virtual Machine’s bytecode verifier.
We also describe a prototype implementation of a type
checker for our system and discuss some of the other
applications of this work. For example, we show how to
extend our work to examine other program properties,
such as the correct use of object locks.

1 Introduction

The bytecode language, which we refer to as JVML,
is the platform independent representation of compiled
Java programs. In order to prevent devious applets
from causing security problems stemming from type er-
rors, the Java Virtual Machine bytecode verifier per-
forms a number of consistency checks on bytecode be-
fore it is executed [LY96]. This paper presents a type
system that may serve as the foundation of a formal
specification of the bytecode verifier for large fragment
of JVML. Originally, the only specification was an in-
formal English description that was incomplete or in-
correct in some respects. Since then, a variety of more
formal specifications for various subsets of JVML have
been proposed. We discuss some of these in Section 9.

In our previous studies, we have examined several
of the complex features of JVML in isolation. One
study focused on object initialization and formalized

∗Supported in part by NSF grants CCR-9303099 and CCR-
9629754, and ONR MURI Award N00014-97-1-0505. Stephen Fre-
und received additional support through a NSF Graduate Research
Fellowship.

This paper appeared in OOPSLA ’99.

the way in which a type system may prevent Java byte-
code programs from using objects before they have been
initialized [FM98]. In other work, we extended the
work of Stata and Abadi on bytecode subroutines to
develop a semantics for subroutines that is closer to
the original Sun specification and includes exception
handlers [FM99]. Subroutines are a form of local call
and return that allow for space efficient compilation of
try-finally structures in the Java language. Bytecode
programs that use subroutines are allowed to manipu-
late return addresses in certain ways, and the bytecode
verifier must ensure that these return addresses are used
appropriately. In addition, subroutines introduce a lim-
ited form of polymorphism into the type system.

This paper builds on these studies to construct a
formal model for a subset of JVML containing:

• classes, interfaces, and objects

• constructors and object initialization

• virtual and interface method invocation

• arrays

• exceptions and subroutines

• integer and double primitive types

This subset captures the most difficult static analy-
sis problems in bytecode verification. There are some
features of JVML that we have not covered, includ-
ing additional primitive types and control structures,
final and static modifiers, access levels, concurrency,
and packages. In some sense, these omitted features
only contribute to the complexity of our system in the
sheer number of cases that they introduce, but they do
not appear to introduce any challenging or new prob-
lems. For example, the excluded primitive types and
operations on them are all very similar to cases in our
study, as are the missing control structures, such as the
tableswitch instruction. Static methods share much
in common with normal methods, and checks for proper

use of final and access modifiers are well understood and
straightforward to include.

We have applied our previous work on develop-
ing type checkers for the JVML type system to cover
the subset presented in this paper as well [FM99] and
have implemented a prototype verifier. This prototype
demonstrates that our type system does reject faulty
programs and also accepts virtually all programs gen-
erated by reasonable Java compilers.

Although the main contribution of this work is a
framework in which bytecode verification can be for-
mally specified, our type system is also useful for other
purposes. We have extended our system to check ad-
ditional safety properties, such as ensuring that ob-
ject locks are acquired and released properly by each
method. In addition, augmenting the verifier to track
more information through the type system has allowed
us to determine where run-time checks, such as null
pointer and array bounds tests, may be eliminated.

This work may also lead to methods for verifying
bytecode programs offline in situations where full byte-
code verification cannot be done in the virtual machine
due to resource constraints.

Section 2 introduces JVMLf , the fragment of JVML
studied in this paper. Sections 3, 4 and 5 describes the
formal dynamic and static semantics for JVMLf and
gives an overview of the soundness proof, and Section 6
highlights some of the technical details in handling ob-
ject construction and subroutines. Section 7 gives a
brief overview of our prototype verifier. Section 8 de-
scribes some applications of this work, Section 9 dis-
cusses some related work, and Section 10 concludes.

2 JVMLf

In this section, we informally introduce JVMLf , an ide-
alized subset of JVML encompassing the features listed
above. We shall use the Java program in Figure 1 as
an example throughout the section. Compilation of this
code produces a class file for each declared class or in-
terface. In addition to containing the bytecode instruc-
tions for each method, a class file also contains the sym-
bolic name and type information for any class, interface,
method, or field mentioned in the source program. This
information allows the Java Virtual Machine to verify
and dynamically link code safely. To avoid some unnec-
essary details inherent in the class file format, we shall
represent JVMLf programs as a series of declarations
somewhat similar to Java source code, as demonstrated
in Figure 2.

The collection of declarations in Figure 2 con-
tains the compiled Java language classes Object and
Throwable. These are included in the JVMLf program
so that all referenced classes are present. As a conve-

nience, we assume that these are the only two library
classes and that they are present in all JVMLf pro-
grams. The JVMLf declaration for each class contains
the set of instance fields for objects of that class, the
interfaces declared to be implemented by the class, and
all the methods declared in the class. Each method con-
sists of an array of instructions and a list of exception
handlers, and all methods in the superclass of a class are
copied into the subclass unless they are overridden. Al-
though real class files do not duplicate the code in this
manner, it simplifies several aspects of our system by
essentially flattening the class hierarchy when it comes
to method lookup. The special name <init> is given
to constructors.

The execution environment for JVMLf programs
consists of a stack of activation records and an ob-
ject store. Each activation record contains a program
counter, a local operand stack, and a set of local vari-
ables. These pieces of information are not shared be-
tween different activation records, although different
activation records may contain references to the same
objects in the heap. Most JVMLf bytecode instruc-
tions operate on the operand stack, and the store and
load instructions are used to store intermediate values
in the local variables. Constructing or deleting activa-
tion records upon method invocation or return is left to
the Java Virtual Machine.

Figure 3 contains the full JVMLf instruction set,
and the next few paragraphs briefly describe the inter-
esting aspects of these instructions. In Figure 3, v is an
integer, real number, or the special value null; x is a
local variable; L is an instruction address; and σ and
τ are a class name and array component type, respec-
tively. We refer the reader to the Java Virtual Machine
specification for a detailed discussion of these bytecode
instructions [LY96].

The bytecode language uses descriptors to refer to
method and field names from Java language programs.
A descriptor contains three pieces of information about
the method or field that it describes:

• the class or interface in which it was declared

• the field or method name

• its type

For example, the bytecode instruction used to set
the num instance field in the constructor for A is
putfield {|A, num, int|}F. Descriptors are used in
place of simple names to provide enough information
to:

1. check uses of methods and fields without loading
the class to which they belong.

2. dynamically link class files safely.

2

interface Foo {
int foo(int y);

}

class A extends Object implements Foo {
int num;
A(int x) {

num = x;
}

int foo(int y) {
A a;
try {

a = new A(y);
} catch (Throwable e) {

num = 2;
}
return 6;

}
}

class B extends A {
A array[];
B(int x) {

super(x);
num = foo(2);

}
}

Figure 1: Declaration of several Java classes.

class Object {
super: None
fields:{}
interfaces: {}
methods:

}

class Throwable {
super: Object
fields:{}
interfaces: {}
methods:

}

interface Foo {
interfaces: {}
methods:{{|Foo, foo, int→ int|}I}

}

class A {
super: Object
fields: {{|A, num, int|}F}
interfaces: {Foo}
methods:

{|A, <init>, int→ void|}M {
1: load 0
2: invokespecial {|Object, <init>, ε → void|}M
3: load 0
4: push 1
5: putfield {|A, num, int|}F
6: return

}
{|A, foo, int→ int|}M {

1: new A
2: store 2
3: load 2
4: load 1
5: invokespecial {|A, <init>, int→ void|}M
6: goto 12
7: pop
8: load 0
9: push 2

10: putfield {|A, num, int|}F
11: goto 12
12: push 6
13: returnval
Exception table:

from to target type
1 6 7 Throwable

}
}

class B {
super: A
fields: {{|A, num, int|}F,

{|B, array, (Array A)|}F}
interfaces: {Foo}
methods:

{|B, <init>, int→ void|}M {
1: load 0
2: load 1
3: invokespecial {|A, <init>, int→ void|}M
4: load 0
5: load 0
6: push 2
7: invokevirtual {|A, foo, int→ int|}M
8: putfield {|A, num, int|}F
9: return

}
{|B, foo, int→ int|}M {

/* as in superclass */
}

}

Figure 2: Translation of the code from Figure 1 into JVMLf .

3

instruction ::= push v | pop | store x | load x
| add | ifeq L | goto L
| new σ
| invokevirtual MDescriptor
| invokeinterface IDescriptor
| invokespecial MDescriptor
| getfield FDescriptor
| putfield FDescriptor
| newarray (Array τ) | arraylength | arrayload | arraystore
| throw σ | jsr L | ret x
| return | returnvalue

Figure 3: The JVMLf instruction set.

3. provide unique symbolic names to overloaded
methods and fields. Overloading is resolved at
compile time in Java.

Valid method, interface, and field descriptors are gen-
erated by the following grammar:

MDescriptor ::= {|Class-Name, Label , Method-Type|}M
IDescriptor ::= {|Interface-Name, Label , Method-Type|}I
FDescriptor ::= {|Class-Name, Label , Field-Type|}F

A Field-Type may be either int, float, any class or
interface name, or an array type. A Method-Type is a
type α → γ were α is a possibly empty sequence of
Field-Type’s and γ is the return type of the function (or
void). Figure 4 shows the exact representation of all of
these types, as well as several additional types and type
constructors used in the static semantics but not by any
JVMLf program. For example, the type Top, the su-
pertype of all types, will be used in the typing rules, but
cannot be mentioned in a JVMLf program. Note that
we distinguish between methods declared in a class and
methods declared in an interface using different types
of descriptors.

Some JVMLf instructions generate exceptions when
the arguments are not valid. For example, if null is
used as an argument to any instruction that performs
an operation on an object, a run-time exception is gen-
erated. The value of an exception is an object whose
class is Throwable or a subclass of it. To avoid in-
troducing additional classes, we assume that all failed
run-time checks generate Throwable objects. When an
exception is generated, the list of handlers associated
with the currently executing method is searched for an
appropriate handler. An appropriate handler is one de-
clared to protect the current instruction and to handle
exceptions of the class of the object that was thrown,
or some superclass of it. If an appropriate handler is
found, execution jumps to the first instruction of the
exception handler’s code. Otherwise, the top activation
record is popped, and this process is repeated on the
new topmost activation record.

3 Dynamic Semantics

This section gives an overview of the formal execu-
tion model for JVMLf programs. Section 3.1 describes
the representation of programs as an environment, Sec-
tion 3.2 introduces a few notational conventions, and
Section 3.3 describes the semantics of the bytecode in-
structions.

3.1 Environments

A JVMLf program is represented formally by an envi-
ronment Γ containing all the information about classes,
interfaces, and methods found in the class files of
the program. The environment, as defined in Fig-
ure 5, is broken into three components storing each of
these items. Construction of Γ from the representa-
tion of class file information demonstrated in Figure 2
is straightforward.

We write Γ " τ1 <: τ2 to indicate that τ1 is a sub-
type of τ2, given Γ. The Java Virtual Machine model
uses this judgment as a way to perform run-time type
tests. The subtyping rules are presented in the Ap-
pendix, and they follow the form of the rules used to
model subtyping in the Java language [DE97, Sym97],
with extensions to cover the JVMLf specific types. This
judgment, and all others presented in this paper, are
summarized in Figure 6.

3.2 Notational Conventions

Before proceeding, we summarize a few notational con-
ventions used throughout this paper. To access informa-
tion about a method M declared in Γ, we write Γ[M].
Similar notation is used to access interface and class
declarations. If Γ[M] = 〈P, H〉 for some method de-
scriptor M , then Dom(P) is the set of addresses from
the set Addr used in P , and P [i] is the ith instruc-
tion in P . Dom(P) will always include address 1 and is
usually a range {1, . . . , n} for some n. Likewise, H is
a partial map from integer indexes to handlers, where

4

τ ∈ Type ::= Ref | Prim | Ret | Top
Prim ::= float | int

Ref ::= Simple-Ref | Uninit | Array | Null
Simple-Ref ::= Class-Name | Interface-Name
Component ::= Simple-Ref | Primitive

Array ::= (Array Component) | (Array Array)
Uninit ::= (Uninit Class-Name i)

Ret ::= (Ret-from L)

β ∈ Type-List ::= ε | τ · Type-List

α → γ ∈ Method-Type: ::= Arg-List → Return
Return ::= Simple-Ref | Array | Prim | void

κ ∈ Field-Type ::= Simple-Ref | Array | Prim
Arg-List ::= ε | Field-Type · Arg-List

σ, ϕ ∈ Class-Name
ω ∈ Interface-Name

Figure 4: JVMLf types.

ΓC : Class-Name →

〈
super : Class-Name ∪ {None},
interfaces : set of Interface-Name,
fields : set of FDescriptor

〉

ΓM : MDescriptor →
〈

code : instruction+,
handlers : handler∗

〉

ΓI : Interface-Name →
〈

interfaces : set of Interface-Name,
methods : set of IDescriptor

〉

Γ = ΓC ∪ ΓI ∪ ΓM

Figure 5: Format of a JVMLf program environment.

Γ % τ1 <: τ2 τ1 is a subtype of τ2.
Γ % M [pc] = I I is the instruction at address pc in the code array of M .
Γ % C0 → C1 A program in configuration C0 evaluates to C1 in a single step.
Γ % wf Γ is well-formed.
Γ % d ty The definition of d only refers to names of classes/interfaces defined in Γ.
Γ % d :: K The declaration of d is a valid K, K ∈ {class, interface, method}.
Γ, F , S % 〈P, H〉 : M The method body 〈P, H〉 conforms to descriptor M given Γ, F , and S.
Γ, F , S, i % P : M Instruction i of P is well typed given Γ, F , and S.
Γ, F , S % h handles P Handler h is well-typed given Γ, F , and S.
Γ % h wt h is a well-typed heap.
Γ, h % v : τ The value v has type τ given environment Γ and heap h.
Γ % C wt The configuration C is well typed in environment Γ.

Figure 6: Summary of the judgements.

5

a handler has the form 〈b, e, t, σ〉 for addresses b, e, t,
and class σ.

Update and substitution operations are defined as
follows:

(f [x %→ v])[y] =
{

v if x = y
f [y] otherwise

([b/a]f)[y] = [b/a](f [y]) =
{

b if f [y] = a
f [y] otherwise

where y ∈ Dom(f), and a, b, and v range over the
codomain of f .

Sequences will also be used. The empty sequence is
ε, and v · s represents placing v on the front of sequence
s. Appending one sequence to another is written as
s1 • s2, and substitution is defined on sequences of in
the same manner as substitution on partial maps.

3.3 Operational Semantics

We describe the JVMLf virtual machine in the stan-
dard framework of operational semantics. A machine
state is a configuration C = A;h, where A is a stack of
activation records and h is a memory store. An activa-
tion record stack is a sequence of activation records of
the form 〈M, pc, f, s〉, where each part has the follow-
ing meaning:

M : the method descriptor of the method.

pc: the address of the next instruction to be executed
in the method’ s code array.

f : a map from Var, the set of local variables, to values.

s: the operand stack.

Exceptions introduce a special form of activation
record, 〈e〉exc, where e is a reference to the object that
was raised.

Objects of class σ are represented as records of the
form

〈〈〈σ1, l1〉 = v1, . . . , 〈σn, ln〉 = vn〉〉σ
An object’s fields are indexed by pairs 〈σi, li〉 contain-
ing a class σi and a name li to correspond to how
fields are named in field descriptors. To simplify this
representation, we abbreviate this type of record as
〈〈〈σi, li〉 = vi〉〉i∈I

σ where the subscript i ∈ I refers to
the ith field in the record. Arrays are stored in a simi-
lar type of record:

[[vi]]
i∈[0..n−1]
(Array τ)

With these definitions, a program’s memory h is a par-
tial map from locations drawn from the set Loc to

records:

h : Loc →
〈〈〈σi, li〉 = vi〉〉i∈I

σ (object)
| 〈〈〈σi, li〉 = vi〉〉i∈I

ϕ # (Uninit σ j) (uninit. object)
| [[vi]]

i∈[0..n−1]
(Array τ) (array)

The middle record form is used to represent uninitial-
ized objects and is described in Section 6.

All records have tags to support run-time tests and
a form of dynamic dispatch. The function Tag returns
the tag of a reference or any other run-time value:

Tag(h, v) =

int if v is an integer
float if v is a real
Null if v = null
T if v ∈ Loc and h[v] = 〈〈. . .〉〉T

or h[v] = [[. . .]]T

The rest of the section presents representative rules
from the operational semantics. The full list of rules
will be presented in an extended version of this paper.

The first rule in Figure 7 shows how to execute the
getfield instruction, which pops an object reference
off the stack and pushes the value stored in the specified
field of that object.

That rule indicates that the program represented
by Γ may move from configuration C0 to C1 in a
single step if the configurations match the patterns
listed in the table and if all other conditions in the
first parts of a box are satisfied. The judgment Γ "
M [pc] = getfield {|ϕ, l, κ|}F means that the instruc-
tion at index pc in the code array belonging to M is
getfield {|ϕ, l, κ|}F. The inference rule to derive this
judgment is

Γ[M] = 〈P, H〉 P [pc] = I
Γ " M [pc] = I

Two other simple cases for loading and storing values
in the local variables are also shown in Figure 7.

The rule for arraystore requires runtime tests to
verify that the array reference is a valid, that the in-
dex is in bounds, and that the type of the value being
stored is a subtype of the type of elements stored in
the array. This last check is required due to a potential
type loophole caused by the covariant subtyping of ar-
rays. This is similar to the problem of covariant method
specialization discussed in [Coo89].

The rule for invokevirtual demonstrates how the
run-time tag of the receiver object is used to construct
the method descriptor of the new activation record
when a method is called. The notation f [0 %→ b, 1..|α| %→
s1] is an abbreviation for storing the receiver object in
local variable 0, and the arguments in a sequence of lo-
cal variables starting at 1. The function f0 maps the
local variables to any arbitrary values.

6

Γ $ C0 → C1

Γ $ M [pc] = getfield {|ϕ, l, κ|}F
Cond b ∈ Dom(h) b is a valid reference
C0 〈M, pc, f, b · s〉 · A; h the initial configuration
C1 〈M, pc + 1, f, h[b].〈ϕ, l〉 · s〉 · A; h the final configuration

Γ $ C0 → C1

Γ $ M [pc] = load x
C0 〈M, pc, f, s〉 · A; h
C1 〈M, pc + 1, f, f [x] · s〉 · A; h

Γ $ C0 → C1

Γ $ M [pc] = store x
C0 〈M, pc, f, v · s〉 · A; h
C1 〈M, pc + 1, f [x (→ v], v · s〉 · A; h

Γ $ C0 → C1

Γ $ M [pc] = arraystore

Cond

Tag(h, v′) = τ ′

h[b] = [[v0, . . . , vn−1]](Array τ)
Γ $ τ ′ <: τ
0 ≤ k < n

find type of v′

b is a valid reference
type test for covariance
index is in bounds

C0 〈M, pc, f, v′ · k · b · s〉 · A; h

C1

〈M, pc + 1, f, s〉 · A;
h[b (→ [[v0, . . . , vk−1, v′,

vk+1, . . . , vn−1]](Array τ)]

Γ $ C0 → C1

Γ $ M [pc] = invokevirtual {|ϕ, m, α → γ|}M

Cond
Tag(h, b) = σ
|α| = |s1|

N = {|σ, m, α → γ|}M
C0 〈M, pc, f, s1 • (b · s)〉 · A; h

C1
〈N, 1, f0[0 (→ b, 1..|α| (→ s1], ε〉·
〈M, pc, f, s1 • (b · s)〉 · A; h

Γ $ C0 → C1

Γ $ M [pc] = returnval

Cond
M = {|σ, m, α → γ|}M

|α| = |s1|
γ *= void

C0
〈M, pc, f, v · s〉·

〈M ′, pc′, f ′, s1 • (b · s′)〉 · A; h
C1 〈M ′, pc′ + 1, f ′, v · s′〉 · A; h

Γ $ C0 → C1

Γ $ M [pc] = throw σ
Cond b ∈ Dom(h)
C0 〈M, pc, f, b · s〉 · A; h
C1 〈b〉exc · 〈M, pc, f, b · s〉 · A; h

Γ $ C0 → C1

Γ $ M [pc] = arraystore

Cond
b *∈ Dom(h)
e *∈ Dom(h)

C0 〈M, pc, f, v′ · k · b · s〉 · A; h

C1
〈e〉exc · 〈M, pc, f, v′ ·k · b · s〉 ·A; h[e (→

BlankThrowable]

Γ $ C0 → C1

Γ $ M [pc] = arraystore

Cond

h[b] = [[v0, . . . , vn−1]](Array τ)
Tag(h, v′) = τ ′

Γ *$ τ ′ <: τ
e *∈ Dom(h)

C0 〈M, pc, f, v′ · k · b · s〉 · A; h

C1
〈e〉exc · 〈M, pc, f, v′ ·k · b · s〉 ·A; h[e (→

BlankThrowable]

Γ $ C0 → C1

Cond
Tag(h, b) = σ

CorrectHandler(Γ, M, pc, σ) = 0
C0 〈b〉exc · 〈M, pc, f, s〉 · A; h
C1 〈b〉exc · A; h

Γ $ C0 → C1

Cond
Tag(h, b) = σ

CorrectHandler(Γ, M, pc, σ) = t
t *= 0

C0 〈b〉exc · 〈M, pc, f, s〉 · A; h
C1 〈M, t, f, b · ε〉 · A; h

Γ $ C0 → C1

C0 〈b〉exc · ε; h
C1 ε; h

Figure 7: JVMLf dynamic semantics (excerpts).

7

There are two ways in which an exception can be
generated. Either a throw statement is executed or
a runtime check fails. In either situation, the result-
ing configuration contains a special record on the top
of the stack indicating the exception value, as demon-
strated by the rule for throw and two of the three rules
for the failure of an arraystore instruction. In those
rules, the record BlankThrowable is an object record for
class Throwable in which all fields are set to their ini-
tial values (either 0 or null). Introduction of this record
essentially creates a new object without calling its con-
structor, but this deviation from the real Java Virtual
Machine does not significantly affect the overall behav-
ior of our execution model, nor does it affect the static
semantics in anyway.

The last three rules in Figure 7 show how excep-
tions are handled. If a valid handler is found in the
topmost activation record, control is transferred to the
target of that handler. Otherwise, the topmost activa-
tion record is popped off the stack, and we try again in
the next activation record. The CorrectHandler judg-
ment is defined in [FM99]. We may conclude that
CorrectHandler(Γ, M, pc, σ) = t only if 〈b, e, t, σ′〉 is
the first handler found in the list of handlers for M such
that b ≤ pc < e and Γ " σ <: σ′. If no such handler is
found, CorrectHandler(Γ, M, pc, σ) = 0.

4 Static Semantics

This section gives a brief overview of the static seman-
tics for JVMLf . We first define well-formed environ-
ments and then describe the typing rules for the JVMLf

instruction set and exceptions. For simplicity, we omit
subroutines and constructors from this section, but re-
turn to them in Section 6.

4.1 Well-formed Environments

Well-formed environments are environments satisfying
certain constraints including the requirements that:

• there are no circularities in the class hierarchy.

• all classes actually implement their declared inter-
faces by defining all methods listed in them.

• a class inherits all field and interface declarations
from its superclass, and inherits or overrides all
methods.

Basically, all class properties described in [LY96] that
do not depend on the bodies of methods fall into this
list.

Figure 8 contains the judgments used to show that
a JVMLf environment Γ is well formed.

The (wf env) rule requires that Object and
Throwable be defined in Γ. The auxiliary judgment
Γ " d ty is derivable only if the definition of d refers
only to classes or interfaces defined in Γ. This judg-
ment does not look inside the bytecode arrays. The
local typing judgments from the next section inspect
individual instructions. Finally, each declaration d in Γ
must be well formed, written Γ " d :: K, where K is the
kind of declaration. The rules for classes and methods,
(wt class) and (wt meth), also appear in Figure 8.

In (wt meth), F is a map from Addr to functions
mapping local variables to types such that F i[y] is the
type of local variable y at line i. The function S is a map
from Addr to stack types where Si is the type of the
operand stack at location i of the program. Finding
F and S such that we can derive Γ, F , S " 〈P, H〉 :
M is analogous to the verifier accepting the code of
method M , and it means that if the method M is called
with arguments of the correct type, no type error will
occur as the result of executing the code for the method.
Figure 9 shows the typing information for a method,
and the rest of the section develops this judgement.

These rules for environments, partially based
on [Sym97, DE97], do not show how to incrementally
build a well-formed environment. However, assuming
that the environment is fully built prior to verification
is adequate for describing how to type check bytecode
methods. In reality, construction of Γ would be compli-
cated by other Java-specific features like dynamic load-
ing, which we have not addressed to date.

4.2 Methods

The judgment in Figure 10 concludes that a method
is valid. In that rule, FTop is a function mapping all
variables in Var to Top. The initial conditions on F1

match the types of the values values stored in f during
the creation of new activation record for a call to this
method. The fourth line requires that each instruction
in the program being well typed according to the local
judgments described in the next section, and the last
line requires that each handler be well typed. There
may be more than one F and S for which the above
rule is applicable but, as a convenience, we shall assume
that there is some unique canonical F and S for each
method.

4.2.1 Instructions

The local typing rules are presented in Figure 11. These
typing rules describe a set of constraints between the
types of variables and stack slots at different loca-
tions in the program. The basic intuition behind these
rules is that the type information flows along execu-

8

(wf env)

Object, Throwable ∈ Dom(Γ)
∀d ∈ Dom(Γ). Γ % d ty

∀d ∈ Dom(Γ). ∃K ∈ {class, interface, method}. Γ % d :: K
Γ % wf

(wt class)

Γ[σ] = 〈σs, {ωi}i∈I , {{|σj , lj , κj|}F}j∈J 〉
Γ *% σs <: σ no cycles

Γ[σs].interfaces ⊆ {ωi}i∈I inherit all interfaces
Γ[σs].fields ⊆ {{|σj , lj , κj|}F}j∈J inherit all fields

∀i ∈ I. ∀m, α, γ. {|ωi, m, α → γ|}I ∈ Γ[ωi].methods
⇒ {|σ, m, α → γ|}M ∈ Dom(Γ)

implement all interfaces

∀m, α, γ.
(

{|σs, m, α → γ|}M ∈ Dom(Γ)
∧ m *= <init>

)
⇒ {|σ, m, α → γ|}M ∈ Dom(Γ) inherit / override all methods

Γ % σ :: class

(wt meth)

Γ[M] = 〈P, H〉
Γ, F , S % 〈P, H〉 : M

Γ % M :: method

Figure 8: Rules for well-formed environments (excerpts).

i P [i] Si Fi[0] Fi[1] Fi[2]

1 : new A ε A int Top
2 : store 2 (Uninit A 1) · ε A int Top
3 : load 2 ε A int (Uninit A 1)
4 : load 1 (Uninit A 1) · ε A int (Uninit A 1)
5 : invokespecial {|A, <init>, int→ void|}M int · (Uninit A 1) · ε A int (Uninit A 1)
6 : goto 12 ε A int A
7 : pop Throwable · ε A int Top
8 : load 0 ε A int Top
9 : push 2 A · ε A int Top

10 : putfield {|A, num, int|}F int · A · ε A int Top
11 : goto 12 ε A int Top
12 : push 6 ε A int Top
13 : returnval int · ε A int Top
Exception table:

from to target type
1 6 7 Throwable

Figure 9: The type information for method {|A, foo, int→ int|}M in Figure 2.

(meth code)

m *= <init> not a constructor
F 1 = FTop[0 .→ σ, 1..|α| .→ α] types of initial values in local vars

S1 = ε initial stack
∀i ∈ Dom(P). Γ, F , S, i % P : {|σ, m, α → γ|}M each instruction is well typed

∀i ∈ Dom(H). Γ, F , S % H[i] handles P each exception handler is well typed
Γ, F , S % 〈P, H〉 : {|σ, m, α → γ|}M

Figure 10: Rule to type the body of a method.

9

(get field)

Γ, F , S, i $ P : M

P [i] = getfield {|ϕ, l, κ|}F
Γ $ Si <: ϕ · β

{|ϕ, l, κ|}F ∈ Γ[ϕ].fields
top of stack contains class ϕ or subclass
field is present in declaration of ϕ

Γ $ κ · β <: Si+1
Γ $ F i <: F i+1
i + 1 ∈ Dom(P)

new stack has type of field on top
variables are not updated
not stepping out of code array

(load)

Γ, F , S, i $ P : M

P [i] = load x
x ∈ Dom(F i)

Γ $ F i[x] · Si <: Si+1
Γ $ F i <: F i+1
i + 1 ∈ Dom(P)

(store)

Γ, F , S, i $ P : M

P [i] = store x
x ∈ Dom(F i)

Si = τ · β
Γ $ β <: Si+1

Γ $ F i[x (→ τ] <: F i+1
i + 1 ∈ Dom(P)

(get field)

Γ, F , S, i $ P : M

P [i] = getfield {|ϕ, l, κ|}F
Γ $ Si <: ϕ · β

{|ϕ, l, κ|}F ∈ Γ[ϕ].fields
Γ $ κ · β <: Si+1
Γ $ F i <: F i+1
i + 1 ∈ Dom(P)

(array store)

Γ, F , S, i $ P : M

P [i] = arraystore

Γ $ Si <: τ · int · (Array τ) · β
Γ $ β <: Si+1
Γ $ F i <: F i+1
i + 1 ∈ Dom(P)

(inv virt)

Γ, F , S, i $ P : M

P [i] = invokevirtual N
N = {|ϕ, m, α → γ|}M

m *= <init>
Γ $ Si <: α • (ϕ · β)

N ∈ Dom(Γ)
γ *= void ⇒ Γ $ γ · β <: Si+1

γ = void ⇒ Γ $ β <: Si+1
Γ $ F i <: F i+1
i + 1 ∈ Dom(P)

(return val)

Γ, F , S, i $ P : M

P [i] = returnval

M = {|σ, m, α → γ|}M
γ *= void

Γ $ Si <: γ · β

(throw)

Γ, F , S, i $ P : M

P [i] = athrow σ
Γ $ σ <: Throwable

Γ $ Si <: σ · β

Figure 11: JVMLf static semantics for instructions (excerpts).

tion paths. The types of variables and stack locations
touched by an instruction are changed in the type in-
formation for all successor instructions. The types of
untouched locations are the same or more general in
the successor instructions. As an example, consider the
rule for getfield {|ϕ, l, κ|}F. That rule concludes that
Γ, F , S, i " P : M if all conditions listed in the box are
satisfied. By our requirements on well-formed environ-
ments, we know that as long as the object on top of the
stack is a subclass of ϕ, a field named {|ϕ, l, κ|}F will be
present in the object’s record.

4.2.2 Exception Handlers

An exception handler 〈b, e, t, σ〉 is well typed if the
following conditions hold:

• [b, e) is a valid interval in Dom(P), and t ∈
Dom(P).

• σ is a subclass of Throwable.

• St is a valid type for a stack containing only a
single reference to a σ object.

• F t assigns types to local variables that are at least
as general as the types of those local variables at
all program points protected by the handler.

These checks ensure that when execution transfers to t
from any i in [b, e), St and F t are valid types for the
local variables and new stack. These requirements are
summarized by the following exception rule:

(wt handler)

Γ % σ <: Throwable
1 ≤ b < e

b, e− 1, t ∈ Dom(P)
∀i ∈ [b, e). Γ % Fi <: Ft

Γ % σ · ε <: St

Γ, F , S % 〈b, e, t, σ〉 handles P

We revisit this rule when we discuss subroutines in Sec-
tion 6. Subroutines significantly complicate matters
because the types of local variables become dependent
upon execution history.

10

(int)
n ∈ integers
Γ, h % n : int

(obj)

h[a] = 〈〈〈σi, li〉 = vi〉〉i∈I
σ

Γ[σ].fields = {{|σi, li, κi|}F}i∈I

∀i ∈ I. Γ % Tag(h, vi) <: κi

Γ, h % a : σ
(subsumption)

Γ, h % v : τ1
Γ % τ1 <: τ2
Γ, h % v : τ2

Figure 12: Rules assigning types to values (excerpts).

5 Soundness

In the Java Virtual Machine, execution begins by invok-
ing a static method main for some class. Since we have
not included static methods, JVMLf programs start
slightly differently. A program begins by executing a
method that takes no arguments and returns no value
on an object with no fields. In addition, that object
is the only object in the heap. The following theorem
states that if a program begins in this way, it will run
until the activation record stack is empty.

Theorem 1 (JVMLf Soundness) If Γ " wf, M =
{|σ, m, ε → void|}M, M ∈ Γ, Γ[σ].fields = ∅, a ∈ Loc,
and Dom(h0) = ∅, then:

∀A, h.
Γ " 〈M, 1, f0, a · ε〉 · ε;h0[a %→ 〈〈〉〉σ] →∗ A;h
∧ ¬∃A′, h′. Γ " A;h → A′;h′

⇒ A = ε

In our machine model, programs that attempt to per-
form an operation leading to a type error get stuck be-
cause those operations are not defined in our opera-
tional semantics. By proving that well-typed programs
always run until the last method exits, we know that
well-typed programs will not attempt to perform any
illegal operations.

The proof consists of two parts. The first shows that
any single step from a well-formed configuration leads
to another well-formed configuration. The second part
shows that a transition can always be made from a well-
formed configuration unless the activation record stack
is empty. The rest of the section develops the notion of
well-formed configurations for environment Γ.

5.1 Heaps

A heap h is well typed if all references in Dom(h) may be
assigned the type with which their records are tagged.
Values and, in particular, references are assigned types
with respect to both an environment and a heap. Fig-
ure 12 contains typing judgments for integers and ob-
jects. For objects, the value stored in each field must
have a tag that is a subtype of the field’s type. The
following judgment concludes that a heap is well typed:

(wt heap)
∀a ∈ Dom(h). Γ, h % a : Tag(h, a)

Γ % h wt

These rules allow us to type heaps containing circular
references by using only the tag information about field
values in the hypotheses of the typing rules.

5.2 Configurations

We now describe the requirements for a configuration
A;h to be well formed with respect to Γ, written Γ "
A;h wt. Clearly, it must be the case that Γ " h wt.
Let us assume that A is not empty, meaning that A =
〈M, pc, f, s〉 · A′. If Γ " wf, then it must be the case
that Γ[M] = 〈P, H〉 and Γ, F , S " 〈P, H〉 : M . The
following must be true for A;h to be well formed:

• the program counter is within the bounds of the
code array: pc ∈ Dom(P).

• the values on the stack have the statically deter-
mined type: Γ, h " s : Spc .

• the local variables have the correct types: ∀y ∈
Var. Γ, h " f [y] : F pc [y].

• either:

– execution in the top activation record in A′ is
at a method invocation that resolves to a call
to M , and A′ is well formed, or

– A′ is empty and M is an acceptable method
to start execution.

The inductive definition of these invariants ensures that
they are true of each activation record on the stack.
Other necessary invariants concerning subroutines and
object initialization are described below.

6 Technical Details

This section briefly describes how we check subroutines
and object initialization. This work builds on our pre-
vious studies [FM98, FM99], and we refer the reader to
those sources for some of the details omitted from this
discussion.

6.1 Object Initialization

The static semantics must guarantee that no well-
typed program uses an object before it has been ini-
tialized. Objects are allocated with the new instruction

11

(new)

Γ, F , S, i $ P : M

P [i] = new σ
σ ∈ Dom(Γ)

(Uninit σ i) *∈ Si

∀y ∈ Dom(F i). F i[y] *= (Uninit σ i)

no old values with type (Uninit σ i)

Γ $ (Uninit σ i) · Si <: Si+1
Γ $ F i <: F i+1
i + 1 ∈ Dom(P)

push new reference onto stack

(inv spec)

Γ, F , S, i $ P : M

P [i] = invokespecial N
N = {|ϕ, <init>, α → void|}M

N ∈ Dom(Γ)
Γ $ Si <: α • ((Uninit ϕ j) · β)

j *= 0

N is defined
receiver has type (Uninit ϕ j)
0 is special case (see below)

Γ $ [ϕ/(Uninit ϕ j)]β <: Si+1
Γ $ [ϕ/(Uninit ϕ j)]F i <: F i+1

i + 1 ∈ Dom(P)

replace with initialized object type

Figure 13: Static semantics for object creation and initialization instructions.

and are initialized by invoking a constructor with the
invokespecial instruction. Since the reference to the
uninitialized object may be stored in local variables or
duplicated on the stack between allocation and initial-
ization, a simple form of alias analysis is used to track
references to uninitialized objects.

In the static semantics, the type of a variable or
stack slot containing an uninitialized object reference
is a compound type expression that contains the line
on which the object was allocated. For example, the
type (Uninit σ pc) represents an uninitialized object
of type σ allocated on line pc of the method. All ref-
erences with the same uninitialized object type are as-
sumed to be aliases, and when any of those references
are initialized, the types of all references to the object
are changed to an initialized object type. This analysis
is sound only if the same uninitialized object type is
never assigned to two different objects during program
execution. The rules for new and invokespecial are
presented in Figure 13.

This analysis is correct only if constructors do in fact
properly initialize objects. According to the Java lan-
guage specification, an object is only initialized after a
constructor for each ancestor in the class hierarchy is in-
voked, in order from the object’s class up to Object. To
enforce this at the bytecode level, we require that every
constructor apply either a different constructor of the
same class or a constructor from the parent class to the
object that is being initialized (which is passed into the
constructor in local variable 0) before the constructor
exits. For simplicity, we may refer to either of these ac-
tions as invoking the superclass constructor. The only
deviation from this requirement is for constructors of
class Object. Since, by the Java language definition,
Object is the only class without a superclass, construc-

tors for Object need not call any other constructor.
Our treatment of constructors again uses uninitial-

ized object types. For brevity, we do not present the
technical details, but, in summary, we add the follow-
ing pieces presented in [FM98] to the system:

• a special type of the form (Uninit σ 0), which
is assigned to the uninitialized object passed into
a constructor, and a special form of (inv spec) to
check the usage of this type.

• a set of rules to examine the structure of the con-
structor to determine whether all paths through
the code call an appropriate superclass construc-
tor.

One tricky part of developing the JVMLf seman-
tics is constructing the abstract machine in such a way
that programs which do not properly initialize objects
get stuck. In other words, the run-time representa-
tion of uninitialized or partially initialized objects must
be distinguishable from initialized objects. If this is
not the case, we cannot use our soundness theorem to
conclude that programs always initialize objects cor-
rectly. The tag for an uninitialized object record, such
as σ - (Uninit ϕ j), contains two pieces of informa-
tion. The first part, σ, indicates that the object was
originally allocated by a new σ instruction. The sec-
ond half matches the type assigned to references to the
object in the static type information for the code associ-
ated with the top activation record on the stack. When
a constructor is called on an object, the tag is changed
to match the new constructor’s view. For example, if
a constructor for ϕ′ is called on the object from above,
the tag would be changed to σ -(Uninit ϕ′ 0). When
the Object constructor is called, the tag is changed a
σ, and the object is fully initialized. The operational

12

semantics rules are then written to allow constructors
to be called only on objects with appropriate tags.

To simplify our soundness proofs, we actually model
this slightly differently. In order to avoid changing tags
of existing objects, which complicates proving invari-
ants about heaps, we create new objects. Specifically,
calling the constructor actually creates a new object
with the new tag, and returning from a constructor
performs a substitution of the initialized object for the
old, uninitialized object in the caller’s activation record.
This is similar to the substitution in the JVMLi se-
mantics from [FM98], and the invariants showing that
the analysis works correctly are similar to those in that
paper. The accuracy of this model is acceptable be-
cause no operations are performed on the intermediate
objects, and the standard execution behavior can be
considered an optimization of our semantics. The ex-
tensions to the JVMLi operational semantics to prove
invariants about constructor execution are also incor-
porated into this work.

6.2 Subroutines

Bytecode subroutines are a form of local call and re-
turn that provide space efficient compilation of the
try-finally statements in Java programs. Without
subroutines, the code for the finally block would have
to be duplicated at every exit from the try block. We
refer the reader to our previous work for a full descrip-
tion of subroutines. Subroutines are easy to model in
the dynamic semantics, and the rules for them appear in
Figure 14. However, it is tricky to type check methods
that use subroutines. It is necessary to check that:

1. subroutine calls and returns occur in a stack-like
manner. In some cases, however, a return instruc-
tion may cause a jump the order of the subroutine
calls stack than its immediate caller.

2. a specific form of local variable polymorphism in-
troduced by subroutines is used correctly. Local
variables not touched by a subroutine may con-
tain values of conflicting types at different calls to
the subroutine. The types of these variables are
preserved across the subroutine call so that they
may be used again once the subroutine exits.

Our mechanism for checking subroutines involves the
use of information about the subroutine call graph, and,
in particular, the set of all valid subroutine call stacks
for each instruction i. A call stack is a sequence of
return addresses representing the stack of subroutines
which have been called in a method, which have not
yet returned. We can capture the set of all possible
call stacks for line i, Gi, by examining the structure
of the program. The rules for doing this are presented

in [FM99]. For this presentation, it is sufficient to as-
sume that any valid method has an acyclic subroutine
call graph and that execution cannot reach the begin-
ning of a subroutine without calling jsr.

The typing rules for subroutine call and return ap-
pear in Figure 15. These rules combine checks from our
previous study of object initialization with our work on
subroutines.

In those rules, the domains of the local variable maps
are restricted inside subroutines. The types of local
variables over which the current instruction is polymor-
phic depends on execution history. To recover these
types, and auxiliary function F is used: F(F , pc, ρ)[y] =
τ only if local variable y can be assigned type τ at line pc
of the program given subroutine called stack ρ implicit
in the execution history. In addition, H(P, τ, ρ) = Top
if τ is a return address type inconsistent with all return
address is in ρ. In all other cases, it equals τ .

Figure 16 shows a sample JVMLf program that uses
subroutines and the type information for it.

Soundness of these rules depends on invariants show-
ing that the implicit subroutine call stack is always
contained in the sets of statically computed all stacks,
and that a return address type (Ret-from L) is only
assigned to addresses which are both valid return ad-
dresses for L and present in the implicit call stack. In
addition, we prohibit uninitialized objects from being
present in variables over which the currently execut-
ing subroutine is polymorphic to prevent error that was
found in the Sun verifier [FM98]. The typing rule for
exception handlers must be rewritten to be similar to
rule (ret) since the process of catching an exception may
affect the implicit subroutine call stack. One or more
subroutines may be popped off the call stack because
the handler for the exception may appear outside of
the currently executing subroutine.

7 Implementation

We have implemented a prototype of the JVMLf ver-
ifier. The algorithm uses the three phase type checker
developed in [FM99]. The basic idea is to use a data flow
analysis algorithm to compute a valid typing for each
method in a class file, after performing several passes
through the code to analyze subroutines.

Our verifier translates JVML methods into a subset
of JVMLf . This translation preserves the structure and
data flow of the original program, but utilizes a small
core verifier to perform the type synthesis. In this way,
as many details as possible are removed from the data
flow analysis algorithm. For example, the instruction

invokevirtual {|Vector, indexOf, Object→ int|}M

13

Γ $ C0 → C1

Γ $ M [pc] = jsr L
C0 〈M, pc, f, s〉 · A; h
C1 〈M, L, f, (pc + 1) · s〉 · A; h

Γ $ C0 → C1

Γ $ M [pc] = ret x
C0 〈M, pc, f, s〉 · A; h
C1 〈M, f [x], f, s〉 · A; h

Figure 14: Operational semantics for subroutines instructions.

(jsr)

Γ, F , S, i $ P : M

P [i] = jsr L
∀y ∈ Dom(F i).F i[y] *= (Ret-from L)

(Ret-from L) *∈ Si

∀y ∈ Dom(F i). F i[y] *∈ Uninit
∀y ∈ Dom(Si). Si[y] *∈ Uninit

no recursive subroutine calls

no uninit. objects in variables
or on stack

Dom(F L) ⊆ Dom(F i)
Γ $ (Ret-from L) · Si <: SL

∀y ∈ Dom(F L). Γ $ F i[y] <: F L[y]
L ∈ Dom(P)

accesses smaller set of vars
push return address

Dom(F i) = Dom(F i+1)
∀y ∈ Dom(F i) \ Dom(F L).

Γ $ F i[y] <: F i+1[y]
i + 1 ∈ Dom(P)

subroutine returns to i + 1
variables over which subroutine is

polymorphic

(ret)

Γ, F , S, i $ P : M

P [i] = ret x
x ∈ Dom(F i)

F i[x] = (Ret-from L)
∀y ∈ Dom(F i). F i[y] *∈ Uninit
∀i ∈ Dom(Si). Si[y] *∈ Uninit

returning from L
not passing back uninitialized objects

∀ρ ∈ GP,i. ∃p, ρ1, ρ2.
ρ = ρ1 • (p · ρ2)
∧ P [p− 1] = jsr L
∧ Γ $ H(P, Si, ρ2) <: Sp

∧ ∀y ∈ Dom(F p). ∀τ.
F(F, i, ρ)[y] = τ
⇒ Γ $ H(P, τ, ρ2) <: F p[y]

find return address for L
in each possible call stack

hide invalid return types
in stack and variables
at return location p

Figure 15: Static semantics for subroutines instructions.

i P [i] Gi Fi[1] Fi[2] Fi[3] Si

1 : jsr 3 ε Top Top Top ε
2 : halt ε Top Top Top ε
3 : store 1 2 · ε Top Top Top (Ret-from 3) · ε
4 : jsr 7 2 · ε (Ret-from 3) Top Top ε
5 : jsr 10 2 · ε (Ret-from 3) Top Top ε
6 : ret 1 2 · ε (Ret-from 3) Top Top ε
7 : store 2 5 · 2 · ε Top Top (Ret-from 7) · ε
8 : jsr 10 5 · 2 · ε (Ret-from 7) Top ε
9 : ret 2 5 · 2 · ε (Ret-from 7) Top ε

10 : store 3 6 · 2 · ε, 9 · 5 · 2 · ε Top (Ret-from 10) · ε
11 : ret 3 6 · 2 · ε, 9 · 5 · 2 · ε (Ret-from 10) ε

Figure 16: The type information computed for a program using subroutines.

14

is replaced by:

pop<Object> ; pop argument
pop<Vector> ; pop reciever
push<int> ; push integer as return value

where an instruction like pop<Vector> indicates that a
value of type Vector should be popped from the top of
the stack.

To capture those requirements not checked by
this core verifier, such as the requirement that
Vector.indexOf actually exists and has the correct
type, our translator also generates a set of assertions
which may be checked separately, either before or after
the type checking has been performed. The one con-
straint generated by the above instruction is:

{|Vector, indexOf, Object→ int|}M ∈ Dom(Γ)

Goldberg has described the form of these assertions and
demonstrates how they may be used to construct a typ-
ing environment for bytecode verification in the pres-
ence of dynamic loading [Gol98].

We have used this translator to verify a large frac-
tion of the JDK libraries, as well as many examples of
Java programs using common idioms for exception han-
dling and the other features of JVMLf . The behavior
of our algorithm differs slightly from the Sun reference
implementation, but the cases where our algorithm does
differ have not been found in practice. Typically, the
differences are only found in programs which use sub-
routines and exception handlers in nonstandard ways.
Our previous work describes the situations in detail.

The idea of translating a bytecode program into
a “micro”-instruction set has been explored by oth-
ers [Yel99] and seems to be a promising way to keep
the size and complexity of the core verifier small.

8 Applications

A formal framework for JVML has a number of different
applications including aspects both within and outside
of the current role of the Java Virtual Machine in pro-
gram execution. This section provides a brief overview
of some of these applications.

8.1 Formally Specifying the Verifier

The first and most obvious direct application of this
type system is to use it as a formal specification of the
bytecode verifier. Given the previous problems found in
the existing informal specification and reference imple-
mentations [DFWB97, FM98], there is clearly the need
for a more precise description of it.

One of the major design goals for our system was
to remain as consistent with the original Sun specifica-
tion and reference implementation as possible so that
our work could directly influence specification of the
bytecode language. Although there are some minor de-
viations, mostly due to adding more structure to the
subroutine mechanism [FM99], we have remained close
enough to be confident that a useful formal specification
of bytecode verification can be derived from this work.

Our work on constructing type checking algorithms
from our specification may also prove useful in better
describing how to implement a verifier based on our
type system. In addition, by specifying verification sep-
arately from the linking process, we may be able to ap-
ply this work to construct verification techniques for sit-
uations in which resource constraints on either memory
or computation power limit the ability to perform veri-
fication at runtime. This will become an issue as small
embedded devices like Java cards and Java rings [Jav99]
become more prevalent.

8.2 Testing Existing Implementations

Another avenue in which to apply this work is to fol-
low the direction of the Kimera project [SMB97]. That
project built on traditional software engineering tech-
niques to test bytecode verifiers by automatically gener-
ating a large number of faulty class files and looking for
inconsistencies in behavior between different bytecode
verifier implementations when checking those programs.
We are currently developing an architecture to perform
similar tests with our prototype implementation.

Even without automated testing, this work has iden-
tified several flaws and inconsistencies in existing im-
plementations. In one case, a version of the Sun veri-
fier accepted a program that used an uninitialized ob-
ject [FM98]. Another example is that the set of oper-
ations allowed on null references differs between some
of the commercial implementations. These issues were
uncovered by translating difficult cases from our sound-
ness proofs into sample test programs.

8.3 Checking Additional Safety Properties

We are also investigating ways to check additional safety
properties for bytecode programs. One example of this
is to check that monitorenter and monitorexit, the
instructions to acquire and release object locks, are used
correctly. Correct use may simply mean that every lock
acquired in a method is released prior to exit, or it may
entail a stronger property, such as requiring that locks
are acquired and released according to a two-phase lock-
ing policy. These checks are added to our type system
by first introducing a very simple form of alias analysis

15

for object references and then constructing the set of
locks held at each line the program. The alias infor-
mation is used to track multiple references to the same
object within an activation record. Recent work on type
systems to detect race and deadlock conditions [FA99]
may allow us to perform stronger checks in this area.

A second example is checking that class initializers
are called at the appropriate time. According to the
language specification, class initializers must be called
only once and prior to any direct use of an object of that
class. Determining where these calls should be made is
left to the Java Virtual Machine implementor currently,
and run-time tests are often employed to detect whether
or not the necessary initializers have been called. How-
ever, by modifying the verifier slightly, we can specify
and determine more precisely where initializers need to
be called.

8.4 Eliminating Unnecessary Run-time
Checks

One final application of our type system is to extend the
role of the verifier to identify locations where run-time
checks may be eliminated. The type of analysis used
to identify various unnecessary run-time checks may be
phrased as a data flow analysis problem, and given the
style of our typing rules, it is fairly straightforward to
embed data flow problems into our system. We have
extended our type system and prototype implementa-
tion to determine locations where the following runtime
checks will always succeed:

• null pointer tests

• array bounds tests

• type checks for dynamic casts

• tests required due to the covariant subtyping of
arrays

To perform this analysis, we incorporate additional
type constructors that identify references known not to
be null and dependent types to represent integer val-
ues known to be within a certain range. Since array
lengths are not known until run-time, range types use
alias information to refer to the lengths of arrays stored
in local variables. The details of these checks are omit-
ted for space considerations, but Figure 18 shows the
type information computed for a program in this ex-
tended system.

In Figure 18, the type (Array+ τ) is a subtype of
(Array τ) that is assigned to τ -array references known
not to be null. The type (Range v1 v2) is assigned
to integer values that fall into the range [v1, v2]. The
terms v1 and v2 may be numbers, expressions like l(x)

to indicate the length of the array stored in local vari-
able x, or an arithmetic expression containing limited
uses of addition or subtraction. The subscript x on a
stack element indicates that the stack slot will always
contain the same value as local variable x. Given the
type information, it is clear that the run-time tests for
the arraystore operation will always succeed. To be
useful in a general setting, it is necessary to expand
the expression language for these dependent types to a
more expressive fragment of arithmetic, possibly similar
to what is used in [XP99].

There are two ways to apply this information. First,
the verifier may pass it on to the interpreter or just-
in-time compiler, which may then omit the unnecessary
tests. Second, compilers can take advantage of the new
verifier by performing optimizations with the knowledge
that unneeded checks will not be performed. Eliminat-
ing these checks can significantly improve performance
in some situations. For example, execution speed of the
method in Figure 17 running on the srcjava virtual
machine [Ghe99] improves by approximately 20% when
the array bounds check is removed. We are currently
evaluating the impact of these techniques for larger pro-
grams.

One possibility for future work is to explore the re-
lationship between static and dynamic checks further.
For example, we may be able to improve resource man-
agement techniques [CvE98] by incorporating some re-
source tracking into our static analysis. Bytecode anal-
ysis may also allow some security checks to be elimi-
nated or moved to more optimal locations [WF98].

A current limitation of our system is that the byte-
code verification process was designed to examine only
one method at a time. Therefore, we have not included
interprocedural analysis or global information in our
framework. This limits the precision of our analysis
and what additional properties we can check. Dynamic
loading makes global analysis difficult because a newly
loaded class may invalidate program invariants that pre-
viously held. Developing ways to verify and compute
global properties incrementally as classes are loaded is
left for future work.

9 Related Work

There have been several projects to develop a static
type system for the Java programming language [DE97,
Sym97, NvO98]. It is not surprising that the Java lan-
guage and JVML are similar in some respects, and our
definition of environments and the rules for describ-
ing well-formed environments are based on this body
of work. However, since the Java language statements
are completely different than the JVML instruction set,
the overlap between the language does not extend much

16

void f(int a[]) {
int i;
int n = a.length;
for (i = 0; i < n; i++) {

a[i] = 3;
}

}

Figure 17: A simple method.

i P [i] Si Fi[1] Fi[2] Fi[3]

0 : load 1 ε (Array int) Top Top
1 : arraylength (Array int)1 · ε (Array int) Top Top
2 : store 3 (Range l(1) l(1)) · ε (Array+ int) Top Top
3 : push 0 ε (Array+ int) Top (Range l(1) l(1))
4 : store 2 (Range 0 0) · ε (Array+ int) Top (Range l(1) l(1))
5 : goto 14 ε (Array+ int) (Range 0 0) (Range l(1) l(1))
6 : load 1 ε (Array+ int) (Range 0 l(1)-1) (Range l(1) l(1))
7 : load 2 (Array+ int)1 · ε (Array+ int) (Range 0 l(1)-1) (Range l(1) l(1))
8 : push 3 (Range 0 l(1)-1)2 · (Array+ int)1 · ε (Array+ int) (Range 0 l(1)-1) (Range l(1) l(1))
9 : arraystore (Range 3 3) · (Range 0 l(1)-1)2 · (Array+ int)1 · ε (Array+ int) (Range 0 l(1)-1) (Range l(1) l(1))

10 : load 2 ε (Array+ int) (Range 0 l(1)-1) (Range l(1) l(1))
11 : push 1 (Range 0 l(1)-1)2 · ε (Array+ int) (Range 0 l(1)-1) (Range l(1) l(1))
12 : add (Range 1 1) · (Range 0 l(1)-1)2 · ε (Array+ int) (Range 0 l(1)-1) (Range l(1) l(1))
13 : store 2 (Range 1 l(1)) · ε (Array+ int) (Range 0 l(1)-1) (Range l(1) l(1))
14 : load 2 ε (Array+ int) (Range 0 l(1)) (Range l(1) l(1))
15 : load 3 (Range 0 l(1))2 · ε (Array+ int) (Range 0 l(1)) (Range l(1) l(1))
16 : iflt 6 (Range l(1) l(1))3 · (Range 0 l(1))2 · ε (Array+ int) (Range 0 l(1)) (Range l(1) l(1))
17 : return ε (Array+ int) (Range l(1) l(1)) (Range l(1) l(1))

Figure 18: Extended type information for the method in Figure 17.

past the basic structure of declarations.
Our framework for type checking instructions is

based on the type system originally developed by Stata
and Abadi to study bytecode subroutines [SA99]. In
our previous work, we first extended their system to
study object initialization [FM98], and we also studied
ways to make the semantics of subroutines closer to the
original virtual machine specification [FM99]. This pa-
per combines these previous projects to construct what
we feel is a sufficiently large subset of JVML to cover
all the interesting analysis problems. The rest of this
section describes some of the many other endeavors to
specify the verifier.

Qian’s system [Qia98, Qia99] is the closest in ex-
tent and coverage to our system. The main difference
that distinguishes our work is our attempt to remain as
close to the original specification as possible, particu-
larly in the treatment of subroutines. Our system also
has a more precise notion of a typing environment and
what it means for an environment to be well formed.
We have also attempted to structure our system as the
composition of smaller, well understood systems, which
we believe has led to a better understanding of how
the different language features interact with each other.
Pusch has attempted to prove the soundness of a frag-

ment of his work automatically [Pus99]. Some of the
technical differences between our work and Qian’s are
described in [FM99], where we also compare the type
checking algorithms developed for both type systems.

Coglio et al. are currently building a complete
JVML specification in the SpecWare system, although
subroutines and exceptions are currently not modeled in
their system [CGQ98]. Pursuing an automatic transla-
tion of our typing rules into an executable verifier would
be a useful extension to this work since it reduces the
possibility of introducing implementation errors. This
work is partially based on Goldberg’s earlier work which
describes a verification framework that also handles dy-
namic loading [Gol98]. We believe that his approach
may be adapted to our formal system, and our pro-
totype implementation generates typing constraints for
environments similar to those described in his paper.

Other work has focused more on developing verifica-
tion techniques for bytecode programs under specific
circumstances. For example, Rose and Rose discuss
bytecode verification for Java cards, which have lim-
ited resources available to the type checker [RR98]. In
earlier work, E. Rose described the static semantics for
a small subset of JVML, and a compilation technique
from a subset of Java to that bytecode language [Ros98].

17

Posegga and Vogt also focused their attention on Java
cards, using model checking as the general framework
for verification [PV98].

Precise specifications of the dynamic behavior of
JVML programs have also been developed. Cohen’s
system is based on an ACL2 specification of the byte-
code instruction set [Coh97]. Bertelson presents a de-
tailed dynamic semantics, although no formal proper-
ties of the system are shown [Ber98]. Another dy-
namic semantics based on evolving algebras is presented
in [BS98]. These systems, which have varying degrees
of coverage of JVML features, are useful at identifying
how programs should be compiled and executed, but
they do not immediately produce a sound static seman-
tics.

One final category of projects regarding JVML are
those which have departed from the original Sun specifi-
cation. O’Callahan, for example, presents a type system
for Java bytecode subroutines based on the framework
developed to study typed assembly language [O’C99].
Jones and Yelland independently developed ways of
type checking bytecode programs using the Haskell
type checker [Yel99, Jon98]. One potential area for fu-
ture work is to combine some of the ideas from these
studies and the type systems for typed assembly lan-
guages [TMC+96, MCGW98] into our work as a way of
better specifying and tying together the different phases
of compilation and verification in the Java framework.

10 Conclusions

In our previous work, we studied type systems for ob-
ject initialization [FM98] and subroutines [FM99] in iso-
lation. The languages used in these studies consisted of
a very small set of operations on a single activation
record, and there was no notion of classes or meth-
ods. After studying the properties of these features,
we have been able to compose them into a formal se-
mantics for a relatively complete subset of JVML that
includes classes, interfaces, and methods, as well as a
rich set of bytecode instructions that capture all diffi-
cult type checking problems. It appears to be relatively
straightforward to extend the techniques presented here
to cover the full bytecode language.

Developing a type system for the Java Virtual Ma-
chine bytecode language has several important uses.
Clearly, the need to provide strong safety properties
for mobile code execution necessitates the need for for-
mal specification of the bytecode verifier. In addition,
formalizing the JVML type system may provide an av-
enue through which we may examine how to apply re-
cent results on proof carrying code and typed assembly
languages to the Java compilation and execution pro-
cess [MCGW98, Nec97].

We have also presented ways to extend the verifier
to provide stronger checks and information to aid in
optimizing program execution. The next clear avenue
for future work is to develop a richer type system that
enables interprocedural analysis techniques to analyze
global properties of bytecode programs. The most sig-
nificant challenge will be to model global analysis in the
presence of dynamic loading effectively.

A Subtyping Rules

This appendix introduces the subtyping judgments for
our system, which are based on [Sym97]. We first
present the subclass and subinterface relationships in-
duced by the environment Γ:

(<:C refl)
σ ∈ Class-Name

Γ % σ <:C σ

(<:C super)

Γ % σ1 <:C σ2
Γ[σ2].super = σ3

Γ % σ1 <:C σ3

(<:I refl)
ω ∈ interface-Name

Γ % ω <:I ω

(<:I super)

Γ % ω1 <:I ω2
ω2 ∈ Γ[ω3].interfaces

Γ % ω1 <:I ω3

The following rules determine the subtyping relation-
ships for array components:

(<:A prim)
τ ∈ Prim

Γ % τ <:A τ

(<:A class)
Γ % σ1 <:C σ2

Γ % σ1 <:A σ2

(<:A interface)
Γ % ω1 <:I ω2

Γ % ω1 <:A ω2

These three relations are combined to create the sub-
typing rules for all reference types. Special rules are
required to handle Null and Object:

(<:R class)
Γ % σ1 <:C σ2

Γ % σ1 <:R σ2

(<:R interface)
Γ % ω1 <:I ω2

Γ % ω1 <:R ω2

(<:R class int)

Γ % σ1 <:C σ2
ω1 ∈ Γ[σ2].interfaces

Γ % ω1 <:I ω2

Γ % σ1 <:R ω2

(<:R array Obj)
(Array τ) ∈ Array

Γ % (Array τ) <:R Object

(<:R array)

Γ % τ1 <:A τ2
n > 0

Γ % (Arrayn τ1) <:R (Arrayn τ2)

(<:R int Obj)
ω ∈ Interface-Name
Γ % ω <:R Object

(<:R Null)
τ ∈ Simple-Ref ∪Array ∪ {Null}

Γ % Null <:R τ

18

Using these initial judgments, subtyping is defined with
the following rules, which also extend the definition of
subtypes to include sequences and partial maps in the
obvious way:

(<: ref)
Γ % τ1 <:R τ2
Γ % τ1 <: τ2

(<: refl)
τ ∈ Uninit ∪ Prim ∪ Ret

Γ % τ <: τ

(<: Top)
τ ∈ Ref ∪ Prim ∪ Ret ∪ {Top}

Γ % τ <: Top

(<: ε)
Γ % ε <: ε

(<: seq)

Γ % α1 <: α2
Γ % τ1 <: τ2

Γ % τ1 · α1 <: τ2 · α2

Γ % F1 <: F2
def
= Dom(F1) = Dom(F2)

∧ ∀y ∈ Dom(F1). Γ % F1[y] <: F2[y]

References
[Ber98] Peter Bertelsen. Dynamic semantics of Java byte-

code. In Workshop on Principles of Abstract Ma-
chines, September 1998.

[BS98] E. Boerger and W. Schulte. Programmer friendly
modular definition of the semantics of Java. In
J. Alves-Foss, editor, Formal Syntax and Semantics
of Java. Springer Verlag LNCS 1523, 1998.

[CGQ98] Alessandro Coglio, Allen Goldberg, and Zhenyu
Qian. Toward a provably-correct implementation of
the JVM bytecode verifier. In Workshop on the For-
mal Underpinnings of the Java Paradigm, October
1998.

[Coh97] Rich Cohen. Defensive Java Virtual Machine
Version 0.5 alpha Release. Available from
http://www.cli.com/software/djvm/index.html,
November 1997.

[Coo89] W.R. Cook. A proposal for making Eiffel type-
safe. In European Conf. on Object-Oriented Pro-
gramming, pages 57–72, 1989.

[CvE98] Grzegorz Czajkowski and Thorsten von Eicken. Jres:
A resource accounting interface for Java. In Proceed-
ings of ACM Conference on Object Oriented Lan-
guages and Systems, October 1998.

[DE97] S. Drossopoulou and S. Eisenbach. Java is type safe
— probably. In European Conference On Object Ori-
ented Programming, pages 389–418, 1997.

[DFWB97] Drew Dean, Edward W. Felten, Dan S. Wallach, and
Dirk Balfanz. Java security: Web browers and be-
yond. In Dorothy E. Denning and Peter J. Denning,
editors, Internet Beseiged: Countering Cyberspace
Scofflaws. ACM Press, New York, New York, Octo-
ber 1997.

[FA99] Cormac Flanagan and Mart́ın Abadi. Types for safe
locking. In Proceedings of European Symposium on
Programming, March 1999.

[FM98] Stephen Freund and John Mitchell. A type sys-
tem for object initialization in the Java bytecode
language. In Proc. ACM Conference on Object-
Oriented Programming: Languages, Systems, and
Applications, October 1998. An extended version ap-
pears as Stanford University Technical Note STAN-
CS-98-62, April 1998.

[FM99] Stephen Freund and John Mitchell. Specification
and verification of Java bytecode subroutines and
exceptions, August 1999. To appear as a Stanford
University Technical Note. Currently available from
http://cs.stanford.edu/~freunds.

[Ghe99] Sanjay Ghemawat. srcjava. Available from
http://www.research.digital.com/SRC/java, August
1999.

[Gol98] Allen Goldberg. A specification of Java loading and
bytecode verification. In ACM Conference on Com-
puter and Communication Security, 1998.

[Jav99] Java-Powered Ring. Available from
http://www.ibutton.com, March 1999.

[Jon98] Mark Jones. The functions of Java bytecode. In
Workshop on the Formal Underpinnings of the Java
Paradigm, October 1998.

[LY96] Tim Lindholm and Frank Yellin. The Java Virtual
Machine Specification. Addison-Wesley, 1996.

[MCGW98] Greg Morrisett, Karl Crary, Neal Glew, and David
Walker. From system F to typed assembly language.
In Proc. 25th ACM Symposium on Principles of Pro-
gramming Languages, January 1998.

[Nec97] George C. Necula. Proof-carrying code. In Proc.
24th ACM Symposium on Principles of Program-
ming Languages, 1997.

[NvO98] Tobias Nipkow and David von Oheimb. Javalight is
Type-Safe - Definitely. In Proc. 25th ACM Sympo-
sium on Principles of Programming Languages, Jan-
uary 1998.

[O’C99] Robert O’Callahan. A simple, comprehensive type
system for Java bytecode subroutines. In Proc.
26th ACM Symposium on Principles of Program-
ming Languages, January 1999.

[Pus99] Cornelia Pusch. Proving the soundness of a Java
bytecode verifier specification in Isabelle/HOL. In
TACAS, 1999.

[PV98] Joachim Posegga and Harald Vogt. Byte code veri-
fication for Java smart cards based on model check-
ing. In 5th European Symposium on Research in
Computer Security (ESORICS), Louvain-la-Neuve,
Belgium, 1998. Springer LNCS.

[Qia98] Zhenyu Qian. A Formal Specification of Java(tm)
Virtual Machine Instructions. In J. Alves-Foss, edi-
tor, Formal Syntax and Semantics of Java. Springer
Verlag LNCS 1523, 1998.

[Qia99] Zhenyu Qian. Least types for memory locations in
(Java) bytecode. In Sixth Workshop on Foundations
of Object-Oriented Languages, January 1999.

[Ros98] Eva Rose. Towards secure bytecode verification on
a Java card. Master’s thesis, University of Copen-
hagen, 1998.

[RR98] Eva Rose and Kristoffer Høgsbro Rose. Toward a
provably-correct implementation of the JVM byte-
code verifier. In Workshop on the Formal Underpin-
nings of the Java Paradigm, October 1998.

[SA99] Raymie Stata and Mart́ın Abadi. A type system
for Java bytecode subroutines. Transaction on Pro-
gramming Languages and Systems, 1999. To ap-
pear. Currently available as Digital Equipment Cor-
poration Systems Research Center Research Report
158, June 1998. An earlier version appeared in Proc.
25th ACM Symposium on Principles of Program-
ming Languages, January 1998.

19

[SMB97] Emin Gün Sirer, Sean McDirmid, and Brian Ber-
shad. Kimera: A Java system architecture. Avail-
able from http://kimera.cs.washington.edu, Novem-
ber 1997.

[Sym97] Don Syme. Proving Java type soundness. Techni-
cal Report 427, University of Cambridge Computer
Laboratory Technical Report, 1997.

[TMC+96] D. Tarditi, G. Morrisett, P. Cheng, C. Stone,
R. Harper, and P. Lee. TIL: A type-directed op-
timizing compiler for ML. ACM SIGPLAN Notices,
31(5):181–192, May 1996.

[WF98] Dan S. Wallach and Edward W. Felten. Understand-
ing Java stack inspection. In Proceedings of IEEE
Symposium on Security and Privacy, May 1998.

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in
practical programming. In Proc. 26th ACM Sympo-
sium on Principles of Programming Languages, Jan-
uary 1999.

[Yel99] Phillip Yelland. A compositional account of the Java
Virtual Machine. In Proc. 26th ACM Symposium
on Principles of Programming Languages, January
1999.

20

