
Automatic Synchronization Correction for Atomicity

Cormac Flanagan
Department of Computer Science

University of California, Santa Cruz
Santa Cruz, CA 95064

Stephen N. Freund
Department of Computer Science

Williams College
Williamstown, MA 01267

ABSTRACT
Multithreaded programs are notoriously prone to synchro-
nization errors. Much prior work has tackled the problem
of detecting such errors. This paper focuses on the subse-
quent problem of synchronization correction. We present
a constraint-based analysis that, given an erroneous pro-
gram, automatically infers (where possible) what additional
locking operations should be inserted in order to yield a
correctly-synchronized program. For performance reasons,
our algorithm also attempts to minimize the number of addi-
tional lock acquires and the duration for which the acquired
locks are held. We present experimental results that val-
idate this approach on a number of standard Java library
classes.

1. INTRODUCTION
Multithreaded programs are notoriously prone to errors

due to incorrect synchronization. Earlier work in this area
focused on detecting synchronization errors that cause race
conditions [24, 23, 28, 29, 1, 4, 9, 11], atomicity viola-
tions [14, 8, 10, 12, 19, 31], and other consistency viola-
tions [2, 30]. Of course, detecting defects is useful only if
it is followed by a second step of defect correction. In this
work, we focus on this subsequent defect correction phase,
and in particular on the problem of providing automated
support for correcting synchronization errors.

We start with programs in which some methods have been
documented as atomic, which means that they should in-
clude sufficient synchronization so that their execution is
serializable, i.e., they can be considered to execute without
interleaved actions of concurrent threads. If such a program
fails to satisfy its atomicity specification, our tool attempts
to modify the program (by introducing additional synchro-
nization operations) so that it does satisfy its specification.
In addition, we try to minimize the number of additional
locks acquired (to reduce synchronization overhead) and to
only hold these locks for short durations (to reduce lock
contention [3]).

While our approach will not fix all concurrency errors, it
does work well on a large and important class of defects. Our
experience with atomicity checking tools has demonstrated
that, in large programs, a small number of synchronization
errors can lead to a large number of atomicity errors, possi-
bly in many different modules. Identifying the root causes of
these atomicity violations can be time consuming and may

Presented at the Workshop on Synchronization and Concurrency in Object-
Oriented Languages (SCOOL), October, 2005.

require subtle knowledge about program’s intended synchro-
nization structure.

This paper presents a synchronization correction algorithm
that, in addition to identifying atomicity violations, also
identifies likely causes for these atomicity violations and
(where possible) suggests additional synchronization oper-
ations that are sufficient to correct these violations. This
correction algorithm performs a deep analysis on the pro-
gram’s synchronization structure. In previous work, we (1)
developed Rcc/Sat , an analysis for inferring protecting locks
for each field [11], and (2) a constraint-based framework for
inferring the most precise atomicity for each method [12].
In this paper, we extend this line of research to tackle the
more difficult problem of synchronization correction.

Inserting additional synchronization can introduce the po-
tential for deadlock. We do not explicitly reason about dead-
lock, and instead assume the programmer ensures deadlock-
freedom by code inspection or via some other static or dy-
namic analysis.

We present preliminary results that validate this analysis
on three standard Java library classes that have synchroniza-
tion errors. For each class, our analysis can automatically
infer the additional synchronization operations that are nec-
essary to correct these defects. We also performed defect-
injection experiments, which demonstrated that the analy-
sis is capable of correcting the vast majority of randomly-
inserted synchronization defects in Java library classes.

2. MOTIVATING EXAMPLE
We illustrate the behavior of our analysis on the exam-

ple shown in Figure 1, in which a Stack is represented as a
linked List of Elements. The underlined annotations spec-
ify the program’s locking structure. For example, the field
List.elems is guarded by this, the implicit lock of the List
object. This lock also guards the fields List.elems.num and
List.elems.next, since elems has type Elems〈this〉, and in
Elems the ghost parameter x guards the num and next fields.
These underlined type annotations can be automatically in-
ferred by the Rcc/Sat type inference algorithm [11].

The class Stack is intended to be thread-safe, and so its
push and dup methods are declared as atomic. However,
the given program violates this atomicity specification. For
example, push and dup call add without acquiring any locks,
resulting in race conditions. Synchronizing on this inside
add corrects this race condition and ensures that push is
atomic, but dup is still incorrect, since a concurrent threads
could modify the stack between dup’s two calls to add. Thus,

1

Figure 2: Class Stack with Atomicity Annotations and Corrected Synchronization

a) Program with Atomicity Annotations b) Program with Correct Synchronization

class Elem〈ghost x〉 { class Elem〈ghost x〉 {
int num guarded by x; int num guarded by x;
Elem〈x〉 next guarded by x; Elem〈x〉 next guarded by x;

} }

class List { class List {
Elem〈this〉 elems guarded by this; Elem〈this〉 elems guarded by this;

α1 void add(int v) { this?mover:atomic void add(int v) {
sync?t1 (this) sync(this)

this.elems = new Elem〈this〉(v,this.elems); this.elems = new Elem〈this〉(v,this.elems);
} }

α2 int removeFirst() { this?mover:atomic int removeFirst() {
sync?t2 (this)

sync(this) { sync(this) {
sync?t3 (this)

let int x = this.elems.num in { let int x = this.elems.num in {
sync?t4 (this) {
sync?t5 (this)

this.elems = this.elems.next; this.elems = this.elems.next;
sync?t6 (this)

return x; return x;
}

} }
} }

} }
} }

class Stack { class Stack {
final List data; final List data;

atomic void push(int x) { atomic void push(int x) {
sync?t7 (this)

sync?t8 (this.data)

this.data.add(x); this.data.add(x);
} }

atomic int dup() { atomic int dup() {
sync?t9 (this)

sync?t10 (this.data) sync(this.data)

let int x = this.data.removeFirst() in { let int x = this.data.removeFirst() in {
sync?t11 (this)

sync?t12 (this.data) {
sync?t13 (this)

sync?t14 (this.data)

this.data.add(x); this.data.add(x);
sync?t15 (this)

sync?t16 (this.data)

this.data.add(x); this.data.add(x);
}

} }
} }

} }

inferring the necessary synchronization operations requires
reasoning about both race conditions and atomicity viola-
tions.

Given this incorrect program, our algorithm automatically
generates the corrected program of Figure 2(b), where the
methods add and dup contain additional synchronization.
(Alternatively, inserting synchronization into push and dup

would also suffice.) Our algorithm also infers the most pre-
cise atomicity for each unannotated method. For exam-
ple, the method add is assigned the conditional atomicity

“this?mover:atomic”, which states that if the lock this is
already held, then add is a mover (that is, its execution com-
mutes with steps of concurrent threads); if this is not held,
then add is atomic (that is, it can be assumed to execute
in a serial manner, without interleaved steps of concurrent
threads).

Our analysis works in four phases.

1. The first phase encloses each program statement e in

2

Figure 1: Class Stack and Inferred Locking Annota-
tions

class Elem〈ghost x〉 {
int num guarded by x;

Elem〈x〉 next guarded by x;

}

class List {
Elem〈this〉 elems guarded by this;

void add(int v) {
this.elems = new Elem〈this〉(v,this.elems);

}

int removeFirst() {
sync(this) {

let int x = this.elems.num in {
this.elems = this.elems.next;
return x;

}
}

}
}

class Stack {
final List data;

atomic void push(int x) {
this.data.add(x);

}

atomic int dup() {
let int x = this.data.removeFirst() in {

this.data.add(x);
this.data.add(x);

}
}

}

the tagged synchronization operations:

sync?t1 (l1) { . . . { sync?tn (ln) { e } } . . . }

where l1, . . . , ln are all candidate locks in scope, and
the ti are tags that uniquely identify each inserted syn-
chronization operation. The candidate locks for e are
all expressions up to a certain fixed size that are valid
constant expressions in the static scope of e. This
phase also inserts atomicity variables αi for methods
without declared atomicities, such as add, producing
the program shown in Figure 2(a).

The goal of our analysis is then to determine a set T

of tags denoting which of these tagged synchroniza-
tion operations are necessary and sufficient to yield a
correctly synchronized program. As part of its reason-
ing, the analysis also needs to infer an assignment A

mapping atomicity variables αi to atomicities.

2. The second phase of the analysis translates the pro-
gram with tagged synchronization operations (as in
Figure 2(a)) into a collection of constraints C̄ over the
tag set T and assignment A.

3. The third phase solves these constraints using an it-
erative least fixed point algorithm, to yield the pro-
gram of Figure 2(a) with the grayed-out synchroniza-
tion operations removed. This program is correctly

synchronized, but still contains some unnecessary syn-
chronization operations.

4. The fourth phase then identifies and removes these re-
dundant synchronization operations, yielding the final
program of Figure 2(b).

This constraint-based approach extends our earlier work on
detecting synchronization errors [12], but for synchroniza-
tion correction the addition of tagged synchronization op-
erations requires an extended constraint language and new
constraint solving algorithms.

The presentation of our results proceeds as follows. Sec-
tion 3 describes the idealized Java subset that we used to
formalize our analysis. Section 4 presents our constraint
language. Section 5 describes how to generate constraints,
which are then solved by the algorithm of Section 6. This
solution is then optimized in Section 7. Our implementation
and experiments are described in Section 8 and Section 9.
Section 10 discusses related work, and Section 11 concludes.

3. THE SOURCE LANGUAGE AJC

We formalize our ideas in terms of the idealized language
AJC (Atomic Java with Correction), whose syntax is sum-
marized in Figure 3. For simplicity, the idealized language
AJC does not support subclassing, although it is supported
in our implementation [12].

As in Java, each field declaration includes the name and
type of the field. Additionally, in AJC, each field also has
an associated guard g, which states that the field is either
(1) final, (2) unguarded, or (3) guarded by some lock l,
which must be held at each access (i.e., read or write) to
that field. Sometimes the fields of a class need to be pro-
tected by a lock external to the class. For this purpose, each
AJC class declaration includes a binding for a sequence of
ghost variables denoting locks that can be used to protect
fields of the class. Ghost variables are only used during type
checking and do not exist at run time. A class type cn〈l∗〉
includes a class name cn and an appropriate number of lock
parameters for that class. The Rcc/Sat type inference algo-
rithm can infer appropriate guards and lock parameters for
unannotated programs [11].

A method declaration can also include a number of ghost
variable bindings, for which corresponding lock expressions
must be provided at call sites. Each method declaration
also includes an atomicity specification s, such as atomic or
this?mover:atomic, as described in Section 4.4.

AJC expressions include object allocation, field access and
update, method invocation, variable binding and reference,
conditionals, and while loops. Object allocation newy c(e∗)
includes a sequence of expressions used to initialize the ob-
ject fields. For technical reasons, the new keyword is sub-
scripted by y, which is a ghost variable bound to the object
being created while evaluating the field initialization expres-
sions. This enables the types of the initialization expressions
to refer to the new object. We omit the binding from exam-
ples when it is not needed.

The language supports multiple threads of control via the
construct e.fork. Here, e should evaluate to an object with
a nullary run method, which is called by a newly-spawned
thread.

Synchronization between threads is achieved via the con-
struct sync l e, which executes by first evaluating l to yield

3

Figure 3: AJC Syntax

P ::= defn∗ e (program)
defn ::= class cn〈ghost x∗〉 body (class decl.)
body ::= { field∗ meth∗ } (class body)
field ::= c fn g (field decl.)

g ::= final | guarded by l
| unguarded (field guards)

meth ::= s c mn〈ghost x∗〉(arg∗) { e } (method decl.)
arg ::= c x (arg. decl.)

c ::= cn〈l∗〉 (class type)
l ::= e (lock expr.)

e ::= x | null | newy c(e∗) (expressions)
| e.fd | e.fd = e | e.mn〈l∗〉(e∗)

| let c x = e in e | while e e | if e e e
| sync l e | e.fork | sync?t l e

x , y ∈Var
cn ∈ClassName

mn ∈MethodName

t ∈Tag
fn ∈FieldName

an object reference; the implicit lock associated with that
object is then acquired; the expression e is then evaluated,
and finally the lock is released. AJC also contains a tagged
synchronization construct sync?t l e, where t is a unique tag
identifying that operation.

Although omitted from the formal system for simplicity,
our examples use integers and sequential composition, which
we treat in the expected fashion.

4. ATOMICITY CONSTRAINTS

4.1 Basic Atomicities
Our approach to verifying atomicity is based on classify-

ing expressions according to what actions they may perform,
and in particular how these actions may interact with ac-
tions of concurrent threads. For this purpose, we introduce
the following five basic atomicities:

b ::= const | mover | atomic | cmpd | error

The informal meaning of these basic atomicities is as fol-
lows:

• const expressions do not access any mutable state, and
hence always yield the same result when evaluated in
the same environment. Such expressions may include
calls to const methods, etc.

• mover expressions can access mutable state, but only if
that mutable state is either local to the current thread
or protected by a lock held by the current trend. In
addition, mover expressions cannot acquire or release
locks. Thus, mover expressions commute with actions
of concurrent threads.

• atomic expressions, in addition to accessing thread-
local or protected state, may also acquire and release
locks according to the two-phase locking discipline.
That is, nested synchronization, as in:

sync l1 { . . . sync l2 { . . . } . . . }

is atomic, but the sequential composition of synchro-
nization operations, as in:

sync l1 { . . . } ; sync l2 { . . . }

is not atomic. By Lipton’s theory of reduction [20],
atomic expressions are serializable, and are therefore
amenable to sequential reasoning techniques, which
significantly facilitates subsequent formal and informal
reasoning [14]. Our previous investigation showed that
the vast majority of methods in multithreaded Java
programs are atomic [10, 12].

• cmpd expressions do not follow the two-phase locking
discipline, but which do hold the correct protecting
lock when accessing any guarded field. Such expres-
sions are not necessarily serializable and are therefore
not amenable to sequential reasoning.

• error expressions violate the program’s synchroniza-
tion discipline by accessing a field without holding the
guarding lock. Programs with error expressions do
not type check.

Basic atomicities are ordered by the subatomicity relation
<b:

const <b mover <b atomic <b cmpd <b error

Let ⊔b denote the corresponding join operator for basic
atomicities. Suppose that the basic atomicities b1 and b2

reflect the behavior of e1 and e2 respectively. Then:

• The atomicity b1 ⊔b b2 reflects the non-deterministic
choice between executing either e1 or e2.

• The sequential composition b1; b2 reflects the behavior
of executing e1; e2, and is defined as:

b1; b2 =

cmpd if b1 = b2 = atomic

b1 ⊔b b2 otherwise

• The iterative closure b1
∗ reflects the behavior of exe-

cuting e1 an arbitrary number of times, and is defined
as:

b1
∗ =

cmpd if b1 = atomic

b1 otherwise

Lemma 1. The operations b1 ⊔b b2 and b1; b2 and b1
∗ are

monotonic in both b1 and b2.

4.2 Atomicity Expressions
We follow a constraint-based approach to atomicity infer-

ence and synchronization correction. For each method body,
we generate an atomicity expression d that encodes the vari-
ous operations performed by that method body. The syntax
of atomicity expressions (see Figure 4) includes the following
constructs:

• Basic atomicities.

• Atomicity variables α, which support atomicity infer-
ence.

An assignment maps atomicity variables to closed atom-
icity expressions (that is, to atomicity expressions that
do not contain atomicity variables):

α ∈ AtomVar
A ∈ Assignment = AtomVar → ClosedAtomExp

4

Figure 4: Atomicity Expressions

d ::= b | α | d;;d | d⊔⊔⊔d | d∗ | l ??? d : d (AtomExp)
| S(l, d) | R(t, l, d)
| d· θ | wfa(P, E, d)

θ ::= [~x := ~l] (substitution)

• Sequential composition, join, and iterative closure of
atomicity expressions (which correspond to sequential
composition, branching, and looping operations in the
original code).

• The conditional atomicity l ??? d1 : d2, which is equal
to d1 if the lock l is held, and is equal to d2 otherwise.
For example, the atomicity of an access to a field pro-
tected by lock l is l ??? mover : error, formalizing that
an access to the field has atomicity mover if l is held,
and has atomicity error otherwise.

• The atomicity expression S(l, d) yields the atomicity
for a synchronized expression sync l e, where d is the
atomicity expression for e.

• The construct R(t, l, d) is generated for each tagged
synchronization operation sync?t l e. If the inferred
tag set T includes the tag t, then this synchronization
operation is chosen for insertion, and R(t, l, d) is equiv-
alent to S(l, d). If the inferred tag set does not include
t, then R(t, l, d) is equivalent to d. More formally, the
application of a tag set T to an atomicity expression
is the compatible closure of the following function:

T (R(t, l, d)) =

S(l, d) if t ∈ T

d otherwise

• The delayed substitution operation d· θ is used when
changing scopes, where the substitution θ is a finite
map from variables to lock expressions. For example,
if a method’s atomicity refers to a formal method pa-
rameter, then this formal parameter must be replaced
by the corresponding actual parameter to derive the
correct atomicity for a call to that method.

• The construct wfa(P, E, d) yields the smallest (i.e.,
most precise) atomicity that is at least as large as d

and that only depends on locks that are in scope in the
environment E. This construct is used when d may re-
fer to a variable that is going out of scope, such as at
the end of a let construct.

An atomicity expression is closed if it does not contain
atomicity variables. An atomicity expression is tag-free if it
does not contain the construct R(t, l, d).

4.3 Atomicities
We formalize the meaning of a closed atomicity expression

as a map from the set of lock held by the current thread to
a basic atomicity, and we refer to this map as an atomicity.

L ∈ LockSet = 2Lock

a ∈ Atomicity = LockSet → BasicAtomicity

The function [[·]], defined in Figure 5, maps closed, tag-free
atomicity expressions to atomicities. (For clarity, we write
“[[d]]L = . . . ” to abbreviate “[[d]] = λL. . . . ”).

Figure 5: Atomicity Meaning Function

[[·]] : ClosedAtomExp → Atomicity
[[b]]L = b

[[d1;;d2]]L = [[d1]]L; [[d2]]L
[[d1⊔⊔⊔d2]]L = [[d1]]L ⊔a [[d2]]L

[[d∗]]L = ([[d]]L)∗

[[l ??? d1 : d2]]L =

[[d1]]L if l ∈ L

[[d2]]L otherwise

[[S(l, d)]]L =

8

<

:

[[d]]L if l ∈ L

[[d]]L∪{l} if atomic ⊑a [[d]]L∪{l}

atomic otherwise
[[d· θ]]L = [[d]]L′ where L′ = {x | θ(x) ∈ L}

[[wfa(P, E, d)]]L = (see Section 5)

We order atomicities according to the point-wise exten-
sion ⊑a of the ordering relation ⊑b on basic atomicities,
with corresponding minimal element ⊥a and join operation
⊔a. We also extend the sequential composition and iterative
closure operations to atomicities in a point-wise manner.

a1 ⊑a a2 iff ∀L ⊆ Lock . (a1(L) ⊑b a2(L))

⊥a
def
= λL. const

a1 ⊔a a2
def
= λL. (a1(L) ⊔b a2(L))

a∗ def
= λL. (a(L))∗

a1; a2
def
= λL. (a1(L); a2(L))

We order assignments according to the point-wise exten-
sion ⊑A of the ordering relation ⊑a on atomicities, with
corresponding minimal element ⊥A and join operation ⊔A:

A1 ⊑A A2 iff ∀α. ([[A1(α)]] ⊑a [[A2(α)]])

A1 =A A2 iff ∀α. ([[A1(α)]] = [[A2(α)]])

⊥A
def
= λα. const

A1 ⊔A A2
def
= λα. (A1(α)⊔⊔⊔A2(α))

We extend assignments in a compatible manner to be maps
from atomicity expressions to atomicity expressions. Given
an A and a tag-free atomicity expression d, the atomicity
expression A(d) is then closed and tag-free, and its meaning
is the atomicity [[A(d)]]. Furthermore, this meaning function
is monotonic in A (a necessary prerequisite for performing
our least fixpoint analysis).

Lemma 2 (Monotonicity). For all tag-free atomicity
expressions d, the function λA. [[A(d)]] is monotonic.

Proof. By induction on the structure of d.

4.4 Atomicity Constraints
A syntactic atomicity s is either an atomicity variable or

a closed, tag-free atomicity expression. Each method dec-
laration includes a corresponding syntactic atomicity. For
example, a programmer could specify a precise atomicity
for a method, such as atomic. More commonly, the pro-
grammer might omit this specification, in which case the
type checker uses a fresh atomicity variable as the method’s
declared atomicity.

Given a program P , for each method with declared atom-
icity s and method body e, we generate an atomicity ex-
pression d for the method body e (as described in the fol-
lowing section) and produce the constraint d ⊑⊑⊑ s. Thus, a

5

constraint is a subatomicity relation between an atomicity
expression and a syntactic atomicity. An assignment A sat-
isfies a constraint d ⊑⊑⊑ s with respect to a tag set T (written
A; T |= C) if

[[A(T (d))]] ⊑a [[A(s)]]

Generating a constraint for each method yields a con-
straint set C̄ for the entire program. The assignment A

satisfies a set C̄ with respect to T (written A; T |= C̄) if A

satisfies each constraint in C̄. Thus, our goal is to find an
assignment A and a tag set T such that A satisfies C̄ with
respect to T . The tag set T then specifies which tagged
synchronization operations need to be inserted into the pro-
gram in order to yield a corrected program that satisfies the
desired atomicity specifications.

Since the type checker introduces a fresh atomicity vari-
able for each unannotated method, each atomicity variable
α annotates exactly one method, and so α has a unique lower
bound d such that the constraint d ⊑⊑⊑ α occurs in C̄. We use
the notation C̄(α) to refer to this lower bound d. We refer to
such constraints with a variable as an upper bound as propa-
gation constraints, and we refer to all other constraints (with
a closed atomicity expression as upper bound) as checking
constraints.

5. PHASE 2: CONSTRAINT GENERATION
We express the algorithm for converting a program with

previously-inserted tagged synchronization operations into
a collection of constraints C̄ as a set of rules for reasoning
about the judgment:

P ; E ⊢ e : c · d · C̄

Here, c is the type inferred for the expression e; d is the
atomicity expression generated for e; and C̄ is the set of
constraints generated from this expression. The program P

is included to provide access to class declarations, and E

is an environment providing types for the free program and
ghost variables of the expression e:

E ::= ǫ | E , c x | E , ghost x

The complete set of type judgments and rules is contained
in Figure 6. We briefly describe some of the more important
rules.

[lock exp] The judgment P ; E ⊢lock l : C̄ checks that l is
a well-formed lock expression in environment E. The lock
expression l can be either a ghost variable or a program
expression e. In the latter case, e must denote a fixed
lock throughout the execution of the program to ensure
soundness. Thus, we require that e has atomicity const.

In addition, we require the size |e| of the lock expression
to be bounded by the constant MaxLockSize . This require-
ment ensures that there is only a finite number of valid lock
expressions at any program point, which in turn bounds
the size of conditional atomicities and number of possible
tagged synchronization statements. This ensures termina-
tion of our correction algorithm.

[exp var] A variable access has const atomicity, since all
variables are immutable in AJC.

[exp if] The atomicity of a conditional expression is the atom-
icity of the test subexpression, sequentially composed with
the join of the atomicities of the then and else branches.

[exp let] This rule for let x = e1 in e2 infers atomicity ex-
pressions d1 and d2 for e1 and e2, respectively. Since the
atomicity expression d2 may refer to the let-bound vari-
able x, we apply the substitution θ = [x := e1] to yield a
corresponding atomicity that does not mention x. Several
complications arise here.

First, since d2 may include an atomicity variable α, we
cannot apply the substitution θ immediately because α may
later resolve to x. Instead, we use the delayed substitution
form d2· θ to delay this substitution until after atomicity
variables are resolved.

Second, e1 may not be const (in general, we cannot de-
termine which expressions are const until after type in-
ference), in which case d2· θ may not be a valid atomic-
ity. Therefore, we use the well-formed atomicity construct
wfa(P, E, d2· θ) to yield a valid atomicity for e2 that is well-
formed in environment E. The meaning of this construct
is defined via:

[[wfa(P, E, d)]]L = [[d]]L′

where L′ =

l ∈ L

˛

˛

˛

˛

P ; E ⊢lock l : C̄

and ⊥A; ∅ |= C̄

ff

As described above, the judgment P ;E ⊢lock l checks that
l is a well-formed lock expression in an environment E and
program P provided the constraints C̄ holds. Since the
meaning function [[·]]L is defined only on closed, tag-free
atomicity expressions, C̄ will also be closed and tag-free,
and so we check that is satisfiable via ⊥A; ∅ |= C̄. Thus, L′

contains only locks that are held and that are valid in the
environment E, and d is evaluated in the context of these
held and valid locks.

[exp ref] The rule for a field access e.fn first checks that e

is of some type cn〈l1..n〉, and that cn is a class parame-
terized by n ghost variables, say x1..n, that declares a field
fn of some type t. The type t may refer to the variables
this and x1..n in scope at the field declaration. Since these
variables are not in scope at the field access, the type rule
introduces a substitution θ that replaces them with the cor-
responding expressions e and l1..n, and ensures that θ(t) is
a well-formed type.

The [exp ref] rule performs a case analysis on the field’s
guard. If the field is final, then the read operation has
atomicity const, since there can be no concurrent writes.
If the field is unguarded, then the read operation is atomic,
since it may not commute with concurrent writes. If the
field is guarded by l, then the lock θ(l) must be held and
the read operation is a mover.

[exp sync] The rule for the synchronized statement sync l e

checks that l has atomicity const, and so always denotes
the same lock. The rule then yields the atomicity expres-
sion S(l, d), where d is the atomicity of e. The meaning
[[S(l, d)]]L of this atomicity expression is either (1) [[d]]L, if
the lock is already held; (2) [[d]]L∪{l}, if d is non-atomic; or
(3) atomic otherwise.

[exp sync-opt] The rule for the tagged synchronized state-
ment sync?t l e is similar, and yields the atomicity expres-
sion R(t, l, d), which either behaves like S(l, d) or d, de-
pending on whether this synchronization statement is en-
abled or disabled by the tag set T .

6

Figure 6: AJC Constraint Generation Rules

P ;E ⊢ e : c · d · C̄

[exp null]
P ;E ⊢ c : C̄

P ;E ⊢ null : c · const · C̄

[exp var]
P ⊢ E : C̄

E = E1, c x , E2

P ;E ⊢ x : c · const · C̄

[exp sync]
P ;E ⊢ l : cl · dl · C̄
P ;E ⊢ e : c · d · C̄′

C̄′′ = C̄ ∪ C̄′ ∪ {dl ⊑⊑⊑ const}

P ;E ⊢ sync l e : c · S(l, d) · C̄′′

[exp sync-opt]
P ;E ⊢ l : cl · dl · C̄
P ;E ⊢ e : c · d · C̄′

C̄′′ = C̄ ∪ C̄′ ∪ {dl ⊑⊑⊑ const}

P ;E ⊢ sync?t l e : c · R(t, l, d) · C̄′′

[exp ref]
P ;E ⊢ e : cn〈l1..n〉 · d′ · C̄

class cn〈ghost x1..n〉 {. . . c fn g . . .} ∈ P

θ = [this := e, xj := lj
j∈1..n]

P ;E ⊢ θ(c) : C̄′

(g ≡ guarded by l) ⇒ (d = θ(l)??? mover : error)
(g ≡ final) ⇒ (d = const)

(g ≡ unguarded) ⇒ (d = atomic)

P ;E ⊢ e.fn : θ(c) · (d′;;wfa(P, E, d)) · (C̄ ∪ C̄′)

[exp assign]
P ;E ⊢ e1 : cn〈l1..n〉 · d1 · C̄1

class cn〈ghost x1..n〉{. . . c fn g . . .} ∈ P

θ = [this := e1, xj := lj
j∈1..n]

P ;E ⊢ e2 : θ(c) · d2 · C̄2

(g ≡ guarded by l) ⇒ (d = θ(l)??? mover : error)
(g ≡ final) ⇒ (d = error)

(g ≡ unguarded) ⇒ (d = atomic)

P ;E ⊢ (e1.fn = e2) : θ(c) · (d1;;d2;;wfa(P, E, d)) · (C̄1 ∪ C̄2)

[exp new]
θ = [xj := lj

j∈1..n, this := y]
P ;E, ghost y ⊢ ei : θ(ci) · di · C̄i ∀i ∈ 1..k

class cn〈ghost x1..n〉 { field1..k meth1..m } ∈ P
fieldi = ci fni gi ∀i ∈ 1..k

P ;E ⊢ cn〈l1..n〉 : C̄′

C̄′′ = C̄1..k ∪ C̄′

P ;E ⊢ newy cn〈l1..n〉(e1..k) : cn〈l1..n〉 · (d1;;· · ·;;dk) · C̄′′

[exp invoke]
P ;E ⊢ e : cn〈l1..n〉 · d · C̄

class cn〈ghost x1..n〉 {. . .meth . . .} ∈ P

meth = s c mn〈ghost y1..k〉(cj z
j∈1..r

j) { e′ }

θ = [this := e, xi := li
i∈1..n, yi := l ′i

i∈1..k, zi := ei
i∈1..r]

P ;E ⊢ ej : θ(cj) · dj · C̄j ∀j ∈ 1..r

P ;E ⊢ θ(t) : C̄′

P ;E ⊢lock l′i : C̄′
i ∀i ∈ 1..k

d′ = (d;;d1;;· · ·;;dr;;wfa(P, E, s·θ)))

P ;E ⊢ e.mn〈l ′1..k〉(e1..r) : θ(c) · d′ · (C̄ ∪ C̄1..r ∪ C̄′ ∪ C̄′
1..k

)

[exp while]
P ;E ⊢ ei : ci · di · C̄i for i = 1, 2

d = d1;;((d2;;d1)∗)

P ;E ⊢ while e1 e2 : c2 · d · (C̄1 ∪ C̄2)

[exp if]
P ;E ⊢ e1 : c1 · d1 · C̄1

P ;E ⊢ ei : c · di · C̄i for i = 2..3
d = d1;;(d2⊔⊔⊔d3)

C̄′ = (C̄1 ∪ C̄2 ∪ C̄3)

P ;E ⊢ if e1 e2 e3 : c · d · C̄′

[exp fork]
P ;E ⊢ e : cn〈l1..n〉 · d · C̄

class cn〈ghost x1..n〉 {. . .meth . . .} ∈ P
meth = s c′ run〈ghost tll〉() { e′ }

P ;E ⊢ c : C̄′

C′′ = C̄ ∪ C̄′ ∪ {s ⊑⊑⊑ (tll??? cmpd : error)}
P ;E ⊢ e.fork : c · (d;;atomic) · C′′

[exp let]
P ;E ⊢ e1 : c1 · d1 · C̄1

P ;E, t1 x ⊢ e2 : c2 · d2 · C̄2

θ = [x := e1]
P ;E ⊢ θ(c2) : C̄3

d = (d1;;wfa(P, E, d2· θ))

P ;E ⊢ let c1 x = e1 in e2 : θ(c2) · d · (C̄1 ∪ C̄2 ∪ C̄3)

P ⊢ defn : C̄

[class]
garg i = ghost xi

E = garg1..n, cn〈x1..n〉 this
P ;E ⊢ fieldi : C̄i ∀i ∈ 1..j

P ;E ⊢ methi : C̄′
i ∀i ∈ 1..k

P ⊢ class cn〈ghost x1..n〉 { field1..j meth1..k} : (C̄1..j ∪ C̄′
1..k

)

P ;E ⊢lock e : C̄

[lock exp]
P ;E ⊢ e : c · d · C̄ |e| ≤ MaxLockSize

P ;E ⊢lock e : (C̄ ∪ {d ⊑⊑⊑ const})

[lock ghost]
P ⊢ E : C̄ E = E1, ghost x, E2

P ;E ⊢lock x : C̄

P ;E ⊢ t : C̄

[type c]
P ⊢ E : C̄

class cn〈ghost x1..n〉 . . . ∈ P

P ;E ⊢lock li : C̄i ∀i ∈ 1..n

P ;E ⊢ cn〈l1..n〉 : (C̄ ∪ C̄1..n)

P ⊢ E : C̄

[env empty]

P ⊢ ǫ : ∅

[env x]
P ;E ⊢ c : C̄ x 6∈ Dom(E)

P ⊢ (E, c x) : C̄

[env ghost]
P ⊢ E : C̄ x 6∈ Dom(E)

P ⊢ (E, ghost x) : C̄

P ;E ⊢ field : C̄

[field]
P ;E ⊢ c : C̄1

(g ≡ guarded by l) ⇒ P ;E ⊢lock l : C̄2

(g ≡ final) ⇒ C̄2 = ∅
(g ≡ unguarded) ⇒ C̄2 = ∅

P ;E ⊢ c fn g : (C̄1 ∪ C̄2)

P ;E ⊢ meth : C̄

[method]
meth = s c mn〈ghost x1..n〉(arg1..d) { e }

gargi = ghost xi ∀i ∈ 1..n
E′ = E, garg1..n, arg1..d

P ;E′ ⊢ e : c · d · C̄

P ;E ⊢ meth : (C̄ ∪ {d ⊑⊑⊑ s})

P ⊢ C̄

[prog]
ClassOnce(P) FieldsOnce(P)

MethodsOnce(P)
P = defn1..n e

P ⊢ defni : C̄i ∀i ∈ 1..n

P ; ǫ ⊢ e : c · d · C̄

P ⊢ C̄1..n ∪ C̄ ∪ {d ⊑⊑⊑ cmpd}

7

Figure 7: Constraints for Stack Program

R(t1, this, (const;;(const;;(const;;wfa(P, E1, this??? mover : error)));;wfa(P, E1, this??? mover : error))) ⊑⊑⊑ α1

R(t2, this,S(this,R(t3, this, const;;wfa(P, E2, this??? mover : error);;wfa(P, E2, this??? mover : error);;
wfa(P, E2, (R(t4, this,R(t5, this, const;;const;;wfa(P, E3, this??? mover : error);;

wfa(P, E3, this??? mover : error);;
wfa(P, E3, this??? mover : error));;

R(t6, this, const))·θ1))))) ⊑⊑⊑ α2

R(t7, this,R(t8, this.data, (const;;const);;const;;wfa(P, E4, α1· θ2))) ⊑⊑⊑ atomic
R(t9, this,R(t10, this.data, (const;;const;;wfa(P, E5, α2· θ3));;

wfa(P, E5,R(t11, this,R(t12, this.data,
(R(t13, this,R(t14, this.data, (const;;const);;const;;wfa(P, E6, α1·θ2)));;
R(t15, this,R(t16, this.data, (const;;const);;const;;wfa(P, E6, α1·θ2))))))·θ4))) ⊑⊑⊑ atomic

E1 = List this, int v
E2 = List this
E3 = List this, int x

E4 = Stack this, int v
E5 = Stack this
E6 = Stack this, int x

θ1 = [x := this.elems.num]
θ2 = [this := this.data, v := x]
θ3 = [this := this.data]
θ4 = [x := this.data.removeFirst()]

[exp fork] This rule for e.fork ensures that e contains a run

method with the signature:

s c
′
run〈ghost tll〉() { . . . }

This signature contains a special ghost parameter named
tll. This lock is held throughout the entire lifetime of
the new thread, and so may be used to protect data local
to this thread. A run method need not be atomic, but if
tll is held when run is invoked, the method should not
violate the locking discipline. Thus, we have the constraint
s ⊑⊑⊑ (tll??? cmpd : error).

[prog] This rule defines the top-level judgment P ⊢ C̄, where
C̄ is the generated set of constraints for the program P .
This rule uses three predicates defined as follows. (See [15]
for their precise definition.)

• ClassOnce(P): no class is declared twice in P .

• FieldsOnce(P): no field name is declared twice in a
class.

• MethodsOnce(P): no method name is declared twice
in a class.

The constraints for our example program are shown in
Figure 7. (For simplicity, we omit several trivial check-
ing constraints.) The first constraint is generated for the
method add. The various const atomicities in that con-
straint correspond to variable accesses; the two conditional
atomicities this??? mover : error correspond to the access and
update of this.elems, which is guarded by this; the enclos-
ing R(t1, this, . . .) corresponds to the tagged synchroniza-
tion construct sync?t1 (this) ...; and the upper bound
α1 is the atomicity specification for add. The third con-
straint is for push, and includes a reference to the atomicity
specification α1 of the callee add, with a substitution θ2 that
maps formal to actual parameters for this call site. The re-
maining constraints are similar, although more verbose.

6. PHASE 3: CONSTRAINT SOLVING
Having generated a constraint set C̄ over the tags and

atomicity variables in the program, the next step is to solve
these constraints. If the program does not contain any
tagged synchronization operations, then the generated con-
straints are tag-free, and our earlier work presents an algo-
rithm for solving such constraints [12]. In this paper, we

now tackle the harder problem of solving a constraint set C̄

in the case where some constraints may include the tagged
synchronization construct R(t, l, d), which corresponds to
an automatically-inserted tagged synchronization operation
sync?t l e in the source program.

The behavior of these tagged synchronization constructs
depends on the chosen tag set T . If t ∈ T , then a real syn-
chronization operation is inserted into the original program
at this point, and R(t, l, d) behaves exactly like S(l, d). If
t 6∈ T , then this potential synchronization point is ignored,
and R(t, l, d) behave like d.

We wish to find a suitable choice of tag set T and as-
signment A such that A; T |= C̄. We use an iterative least
fixed point algorithm to compute the minimal assignment A

that satisfies C̄, but this assignment will of course depend
on the chosen tag set. Hence, on each iteration of the algo-
rithm, we choose the tag set that yields the smallest possible
assignment for use in the next iteration.

Choosing a tag set in this manner is possible if atomicity
expressions are well-formed. An atomicity expression d is
well-formed if (1) each tag occurs at most once in d, and (2)
whenever d contains a conditional atomicity l ??? d1 : d2 then

1. [[d1]] ⊑ [[d2]],

2. atomic ⊑ [[d2]], and

3. d1 and d2 mention the same lock expressions and atom-
icity variables.

The first and second requirements provide a necessary
monotonicity property for our optimization algorithm, namely
that the atomicity of sync l e must be smaller than the
atomicity of e (i.e., removing a synchronized statement can-
not make an expression’s atomicity become smaller). To
motivate the second requirement, suppose e has atomic-
ity l ? const : mover. The atomicity of sync l e would be
the larger atomicity l ? const : atomic, and the monotonic-
ity property would not hold. The third property exists for
similar, but more subtle reasons.

The constraint generation rules only generate well-formed
atomicity expressions, and well-formedness is preserved by
the various operations we perform on atomicity expressions.

The function min(d), defined in Figure 8 returns a tag
set T that minimizes [[d]], where d is a closed, well-formed
atomicity expression.

8

Figure 8: Tag Minimization Function

min : ClosedAtomExpr → 2Tag

min(b) = ∅
min(d1;;d2) = min(d1) ∪ min(d2)

min(d1⊔⊔⊔d2) = min(d1) ∪ min(d2)
min(d∗) = min(d)

min(l ??? d1 : d2) = min(d1) ∪ min(d2)
min(d· θ) = min(d)

min(S(l, d)) = min(d)
min(wfa(P, E, d)) = min(d)

min(R(t, l, d)) =

T ∪ {t} if [[T (d)]] depends on l

T otherwise
where T = min(d)

Lemma 3. Suppose that d is closed and well-formed, and
let T = min(d). Then T only contains tags that occur in d,
and for all T ′, [[T (d)]] ⊑a [[T ′(d)]].

Proof. By structural induction on d.

The following function fC̄ describes each iteration of our
algorithm. For each variable α, the function fC̄(A) com-
putes the closed atomicity expression d = A(C̄(α)), com-
putes the tag set T that minimizes d, and then returns this
minimal atomicity [[T (d)]]:

fC̄ : Assignment → Assignment
fC̄(A) = λα. [[T (d)]], where d = A(C̄(α)) and T = min(d)

Suppose A is the least fixpoint of fC̄ , that is, A = fix(fC̄ ,⊥A),
where we define the fixpoint operator to terminate once it
reaches assignments that are semantically equivalent with
respect to =A:

fix (F, X)
def
= if X =A F (X) then X else fix(F, F (X))

The tag set T defined by

T = ∪ {min(A(d)) | (d ⊑⊑⊑ s) ∈ C̄}

minimizes all atomicity expressions in C̄. Now consider any
propagation constraint d ⊑⊑⊑ α in C̄. We have that

A(α) = fC̄(A)(α) = [[T (A(C̄(α)))]] = [[T (A(d))]]

and so A; T |= d ⊑⊑⊑ α. Thus, A satisfies all propagation
constraints in C̄ with respect to T , and it simply remains to
check if A also satisfies the checking constraints in C̄. The
following function solve performs this analysis:

solve(C̄) =

8

>

>

<

>

>

:

〈A, T 〉 if A = fix (fC̄ ,⊥A) and A;T |= C̄

and T = ∪{min(A(d)) | (d ⊑⊑⊑ s) ∈ C̄}

undef otherwise

Lemma 4.

1. If solve(C̄) = undef then C̄ is unsatisfiable.

2. If solve(C̄) = 〈A, T 〉 then A; T |= C̄.

Proving that the solve algorithm terminates is non-trivial,
because delayed substitutions could lead to arbitrarily large
lock expressions and infinite ascending chains of atomicities
and assignments. We bound the size of lock expressions to
exclude this possibility. A lock expression l is bounded if |l| <

MaxLockSize . Similarly, an atomicity is bounded if it only
contains bounded lock expressions, and an assignment is
bounded if it only yields bounded atomicities. An atomicity
expression or constraint is bounded if it is only conditional
on bounded lock expressions, and every delayed substitution
occurs inside the construct wfa(P, E, ·). The solve algorithm
terminates on the bounded constraint systems produced by
the constraint generation rules.

Theorem 5 (Termination). The constraint solving al-
gorithm terminates on bounded constraint systems.

Proof. See [12].

The algorithm computes the following solution for our
Stack example:

A(α1) = A(α2) = this??? mover : atomic
T = {t1, t2, t3, t4, t5, t8, t10, t12, t14, t16}

In particular, the algorithm concludes that the tagged syn-
chronization operations t6, t7, t9, t11, t13, and t15 do not
decrease the atomicity of their containing methods, and so
do not contribute to yielding a correctly-synchronized pro-
gram. These omitted tagged synchronization operations are
grayed-out in Figure 2(a). The remaining tagged synchro-
nization operations in T yield a correctly synchronized pro-
gram, but incur an unnecessarily-large synchronization over-
head, since many of them are redundant. The next section
describes how to eliminate the redundant operations.

7. PHASE 4: SYNCHRONIZATION OPTI-
MIZATION

Having computed a tag set T and assignment A such that
〈A, T 〉 = solve(C̄), it remains to relax the synchronization
(by reducing T) while preserving the satisfiability of the con-
straints. For this purpose, we use a greedy algorithm, where
the tags T are ordered by some heuristic into a worklist Z

and are iteratively removed:

Figure 9: Phase 4 (version 1)

Z := T ;
foreach z ∈ Z do

T ′ := T \ {z};
if T ′(C̄) is satisfiable then T := T ′;

end foreach

The correctness of this basic algorithm is fairly straight-
forward to verify. However, the algorithm performs a lot
of redundant computation in checking the satisfiability of C̄

for various tag sets. As a first step towards optimizing this
algorithm, we inline some of the operations being performed
by this routine:

Figure 10: Phase 4 (version 2)

Z := T ;
foreach z ∈ Z do

T ′ := T \ {z};
D̄ := T ′(C̄);
A′ := fix (fD̄,⊥A);
if ∀(d ⊑⊑⊑ s) ∈ D̄. [[A′(d)]] ⊑a [[s]] then T := T ′;

end foreach

It is now clear that the main performance overhead is in
the repeated iterative fixpoint computation of fix (fD̄,⊥A),

9

which always begins with the least assignment ⊥A. How-
ever, there is a key monotonicity property that we can ex-
ploit. By maintaining an assignment A such that A =
fix (fT (C̄),⊥A), we can more efficiently compute fix(fT ′(C̄),⊥A),

where T ′ ⊆ T , by starting from the current assignment
A rather than the minimal assignment ⊥A. The following
lemma ensures the correctness of this optimization.

Lemma 6. Suppose

〈A0, T0〉 = solve(C̄) T ′ = T \ {z}
A0 ⊑A A A = fix (fT (C̄),⊥A)
T ⊆ T0 D̄ = T ′(C̄)

Then A ⊑A fix(fD̄,⊥A) and hence fix (fD̄,⊥A) =A fix(fD̄, A).

Our optimized algorithm is then:

Figure 11: Phase 4 (version 3)

Z := T ;
foreach z ∈ Z do

// invariant: A = fix(fT (C̄),⊥A);
T ′ := T \ {z};
D̄ := T ′(C̄);
A′ := fix(fD̄, A);
if ∀(d ⊑⊑⊑ a) ∈ D̄. [[A′(d)]] ⊑a [[a]] then

A := A′; T := T ′;
end if

end foreach

This algorithm computes the following assignment and tag
set for the Stack program.

A(α1) = A(α2) = this??? mover : atomic
T = {t1, t10}

All redundant synchronization operations are now elimi-
nated, and Figure 2(b) shows the code with the two syn-
chronization operations that fix the program. Different or-
derings for the work list may yield different results. For
example, the following is also a solution:

A(α1) = this??? mover : error
A(α2) = this??? mover : atomic

T = {t8, t10}

One interesting aspect of this algorithm is that we can order
the work list to achieve specific effects. Trying to remove
tags for outermost synchronization statements first may help
reduce the size of critical sections, whereas removing tags
for innermost statements first may improve performance by
reducing the number of synchronization operations.

8. IMPLEMENTATION
We have implemented synchronization correction in Bohr ,

our tool for detecting and correcting errors in Java pro-
grams [12]. Bohr takes as input source code that may
optionally contain atomicity specifications in stylized com-
ments starting with “#”, as in “/*# mover */”. Bohr runs
in two phases. The first phase uses the Rcc/Sat tool to infer
appropriate guards for each field and appropriate formal and
actual ghost parameters for class and method declarations
and uses.

Rcc/Sat is somewhat resilient to errors and will infer the
most likely synchronization information, even if a small num-
ber of race conditions do exist. In such cases, the origi-
nal Rcc/Sat tool [11] would report potential race conditions
in places where the inferred annotations are not satisfied.
These warnings are not reported by Bohr , unless the race
conditions also lead to atomicity violations.

If a program contains many synchronization errors, Rcc/Sat
will not be able to infer reasonable protecting locks for fields,
resulting in a significant number of methods becoming non-
atomic. These atomicity warnings may not be fixable by
Bohr , because it will not know which locks to acquire to
provide safe access to fields lacking guarded by annotations.
However, this situation often indicates that more fundamen-
tal flaws exist in the code that may require design changes or
restructuring to fix. The exact point at which Rcc/Sat fails
to provide the necessary annotations is somewhat dependent
on how the tool is configured. For more details on Rcc/Sat ,
we refer the interested reader to our earlier paper [11].

Our present work is included in the second phase of Bohr ,
which computes any unspecified atomicities and inserts syn-
chronization operations to correct these errors. Bohr out-
puts a fully annotated version of the source code, includ-
ing any synchronization statements necessary to satisfy the
specified atomicity requirements. If errors cannot be fixed
by our algorithm, the checker prints warning messages for
each atomicity violation identified.

9. EVALUATION
We applied Bohr to three standard Java 1.4.2 library

classes to validate its effectiveness at fixing defects. These
three classes are designed to be thread-safe, meaning that
all public methods should be atomic. The following table
summarizes the results of running Bohr with and without
synchronization correction:

Atomicity Warnings
Class Lines No Correction With Correction

String 2,307 1 0
StringBuffer 1,276 1 0
Vector 3,546 3 0

The “Lines” column includes the size of the class of inter-
est and all superclasses. We annotated all referenced li-
brary classes with appropriate atomicities. For simplicity,
we assumed that all subclasses of Collection are internally
synchronized in these experiments. No fundamental prob-
lems arise are preventing both internally and externally-
synchronized subclasses of a single class, but the analysis
becomes more complex [12].

Bohr successfully corrected for the warnings reported in
our previous work [12]. The StringBuffer and Vector warn-
ings are real defects. The String warning is caused by be-
nign races and is spurious, although Bohr did add synchro-
nization to remove the races. Bohr ’s correction to StringBuffer

did introduce a potential deadlock, but this cannot be avoided
without restructuring the class. No other potential dead-
locks were introduced during these experiments, or those
reported below.

To further assess the effectiveness of Bohr , we performed
an experiment on Java 1.4.2 library classes in which we
added atomicity specifications, randomly removed a small

10

number of synchronization operations, and measured how
many operations Bohr would correctly reinsert. Specifically,
we randomly selected and removed one, two, or five synchro-
nization operations and then counted the number of defects
that Bohr identified and fixed, either by reinserting the re-
moved synchronization statements or, in some cases, insert-
ing different but operationally equivalent synchronization.
We verified these results by manual inspection of the Bohr
output.

We repeated each scenario 15 times, and the following ta-
ble summarizes the percentage of inserted defects that were,
on average, identified and fixed for each configuration:

Correction Rate per
Class Lines Time Number of Defects

(sec) 1 2 5

Observable 198 0.73 100% 100% 100%
Inflater 319 0.60 100% 97% 91%
Deflater 384 0.90 100% 95% 88%
Zipfile 498 25.0 100% 100% 90%
StringBuffer 1,276 41.8 100% 88% 49%
String 2,307 26.2 100% 100% —
Vector 3,456 49.6 100% 100% 85%
SynchronizedList 3,837 13.8 94% 85% 85%

No result is reported for String with five defects since that
class has fewer than five synchronization operations. Bohr
performed well when a small number of defects were intro-
duced. For the larger numbers of defects, the precision de-
clined because Rcc/Sat did not always infer the appropriate
locking discipline, due to the large number of data races in-
troduced on specific object fields. Rcc/Sat can be adjusted
to withstand a higher number but, as mentioned above, the
mere fact that a large number of races exists often indi-
cates a fundamental problem with the design of the code (as
opposed to more local programming errors). Interestingly,
Bohr determined that several synchronization operations in
these classes are redundant and unnecessary.

Results from applying Bohr to small, complete programs
are similarly promising. The application of our current im-
plementation to significantly larger programs is limited by
the lack of precise atomicity specifications for libraries, and
by incomplete support in our current implementation for
some synchronization idioms such as protecting locks [12].

10. RELATED WORK
Since an atomicity annotation describes aspects of the be-

havior or effect of an expression, we are essentially perform-
ing a form of effect reconstruction [27, 26]. Our work dif-
fers from most of the work on effect systems and dependent
types [6] by investigating automated techniques for correct-
ing errors. Sasturkar et al [22] have also developed a type
inference algorithm for atomicity. Unlike Bohr , their system
includes a notion of object ownership [4] and uses a dynamic
analysis to infer race condition information. They have not
explored synchronization correction.

Lipton [20] first proposed reduction as a way to reason
about deadlocks without considering all possible interleav-
ings. Partial-order reduction techniques are based on similar
ideas [16]. Several papers have used Lipton’s theory of re-
duction to improve the efficiency of model checking [5, 25,
13].

The use of model checking for verifying atomicity is be-
ing explored by Hatcliff et al [19]. This model checking
approach is more expressive than our type-based analysis,
but it is vulnerable to state-space explosion. Their results
suggest that verifying atomicity via model-checking is fea-
sible for unit-testing. A more general (but more expensive)
technique for verifying atomicity during model checking is
commit-atomicity [8]. Several tools have explored verifying
atomicity dynamically [10, 31], but these tools are sensitive
to test case coverage.

View consistency is a another approach to preventing threads
interference [2, 30]. A view is the set of variables accessed
within a synchronized block. Thread A is view consistent
with B if all views from the execution of A, intersected with
the maximal view of B, are ordered by subset inclusion. We
believe view consistency could be extended with an analo-
gous idea of synchronization correction.

Recent approaches to supporting atomicity include light-
weight transactions [18, 32, 21, 17] and automatic generation
of synchronization code from high-level specifications [7].
Lightweight transactions in particular seem like a promis-
ing, and complementary, approached to providing atomic-
ity guarantees. An interesting avenue of future work is
to explore how to best merge synchronization-based and
transaction-based approaches.

11. CONCLUSIONS
Synchronization errors are a common source of defects in

software systems. Our synchronization correction algorithm
enables us to not only identify concurrency errors statically,
but also correct them in many situations. Preliminary ex-
periments demonstrate the effectiveness of our approach at
correcting existing and randomly-inserted defects. We hope
to further validate our approach on larger programs. This
would also give us the opportunity to explore different op-
timization approaches in the final step of the algorithm. In
addition, we plan to integrate a deadlock detection analysis
into Bohr so that the tool can avoid introducing any poten-
tial for deadlock when inserting synchronization operations.

12. ACKNOWLEDGMENTS
This work was supported by the National Science Foun-

dation under Grants CCR-0341179 and CCR-0341387.

13. REFERENCES
[1] R. Agarwal and S. D. Stoller. Type inference for

parameterized race-free Java. In Proceedings of the
Conference on Verification, Model Checking, and
Abstract Interpretation, pages 149–160, 2004.

[2] C. Artho, K. Havelund, and A. Biere. High-level data
races. In The First International Workshop on
Verification and Validation of Enterprise Information
Systems, 2003.

[3] A. D. Birrell. An introduction to programming with
threads. Research Report 35, Digital Equipment
Corporation Systems Research Center, 1989.

[4] C. Boyapati and M. Rinard. A parameterized type
system for race-free Java programs. In Proceedings of
the ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications,
pages 56–69, 2001.

11

[5] D. Bruening. Systematic testing of multithreaded Java
programs. Master’s thesis, Massachusetts Institute of
Technology, 1999.

[6] L. Cardelli. Typechecking dependent types and
subtypes. In Lecture notes in computer science on
Foundations of logic and functional programming,
pages 45–57, 1988.

[7] X. Deng, M. Dwyer, J. Hatcliff, and M. Mizuno.
Invariant-based specification, synthesis, and
verification of synchronization in concurrent programs.
In International Conference on Software Engineering,
pages 442–452, 2002.

[8] C. Flanagan. Verifying commit-atomicity using
model-checking. In International SPIN Workshop on
Model Checking of Software, 2004.

[9] C. Flanagan and S. N. Freund. Type-based race
detection for Java. In Proceedings of the ACM
Conference on Programming Language Design and
Implementation, pages 219–232, 2000.

[10] C. Flanagan and S. N. Freund. Atomizer: A dynamic
atomicity checker for multithreaded programs. In
Proceedings of the ACM Symposium on Principles of
Programming Languages, pages 256–267, 2004.

[11] C. Flanagan and S. N. Freund. Type inference against
races. In Proceedings of the Static Analysis
Symposium, pages 116–132, 2004.

[12] C. Flanagan, S. N. Freund, and M. Lifshin. Type
inference for atomicity. In Proceedings of the ACM
Workshop on Types in Language Design and
Implementation, pages 47–58, 2005.

[13] C. Flanagan and S. Qadeer. Transactions for software
model checking. In Proceedings of the Workshop on
Software Model Checking, 2003.

[14] C. Flanagan and S. Qadeer. A type and effect system
for atomicity. In Proceedings of the ACM Conference
on Programming Language Design and
Implementation, pages 338–349, 2003.

[15] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes
and mixins. In Proceedings of the ACM Symposium on
Principles of Programming Languages, pages 171–183,
1998.

[16] P. Godefroid. Partial-Order Methods for the
Verification of Concurrent Systems: An Approach to
the State-Explosion Problem. Lecture Notes in
Computer Science 1032. Springer-Verlag, 1996.

[17] T. Harris, S. Marlow, S. Peyton-Jones, and
M. Herlihy. Composable memory transactions. In
Proceedings of the ACM Symposium on Principles and
Practice of Parallel Programming, pages 48–60, 2005.

[18] T. L. Harris and K. Fraser. Language support for
lightweight transactions. In Proceedings of the ACM
Conference on Object-Oriented Programming,
Systems, Languages and Applications, 2003.

[19] J. Hatcliff, Robby, and M. B. Dwyer. Verifying
atomicity specifications for concurrent object-oriented
software using model-checking. In Proceedings of the
International Conference on Verification, Model
Checking and Abstract Interpretation, 2004.

[20] R. J. Lipton. Reduction: A method of proving
properties of parallel programs. Communications of
the ACM, 18(12):717–721, 1975.

[21] M. F. Ringenburg and D. Grossman. AtomCaml:
First-class atomicity via rollback. In Proceedings of the
ACM International Conference on Functional
Programming, 2005.

[22] A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller.
Automated type-based analysis of data races and
atomicity. In Proceedings of the ACM Symposium on
Principles and Practice of Parallel Programming,
pages 83–94, 2005.

[23] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. E. Anderson. Eraser: A dynamic data race detector
for multi-threaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, 1997.

[24] N. Sterling. Warlock: A static data race analysis tool.
In USENIX Winter Technical Conference, pages
97–106, 1993.

[25] S. D. Stoller. Model-checking multi-threaded
distributed Java programs. In Workshop on Model
Checking and Software Verification, volume 1885 of
Lecture Notes in Computer Science, pages 224–244.
Springer-Verlag, 2000.

[26] J.-P. Talpin and P. Jouvelot. Polymorphic type, region
and effect inference. Journal of Functional
Programming, 2(3):245–271, 1992.

[27] M. Tofte and J.-P. Talpin. Implementation of the
typed call-by-value lambda-calculus using a stack of
regions. In Proceedings of the ACM Symposium on
Principles of Programming Languages, pages 188–201,
1994.

[28] C. von Praun and T. Gross. Object race detection. In
Proceedings of the ACM Conference on
Object-Oriented Programming, Systems, Languages
and Applications, pages 70–82, 2001.

[29] C. von Praun and T. Gross. Static conflict analysis for
multi-threaded object-oriented programs. In
Proceedings of the ACM Conference on Programming
Language Design and Implementation, pages 115–128,
2003.

[30] C. von Praun and T. Gross. Static detection of
atomicity violations in object-oriented programs.
Journal of Object Technology, 3(6):103–122, 2004.

[31] L. Wang and S. D. Stoller. Runtime analysis of
atomicity for multi-threaded programs. Technical
Report DAR 04-14, Computer Science Department,
SUNY Stony Brook, July 2004. A preliminary version
appeared in Proc. Workshop on Runtime Verification,
2003.

[32] A. Welc, S. Jagannathan, and A. L. Hosking.
Transactional monitors for concurrent objects. In
Proceedings of the European Conference on
Object-Oriented Programming, pages 519–542, 2004.

12

