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Abstract

Java bytecode subroutines are used to compile the Java source language try-finally con-
struct into a succinct combination of special-purpose instructions. However, the space saved
by using subroutines, in comparison to simpler compilation strategies, comes at a substantial
cost to the complexity of the bytecode verifier and other parts of the Java Virtual Machine.
This paper examines the trade-offs between keeping subroutines and eliminating them from the
Java bytecode language. We compare the cost of formally specifying the bytecode verifier and
implementing the Java Virtual Machine in the presence of subroutines to the space saved by
using them when compiling a set of representative Java programs.

1 Introduction

The Java programming language is a statically-typed general-purpose programming language with
an implementation architecture that is designed to facilitate transmission of compiled code across a
network. In the standard implementation, a Java language program is compiled to Java bytecode and
this bytecode is then interpreted by the Java Virtual Machine. We refer to this bytecode language
as JVML.

Since bytecode may be written by hand, or corrupted during network transmission, the Java
Virtual Machine contains a bytecode verifier that performs a number of consistency checks before
code is interpreted. As has been demonstrated elsewhere, the correctness of the bytecode verifier is
critical to guarantee the security of the Java Virtual Machine [DFW96]. As a step towards obtaining
a correct, formal specification for the verifier, we are currently developing a specification of statically
correct bytecode for a large fragment of JVML in the form of a type system. This system encompasses
classes, interfaces, methods, constructors, exceptions, subroutines, and arrays. While still not the
complete JVML, the type system for this subset contains all of the difficult static analysis problems
faced by the bytecode verifier.

The most difficult and time-consuming part of our work has been handling subroutines effectively.
Subroutines are mainly used to allow efficient implementation of the try-finally construct from the
Java language. Our general approach for modeling and type checking subroutines is based on a type
system developed by Stata and Abadi [SA98a]. Even with the knowledge and techniques acquired
from their earlier work, extending this type system and proofs to include sound type checking for
exceptions, object initialization, and other elements of JVML was challenging.
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void f() {
try {

something();
} finally {

done();
}

}

Figure 1: A method using a try-finally statement.

Method void f()
// try block

0 aload_0 // load this
1 invokevirtual #5 <Method void something()> // call something()
4 jsr 14 // execute finally code
7 return // exit normally
// exception handler for try block

8 astore_1 // store exception
9 jsr 14 // execute finally code

12 aload_1 // load exception
13 athrow // rethrow exception

// subroutine for finally block
14 astore_2 // store return address
15 aload_0 // load this
16 invokevirtual #4 <Method void done()> // call done()
19 ret 2 // return from subroutine

Exception table:
from to target type
0 4 8 any

Figure 2: The translation of the program in Figure 1 into JVML.
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Method void f()
// try block

0 aload_0 // load this
1 invokevirtual #5 <Method void something()> // call something()
// first copy of subroutine

4 aload_0 // load this
5 invokevirtual #4 <Method void done()> // call done()
8 return // exit normally
// exception handler for try block

9 astore_1 // store exception
// second copy of subroutine

10 aload_0 // load this
11 invokevirtual #4 <Method void done()> // call done()
14 aload_1 // load exception
15 athrow // rethrow exception

Exception table:
from to target type
0 4 9 any

Figure 3: The translation of the program in Figure 1 into JVML without using subroutines.

Verifier implementations based on the current Java Virtual Machine Specification [LY96] have
fared no better in handling the complexities which seem to be inherent in the analysis of subroutines.
For example, several published inconsistencies and bugs, some of which lead to potential security
loopholes, may be attributed to earlier versions of the Sun verifier incorrectly checking subroutines
and their interactions with other parts of JVML [DFW96, FM98].

Given the important role of the verifier in the Java paradigm and the many difficulties in both
specifying and implementing correct verification methods for subroutines, a natural question to ask
is whether or not the benefits of subroutines justify the specification and implementation costs.
Eliminating subroutines would not affect the semantics of Java. The only difference would be the
compilation strategy for methods which use try-finally or other statements currently compiled
using subroutines. The most straightforward way to translate a try-finally block of Java code
into JVML without subroutines requires some amount of code duplication, with an exponential blow
up in code size in the worst case. Clearly, removing subroutines from JVML would greatly simplify
the verifier, as well as possible implementations of other parts of the Java Virtual Machine, such as
type-precise garbage collectors [ADM98]. However, we know of no other study to date quantifying
the benefits of subroutines and how much code size is actually saved by using subroutines in typical
programs.

In this paper, we examine the impact of subroutines on the formal specification and implementa-
tion of the bytecode verifier, on the implementation of other parts of the Java Virtual Machine, and
on code size for representative programs drawn from a variety of sources. Our analysis shows that
the space saved by using subroutines is negligible and that the theoretically possible exponential
increase in size does not occur in the programs studied. The added complexity to the verifier and
the Java Virtual Machine far outweighs any benefit of subroutines.

Section 2 describes Java bytecode subroutines, how they are used in the compilation of Java
programs, and the difficulties in verifying programs which use them. Section 3 presents measurements
on the costs and benefits of subroutines, and Section 4 contains a discussion of these results and

3



some concluding remarks.

2 Bytecode Subroutines

This section describes JVML subroutines and the Java language construct which they were designed
to implement, the try-finally statement. We also discuss how subroutines may be used to compile
synchronized statements and conclude this section by describing the major difficulties in verifying
bytecode subroutines.

2.1 try-finally Statements

Subroutines were designed to allow space efficient compilation of the finally clauses of exception
handlers in the Java language. The details of Java exception handling facilities appear in [GJS96].
Subroutines share the same activation record as the method which uses them, and they can be
called from different locations in the same method, enabling all locations where finally code must
be executed to jump to a single subroutine containing that code. Without subroutines, the code
from the finally block of an exception handler must be duplicated at each point where execution
may escape from the handler, or some more complicated compilation technique must be used.

Figure 1 contains a sample program using a try-finally statement. There are two ways in
which execution may exit from the exception handler. Either the end of the try block is reached or
an exception is thrown. In both cases, the code in the finally block must be executed. Figure 2
shows the bytecode translation for this program. At the two points where execution may exit the
try block, the jsr instruction is used to jump to line 14, the beginning of the subroutine containing
the translation of the code from the finally block. As part of the jump, the return address is
pushed onto the operand stack. This return address is stored in a local variable, and, as in line 19,
the ret instruction causes a jump back to that address.

Without subroutines, the simplest way to compile this try-finally statement is to duplicate
the body of the finally block at line 4 and at line 9. A translation of the program in Figure 1
that does not use subroutines is shown in Figure 3. In most cases, eliminating a subroutine and
duplicating the code in this fashion results in a blow up of code size proportional in the number
of calls to the subroutine. However, in the case that one subroutine calls another, the situation is
much worse, and not using subroutines results in a blow up in code size exponential in the depth
of the nesting of calls. Subroutines nested in this way occur when one try-finally statement is
placed in the finally block of another.

There are other implementation strategies which eliminate subroutines but which may fare better
in the case when they are nested. We briefly describe one of the these strategies in Appendix A,
but the rest of this paper compares subroutines to only the simple code duplication strategy. As we
demonstrate below, the most straightforward translation strategy seems to be suitable for all cases
that appear in practice, and these more complex techniques are not required.

2.2 synchronized Statements

Subroutines have also proved useful in the compilation of synchronized statements. An example of
a synchronized statement is shown in Figure 4. In the body of the while loop, the function must
first acquire the lock on object o before executing the code guarded by the synchronized statement.
The lock on o must then be released at the end of the synchronized block of code and, also, at any
other point at which execution escapes from the synchronized statement. In Figure 4, this includes
releasing the lock at both the continue and the break statements, as well as in the event that an
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void g(Object o) {
while (true) {
synchronized(o) {
if (test()) {
continue;

} else {
break;

}
}

}
}

Figure 4: A synchronized statement with multiple escape paths.

exception is thrown while executing the body of the synchronized statement. A subroutine may
be used to avoid duplicating the code to release the lock on o at all escape points in much the same
way as they are used in the try-finally statement.

2.3 Verifying Subroutines

The flexibility of the subroutine mechanism makes bytecode verification of subroutines difficult for
two main reasons:

• Subroutines are polymorphic over local variables which they do not use. This is a technical
property of the bytecode type system that is enforced by the verifier. Polymorphism is needed
to allow a subroutine to be called from program points that differ in the types of values stored
in some local variables as long as they agree on the types of all local variables used by the
subroutine [LY96].

• Subroutines may call other subroutines, as long as a call stack discipline is preserved. In other
words, the most recently called subroutine must be the first one to return. A subroutine may,
in some cases, return to its caller’s caller, or even further up the stack. This situation may arise
from an explicit return statement or implicitly as a result of executing a branch instruction or
catching an exception.

Since the program itself stores and manipulates return addresses, the verifier can not assume
that polymorphic variables and return addresses are used correctly. Therefore, it must check that
the above two properties do in fact hold for each method. Otherwise, a program could potentially
make arbitrary jumps by returning to addresses which are not valid return addresses for subroutines
on the implicit subroutine call stack. As we will demonstrate below, these checks comprise a major
part of both the static type system and soundness proof we have developed for JVML, and they
have been difficult to implement correctly in real verifiers.

3 Costs and Benefits of Subroutines

This section describes our measurements and analysis of the costs and benefits derived from adding
subroutines to JVML. This includes some qualitative aspects, but we have tried to obtain quantita-
tive results where possible. We first discuss some of the difficulties in specifying and implementing
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checks for subroutines in the verifier. This discussion will be based mainly on our experiences in
developing a type system and soundness proof for a large subset of JVML. We will also touch on the
impact of subroutines on other parts of the implementation of a Java Virtual Machine. The third
part of this section measures the usage of subroutines in a variety of programs by determining the
frequency with which they appear and how much space is saved by using them.

3.1 Specification of the Bytecode Verifier

As part of a larger project to clarify the original Java Virtual Machine specification and to study
static analysis techniques for intermediate languages, we have been developing a formal specification
for a large subset of JVML in the form of a type system. We are in the process of finishing the
soundness proof for this system. This section analyzes the cost of adding subroutines to our type
system with some rough numeric measurements followed by a more qualitative assessment. Before
presenting the statistics, however, we give a very brief overview of our formal system.

Our work is based on that of Stata and Abadi who originally studied a subset of JVML containing
only basic operations and subroutines. Having experienced success extending their work to include
object initialization [FM98], we are currently studying a much larger fragment of JVML. This
fragment includes:

• classes, interfaces, and objects

• constructors and object initialization

• virtual and interface method invocation

• arrays

• exceptions and subroutines

• integer and double primitive types

While this subset contains only about 25 of the 200 instructions in the whole instruction set, it
encompasses most of the difficult static analysis problems encountered by the verifier. These prob-
lems include the alias analysis used to check the initialization-before-use of objects [FM98], the
“polymorphism” and mostly stack-like use of subroutines, and jumps due to exceptions. There are
many other issues that arise, including details concerning class declarations, methods, subtyping,
etc. However, these problems are more routine and better understood properties of object-oriented
type systems, even if they appear in the somewhat unconventional bytecode language.

In order to remove some of the simplifications that Stata and Abadi made to the subroutine
mechanism, we have developed an approach which preserves most aspects of their work but relies
on computing more detailed static type information about programs before checking them. Our
approach is founded more or less on the same ideas as the work of Hagiya and Tozawa [HT98],
although our framework is fairly different from theirs. The statistics below are based on our type
system and soundness proof for this subset of JVML. While we have not written out all parts of
the proof in complete detail, we have completed a large enough fraction to have a good estimate of
its size. The technical details of our work will be presented elsewhere.

We first divide our formal system into three parts, the operational semantics, the static semantics,
and the proof invariants. The operational semantics are the rules modeling execution steps in our
Java Virtual Machine model. The static semantics are the rules which check whether or not a
program is well typed. Only well typed programs would be accepted by a verifier based on our rules.
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Judgments
Part of Formal System For Subroutines Total

operational semantics 2 45
static semantics 30 90
proof invariants 14 26
total 46 161

Table 1: The number of judgments in each part of the formal system, and the number dealing with
subroutines in each part.

Number
Soundness Proof For Subroutines Total

lemmas 50 120
pages 50–70 150

Table 2: The number and length of the proofs used to prove soundness of our system, and the
number required only for subroutines.

The proof invariants are used in the soundness proof, which shows that well typed programs
do not generate type errors when executing on our Java Virtual Machine model. These invariants
relate program execution state to the static type information used by the typing rules. An exam-
ple invariant is that, given the state of a program, the program counter is within the statically
computed bounds of the code array associated with the method currently being executed. Other,
more complicated invariants are needed to show the correctness of the static analysis techniques for
subroutines and object initialization. See [FM98] or [SA98b] for more detailed discussions of some
of these invariants.

Table 1 shows the number of judgments required to describe each of these elements of our work.
That table also shows the number of rules in each section that are affected by jsr and ret in
a non-trivial way. The impact on the operational semantics is minimal since the execution rules
for these two instructions are very simple. However, one-third of the type system and half of the
invariant judgments are either required or significantly affected by subroutines. Table 2 shows
the approximate number of lemmas and number of pages required to show that the invariants are
preserved by program execution and that the type system is sound. Roughly 40–50% of the proof
may be attributed to the presence of subroutines. From these statistics, it is clear that subroutines
are perhaps the largest source of complexity in the type system and verifier specification, and we
conjecture that other type systems based on the original Sun specification for JVML will reflect this
to some extent as well.

Another, less quantitative metric demonstrating how difficult jsr and ret are to model is to
examine interactions between subroutines and other elements of JVML. For example, subroutines
significantly complicate the static analysis for object initialization and constructors at the bytecode
level, complicate the checking of exception handlers, and necessitate the introduction of some notion
of polymorphic local variables into all aspects of the type system. While there will always be some
interaction between various features of a language like JVML, the extent and complexity of these
interactions for subroutines is very large. This is partially reflected by the number of typing rules
and invariants which depend on subroutines. However, the numbers alone do not fully demonstrate
the intricacies that subroutines introduce into our system.
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3.2 Implementation Issues

We now briefly discuss some of the Java Virtual Machine implementation issues that arise because
of subroutines. Obviously, the bytecode verifier needs to check subroutines properly, but subroutines
also lead to trade-offs in the design of other areas of the Java Virtual Machine and static analysis
tools for JVML.

Given the difficulty in understanding and specifying type checking for bytecode subroutines,
it is not surprising that creating an implementation which handles subroutines correctly has also
been difficult. One may see this just by looking at the history of bugs and inconsistencies found in
the early versions of the Sun verifier. Examples from the literature on Java security and bytecode
verification include a bug in the treatment of try-finally statements in constructors [DFW96] and
an error by which a subroutine could be used to access an uninitialized object [FM98]. Other studies
have reported similar errors or inconsistencies [Qia98, SA98a, SMB97].

Bytecode subroutines also impact how other elements of the Java run-time system and analysis
tools may be implemented. Any static analysis technique which must compute or use precise infor-
mation about control flow or the types of local variables will be affected by subroutines because they
introduce polymorphic variables and jumps to addresses stored by the program. For example, con-
servative garbage collection schemes based on computing reachability from a set of root references
can only be replaced by exact collection strategies if the garbage collector is able to determine which
local variables contain object references at all appropriate collection points in a program. Difficul-
ties arise in the presence of bytecode subroutines because the types of local variables at a program
point may vary with execution history. Agesen, Detlefs, and Moss present one solution to allow
computation of precise type information for local variables based on rewriting problematic bytecode
sequences [ADM98]. As demonstrated by their work, this is not an easy task. Implementation of
other elements of the Java Virtual Machine which must compute control flow information, such as
the register allocator for a just-in-time compiler, may also be impacted by subroutines.

3.3 Program Statistics

We now look at the benefits of using subroutines by measuring the reduction in code size obtained
by using subroutines over duplication of code for synchronized and try-finally statements. As
previously mentioned, code inflation is typically linear in the number of calls to subroutine, but
if subroutine calls are nested in a certain way, there could be an exponential blow up in size. To
measure the effect in realistic programs, we analyzed several large programs and libraries, as well
as many smaller applets and applications. The specific cases used in our measurements are listed
below:

JDK 1.1.5 The Java libraries and development tools from Sun Microsystems. This includes all
the standard packages, such as java.lang and java.awt, as well as the applications javac,
javadoc, etc.

CUP A parser generator for Java, written in Java. Available from
http://www.cs.princeton.edu/~appel/modern/java/CUP.

toba A Java-to-C translator. Available from http://www.cs.arizona.edu/sumatra/toba.

cassowary A general constraint solver implemented in Java and several sample programs using it.
Available from http://www.cs.washington.edu/research/constraints/cassowary.

pizza A compiler for a super set of Java containing parametric polymorphism, closures, and alge-
braic data types. Available from http://www.cis.unisa.edu.au/~pizza.
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Program Lines Exception Handlers Synchronized Statements Subroutines

JDK 1.1.5 450,000 1300 420 229
CUP 10,500 9 0 0
toba 14,200 34 1 0
cassowary 10,700 37 0 0
pizza 31,600 44 0 1
applets 135,500 590 26 6
total 652,500 2014 447 236

Table 3: Size and number of exception handlers, synchronized statements, and subroutines for the
test programs.

Jumps Occurrences

1 107
2 102
3 15
4 8
5 1
6 1
7 0
8 1
9 0
10 1

total 236

Table 4: The number of jumps to each subroutine from the test programs.

applets A collection of approximately 150 public domain applets and applications downloaded from
the Internet. These were selected at random from two Web sites, http://eoe.apple.com and
http://www.jars.com, and they include email programs, network monitors, an application to
write robot drivers, a text editor, a binary search visualizer, and many others.

Table 3 contains some basic measurements for these programs. These measurements were ob-
tained by examination of both Java source and the compiled bytecode. For those cases where source
was not publicly available (most notably, the JDK), we used simple bytecode analysis to obtain
approximate measures. Clearly, subroutines did not appear very often, only 236 times in roughly
650,000 lines of Java code. Most of these appeared in the JDK, where they appeared in about 1–
2% of the 11,900 methods. For the applets and applications downloaded from the Web, we found
roughly one subroutine for every 20,000 lines of code. For the other test programs, subroutines were
virtually nonexistent.

Approximately 45–50% of the subroutines were generated for try-finally statements, and the
remainder were generated for synchronized statements. Approximately 7% of try statements
included a finally block, and roughly 20% of synchronized statements utilized a subroutine to
release the lock on exits from the guarded code. There were no occurrences of a try-finally
statement inside the finally block of another, meaning that there was never more than a linear
savings in code size for any method containing a subroutine.
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Code Size Saved (bytes)

minimum 0
maximum 412
median 5
mean 10.4
total 2427

Table 5: The number of bytes saved by using subroutines over code duplication.

To obtain more specific information about the savings in space gained by using subroutines, we
also measured the size of and number of calls to each subroutine. The statistics are summarized in
Table 4 and Table 5.

Surprisingly, half of the subroutines were called only once. These are mostly subroutines gener-
ated for synchronized statements where there is only one escaping path from the synchronized
block that uses a subroutine, usually a return statement. At first, this may seem peculiar since
throwing an exception would always be a second way to escape the synchronized statement. How-
ever, it is common practice for compilers, including javac, not to use the subroutine called for other
escape points for escapes caused by exceptions. This technique appears to reduce the size of meth-
ods by a few bytes and may help minimize the number of exception handlers needed for a method
using a synchronized statement. In this light, our findings do not seem so unreasonable, and using
subroutines for synchronized statements does not seem to have very much benefit. In cases like
this where a subroutine is called only once, the jsr and ret statements could simply be replaced
by goto statements with no space penalty. Very few subroutines were called more than twice.

The greatest savings attributed to a subroutine is 412 bytes, which was seen in a method in which
a 206 byte subroutine was called three times. This occurred only once, and there were only two
subroutines that saved more than 100 bytes. The majority of subroutines were smaller than eight
bytes and saved between zero and sixteen bytes. When computing these numbers, we ignored some
small factors, such as potentially needing to use longer bytecode instructions to describe jump offsets
inside a method made larger by eliminating subroutines. However, these issues do not significantly
affect our measurements.

While subroutines may save a small, but noticeable fraction of space in a few methods, they
do not save very much space for any reasonable program given the frequency with which they
appear. Also, the size of the method is frequently several hundred bytes or more, meaning that very
infrequent code inflation of 400 bytes is not a tremendous loss of space.

To put the measured savings into perspective, we computed the number of bytes saved by sub-
routines in the JDK as about 2,200 bytes. The size of all the class files for the JDK is about 8.7
MB, making the space saved by subroutines approximately 0.02% of the total size. All symbolic
names mentioned in the source code are also stored as strings represented as arrays of bytes in the
class files. As such, the word java appears roughly 30,000 times in the class files for the JDK. If
Sun had stuck with Oak, the original name for the Java language project, the shorter name would
have saved 13 times as much space as subroutines do in the compilation of the JDK.

4 Discussion

We have attempted to illustrate some of the costs and benefits associated with jsr and ret in the
Java Virtual Machine. We have described some of the difficulties in type checking and verifying
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them and, also, in proving properties of type systems for simplified bytecode languages which use
subroutines. There is a history of both published and anecdotal evidence indicating that existing
verifiers may not be as trustworthy as one would like given their role in the Java Virtual Machine
environment. Again, subroutines are a major factor for this. Our measurements of various programs
indicate that, while fears of code size inflation are reasonable, it is not encountered in any of the
programs studied. Only a handful of all the methods in our test cases were significantly smaller due
to subroutines.

Exponential code size increase was not seen in any of our tests. One reason that this theoretically
possible case does not appear may simply be that nesting try-finally statements complicates the
flow of control sufficiently to be considered poor programming practice by most. Another reason
may be that such an idiom is not useful in light of resource management techniques common in
Java programs. Even if such a case occurs extremely rarely, we do not believe that the ramifications
would be very severe. The exponential case may increase the size of a single method substantially if
subroutines are not used, but in any reasonable program or collection of classes, the overall increase
in size would most likely be inconsequential. There are also implementation strategies which do
not experience the same blow up which can be explored if this case ever becomes a problem. We
summarize one such strategy in Appendix A.

There are, however, certain issues which must still be seriously explored before we may pass
final judgment on whether or not the costs to the complexity of JVML outweigh the benefits of
subroutines. Most importantly, our choice of programs may not be the best representative collection.
It may be likely that our results will vary with different types of programs. For example, programs
which use concurrency heavily may possibly have a higher frequency of subroutines generated by
synchronization code. Machine generated Java code may be likely to use subroutines heavily and
perhaps in ways not common in our test cases. Examining applications for embedded systems and
smart cards may also prove useful.

One argument to use subroutines is that the cost of developing and implementing analysis tech-
niques for them is paid only once, but the cost in code size incurred by removing subroutines will
be paid by every Java program executed from this point forward. Therefore, if a small number of
researchers can create techniques and implementations which handle jsr and ret properly in any
acceptable amount of time (perhaps several man years), the benefits of subroutines are worth it.
While this argument may seem reasonable, it ignores one important point.

Specifically, all programs may already pay some cost because of subroutines. It is likely that sub-
routines increase the time and space needed to verify programs and, perhaps, affect performance of
other parts of the Java Virtual Machine as well. For example, garbage collection must be conserva-
tive or it must use exact strategies that incur additional time and space overhead from subroutines,
as may other tools such as various parts of just-in-time compilers. Eliminating subroutines may also
allow better algorithms, which are currently not suitable for JVML, to be used in these pieces. All
of these time and space trade-offs may be on the same level as the measurements made in this paper,
but they should be investigated since they are a factor in determining the suitability of subroutines.
One direction for future work is to investigate some of these online affects of jsr and ret.

While this paper has not touched on them, there are undoubtedly backwards compatibility and
political issues to address when contemplating changes to JVML as well. Load-time bytecode rewrit-
ing has proven useful elsewhere [AFM97], and may be an appropriate solution to any compatibility
issues. Using this technique, bytecode using subroutines could be translated into bytecode without
subroutines with very simple code transformations when the bytecode is loaded by the Java Virtual
Machine. Alternatively, such a translation for class files could be done once offline.

We hope that this study will serve both as a first step towards a full examination of the suitability
of bytecode subroutines for Java and as an example of how a single, well-intentioned, but perhaps
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unnecessary, optimization can have significant impact on many areas of a run-time system like
Java. In particular, any aspect of the Java Virtual Machine which must perform static analysis on
compiled bytecodes may be drastically affected by subroutines. In addition, the motivation for this
study arose from the difficulty of developing a formal type system for JVML. As such, we hope that
it demonstrates the importance of formally studying implementation and analysis techniques and
understanding their ramifications before they are adopted for a new language.

Acknowledgments: Thanks to John Mitchell, Mart́ın Abadi, and Raymie Stata for several useful
discussions and their comments on a draft of this paper, and to Ole Agesen for his comments and
the suggestion to use tableswitch as a replacement for subroutines.
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A Alternative Compilation Strategy

This appendix gives a brief overview of a different compilation strategy which we are currently
examining. This technique eliminates subroutines but is much less likely than code duplication to
suffer from significant inflation in code size. The details of this section will appear in an extended
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Method void f()
0 aconst_null // initialize var 1 to eliminate
1 astore_1 // type conflict when verifier

// merges predecessors of 18
// try block

2 aload_0 // load this
3 invokevirtual #5 <Method void something()> // call something()
6 iconst_1 // push 1 to mark 1st jump
7 goto 18 // jump to start of subroutine

10 return // exit normally
// exception handler for try block

11 astore_1 // store exception
12 iconst_2 // push 2 to mark 2nd jump
13 goto 18 // jump to start of subroutine
16 aload_1 // load exception
17 athrow // rethrow exception

// subroutine code
18 astore_2 // store caller’s marker
19 aload_0 // load this
20 invokevirtual #4 <Method void done()> // call done()
23 aload_2 // load marker
24 tableswitch 1 to 2: default = 46 // compute and jump to return

// address using look-up table
1: 10 // address for 1st jump
2: 16 // return address for 2nd jump

46 return // this should never be reached

Exception table:
from to target type
2 6 11 any

Figure 5: The translation of the program in Figure 1 into JVML using tableswitch.

version of this paper. Figure 5 shows the compilation of the program from Figure 1 using this new
technique.

This compilation method preserves the notion of call and return but eliminates the need to store
addresses. At each location where the subroutine is called, a unique number is pushed onto the stack
to identify the caller. The standard goto instruction is then used to jump to the subroutine. To
return from a subroutine, the tableswitch instruction uses these identifying numbers to compute
and jump to the proper return address.

Since polymorphic variables are not available, the compiler must introduce additional local vari-
ables to eliminate cases which would have used polymorphism if subroutines were available. In some
cases, the compiler must also add local variable initialization code in order to produce programs
checkable by the standard verifier. These problems are very similar to ones addressed in [ADM98],
where they arise in the context of removing polymorphic variables from subroutine calls to improve
garbage collection.
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In Figure 5, no additional variables are introduced, but local variable 1 is initialized to a value
compatible with the type of exceptions at the beginning of the method. If it were not initialized,
the verifier would be unable to determine that local variable 1 contains an exception when execution
jumps from line 24 back to line 16. The need for the special initialization code results from the
existence of a path to the beginning of the subroutine along which local variable 1 would not usually
be initialized.

Despite having much more overhead than simple code duplication, this type of implementation
strategy may prove very useful if the theoretically possible exponential blow up in size ever causes a
significant problem as a result of removing subroutines. With this strategy, one subroutine may call
another without creating additional copies of either subroutine. While we are still in the process of
fully evaluating the performance of this method, we believe that it is unlikely that many additional
local variables would need to be introduced by this method for such cases. It is much more likely
that the simple code duplication strategy will be sufficient for virtually every program.
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