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Abstract

The race condition checker rccjava uses a formal type system to statically identify potential race conditions in concurrent Java
programs, but it requires programmer-supplied type annotations. This paper describes a type inference algorithm for rccjava. Due
to the interaction of parameterized classes and dependent types, this type inference problem is NP-complete. This complexity result
motivates our new approach to type inference, which is via reduction to propositional satisfiability. This paper describes our type
inference algorithm and its performance on programs of up to 30,000 lines of code.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A race condition occurs when two threads in a concurrent program manipulate a shared data structure
simultaneously, without synchronization. Errors caused by race conditions are notoriously hard to catch using testing
because they are scheduling dependent and difficult to reproduce. If the underlying memory model is not sequentially
consistent [1], then race conditions can cause surprising and counterintuitive behaviors. Typically, programmers
attempt to avoid race conditions by adopting a programming discipline in which shared variables are protected by
locks.

In a previous paper [2], we described a static analysis tool called rccjava that enforces this lock-based
synchronization discipline. The analysis performed by rccjava is formalized as a type system. This type system
incorporates dependent types, which allows the type of each field to specify a protecting lock for that field. The type
system also allows class definitions to be parameterized by locks that protect the fields of the class, thus allowing
different class instances to be protected by different locks. Parameterized classes are crucial for checking large
programs with complex synchronization disciplines. Note that this notion of lock-parameterization is different from
the generics supported in Java 5, which allow classes to be parameterized by types instead of locks.

Our previous evaluation of rccjava indicates that it is effective for catching race conditions. However, rccjava
relies on programmer-inserted type annotations that describe the locking discipline, such as which lock protects a
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particular field. The need for these type annotations limits rccjava’s applicability to large, legacy systems. Hence, to
achieve practical static race detection for large programs, annotation inference techniques are necessary.

In previous work along these lines, we developed Houdini/rcc [3], a type inference algorithm for rccjava that
heuristically generates a large set of candidate type annotations and then iteratively removes all invalid annotations.
If this process removes all the candidate protecting locks for a field, Houdini/rcc issues a warning that often reflects a
race condition in the code. Unfortunately, Houdini/rcc cannot handle parameterized classes or methods, which limits
its ability to check many synchronization idioms of real programs.

In the presence of parameterized classes (where different instances of a class are protected by different locks), the
type inference problem for rccjava is much harder. Essentially, picking the right protecting lock for each field in
the program is analogous to picking a Boolean value for each variable in a propositional satisfiability problem. This
connection allows us to reduce any propositional satisfiability problem into a corresponding rccjava type inference
problem, which implies that type inference for rccjava is NP-complete.

This complexity result motivates our new approach to type inference, which is via reduction to propositional
satisfiability. That is, given an unannotated (or partially annotated) program, we translate this program into a
propositional formula that is satisfiable if and only if the original program is typeable. Moreover, after computing
a satisfying assignment for the generated formula, we translate this assignment into appropriate type annotations for
the program, yielding a valid, explicitly-typed program. This approach works well in practice, and we report on its
performance on programs of up to 30,000 lines of code.

Producing a small number of meaningful error messages for erroneous or untypeable programs is often challenging.
We tackle this aspect of type inference by generating a weighted MAX-SAT optimization problem [4] and producing
error messages for the unsatisfied clauses in the optimal solution. Our experience shows that the resulting warnings
often correspond to errors in the original program, such as accessing a field without holding the appropriate lock.

We have implemented our algorithm in the Rcc/Sat tool for multithreaded Java programs. Experiments on
benchmark programs demonstrate that it is effective at inferring valid type annotations for multithreaded code. The
algorithm’s precision is significantly improved by performing a number of standard analyses, such as control-flow and
escape analysis, prior to type checking.

The key contributions of this paper include:

• demonstrating that the type inference problem for race-free type systems like rccjava is NP-complete;
• a type inference algorithm based on reduction to propositional satisfiability;
• a refinement of this approach to generate useful error messages via reduction to weighted MAX-SAT; and
• experimental results that validate the effectiveness of this approach.

The annotations constructed by Rcc/Sat also provide valuable documentation to the programmer; they facilitate
checking other properties such as atomicity [5–7]; and they can help reduce state explosion in model checkers [8–11].

The presentation of our results proceeds as follows. The following section reviews our underlying type system, and
shows how to reduce type inference to a constraint satisfaction problem. Section 3 solves these constraint systems
by reduction to propositional satisfiability. Section 4 describes Rcc/Sat, our implementation of this algorithm, and
Section 5 evaluates Rcc/Sat on a number of benchmark programs. Section 6 discusses related work, and we conclude
with Section 7. The appendix contains proofs of various theorems and lemmas in the paper.

2. Types against races

2.1. The Language RFJ2

This section introduces RFJ2 (RaceFreeJava 2), an idealized multithreaded subset of Java with a type system that
guarantees race freedom for well-typed programs. This type system extends our previous work on the rccjava type
system [2], for example with parameterized methods. To clarify our presentation, RFJ2 also simplifies some aspects
of rccjava. For example, it does not support inheritance. (Inheritance and other aspects of the full Java programming
language are dealt with in our implementation, described in Section 4.)

An RFJ2 program (see Fig. 1) is a sequence of class declarations together with an initial expression. Each class
declaration associates a class name with a body that consists of a sequence of field and method declarations. The
self-reference variable “this” is implicitly bound within the class body.
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P ::= defn∗ e (program)
defn ::= class cn〈ghost x∗〉 { field∗ meth∗ } (class declaration)
field ::= t fn guarded by l (field declaration)
meth ::= t mn〈ghost x∗〉(arg∗) requires s { e } (method declaration)

arg ::= t x (argument declaration)
t ::= cn〈l∗〉 (type)
l ::= x (lock expression)
s ::= ∅ | {l} | s ∪ s (lock set expression)

e, f ::= x | null | newy t(e∗) | e.fn | e.fn = e (expressions)
| e.mn〈l∗〉(e∗) | let x = e in e
| synchronized x e | e.fork

α ∈ LockVar
β ∈ LockSetVar

x, y ∈ Var
cn ∈ ClassName

fn ∈ FieldName
mn ∈ MethodName

Fig. 1. The idealized language RFJ2.

The RFJ2 language includes type annotations that specify the locking discipline. For example, the type annotation
guarded by x on a field declaration states that the lock denoted by the variable x must be held whenever that field is
accessed (read or written).1 Similarly, the type annotation requires x1, . . . , xn on a method declaration states that
these locks are held on method entry; the type system verifies that these locks are indeed held at each call site of the
method, and checks that the method body is race-free given this assumption.

The language provides parameterized classes, which allow the fields of a class to be protected by some lock
external to the class. A parameterized class declaration

class cn〈ghost x1 . . . xn〉 { . . . }
introduces a binding for the ghost variables x1 . . . xn to which type annotations within the class body can refer. The
type cn〈y1 . . . yn〉 refers to an instantiated version of cn, where each xi in the body is replaced by yi . As an example,
the type Hashtable〈y1, y2〉 may denote a hashtable that is protected by lock y1, where each element of the hashtable
is protected by lock y2.

Since parameterized classes contain variables, our type system supports a (restricted) form of dependent types.
We avoid the decidability limitations associated with dependent type systems by approximating semantic equality of
variables by syntactic equality. This approximation has proven sufficient on all our benchmarks.

The RFJ2 language also supports parameterized method declarations, such as

t m〈ghost x1, x2〉(Hashtable〈x1, x2〉 y) requires x1, x2 { . . . }
which defines a method m that is parameterized by two locks x1 and x2, and which takes an argument of type
Hashtable〈x1, x2〉. A corresponding invocation e.m〈y1, y2〉(h) must supply two locks y1 and y2 that are currently
held and an actual parameter h of type Hashtable〈y1, y2〉.

Expressions include object allocation, field read and update, method invocation, and variable binding and reference.
The object allocation expression newy t(e∗) includes a sequence e∗ of expressions used to initialize the object fields.
For technical reasons, the new keyword is subscripted by y, which is a ghost variable bound to the object being created
while evaluating the field initialization expressions. This enables the types of the initialization expressions to refer to
the new object. We omit this binding from examples when it is not needed.

The expression synchronized x e is evaluated in a manner similar to Java’s synchronized statement: the lock
for object x is acquired, the subexpression e is then evaluated, and finally the lock is released.

The expression e.fork starts a new thread. Here, e should evaluate to an object that includes a method run. The
fork operation spawns a new thread that calls that run method. The RFJ2 type system leverages parameterized methods

1 For simplicity, RFJ2 does not include final and volatile fields, but this extension is straightforward.
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to reason about thread-local data. (This approach replaces the escape analysis embedded in our earlier type system [2]
and provides an alternative to the ownership types of [12].) Specifically, the run method of each forked thread takes
a ghost parameter thread lock denoting a lock that is always held by that thread:

t run〈ghost thread lock〉() requires thread lock { e }

Intuitively, the underlying run-time system creates and acquires this thread lock when a new thread is created. This
lock may be used to guard thread-local data and may be passed as a ghost parameter to other methods that access
thread-local data. In a similar fashion, we also introduce an implicit, globally visible lock called main lock, which is
held by the initial program thread and can be used to protect data exclusively accessed by that thread.

2.2. Type inference

Our previous evaluation of the race-free type system rccjava indicates that it is effective for catching race
conditions [2]. However, the need for programmer-inserted annotations limits its applicability to large, legacy systems,
thus motivating the development of type inference techniques for race-free type systems.

We next describe our type inference system for RFJ2. We introduce lock variables α and lock set variables β,
collectively referred to as locking variables. During type inference, each lock variable α is resolved to some specific
program variable in scope, and each lock set variable β is resolved to some set of program variables in scope.
Locking variables may be mentioned in type annotations, as in guarded by α, requires β, or cn〈α1, α2〉. As an
example, Fig. 2(a) presents a simple reference cell implementation, written in RFJ2 extended with primitive types and
operations, that contains locking variables.

An RFJ2 program is explicitly typed if it contains no locking variables. The type inference problem is, given a
program with locking variables, to resolve these locking variables so that the resulting explicitly typed program is
well-typed.

This type inference problem for RFJ2 is NP-complete, due in part to the complexities of dealing with parameterized
classes. To illustrate this difficulty, consider the class declaration:

class cn〈ghost x〉 { t fn guarded by l; }

If a variable p has type cn〈y〉, then the field p.fn is protected by θ(l), where the substitution θ ≡ [x := y] replaces
the formal ghost parameter x by the actual parameter y. The application of a substitution to most syntactic entities is
straightforward; however, the application of a substitution θ to a lock expression l is delayed until any lock variables
α in the lock expression are resolved. We use the syntax l · θ to represent this delayed substitution. Similarly, if the
lock set expression s denotes the set of locks in a method’s requires clause, then the application of a substitution θ to
s yields the delayed substitution s · θ .

Since the type rules reason about delayed substitutions, we include these delayed substitutions in the language
by extending the syntax of lock and lock set expressions, but we require that substitutions do not appear in source
programs.

l ::= x | α | l · θ (lock expression)
s ::= ∅ | {l} | s ∪ s | β | s · θ (lock set expression)
θ ::= [x1 := l1, . . . , xn := ln] (substitution)

The following examples illustrate substitutions on various syntactic entities. (We do not present an exhaustive
definition, since the remaining cases are straightforward.)

θ(x) = l if θ ≡ [. . . , x := l, . . .]
θ(l) = l · θ

θ(s) = s · θ

θ(synchronized x e) = synchronized θ(x) θ(e)



144 C. Flanagan, S.N. Freund / Science of Computer Programming 64 (2007) 140–165

(a) Example Program Ref

class Lock〈〉 { }
class Ref〈ghost x〉 {
int y guarded by α1
boolean less(Ref〈α2〉 o) requires β {

this.y < o.y ;
}

}

let lock = new Lock〈〉();
r1 = new Ref〈α3〉(1);
r2 = new Ref〈α4〉(2)

in synchronized (lock) {
r1.less(r2);

}

(b) Constraints

α1 ∈ { this, x } declaration of y
α2 ∈ { this, x } declaration of less
β ⊆ { this, x, o } declaration of less

α3 ∈ { lock } first new expression
α4 ∈ { lock, r1 } second new expression

α1 ∈ β access to this.y
α1[this := o, x := α2] ∈ β access to o.y

β[this := r1, x := α3, o := r2] ⊆ {lock} requires clause for call
α2[this := r1, x := α3, o := r2] = α4 parameter type eq call

(c) Conditional Assignment

Y (α1) = (b1?this : x) declaration of y
Y (α2) = (b2?this : x) declaration of less
Y (β) = (b4?this : ∅) ∪ (b5?x : ∅) ∪ (b6?o : ∅) declaration of less

Y (α3) = lock first new expression
Y (α4) = (b3?lock : r1) second new expression

(d) Boolean Constraints

(b1?this : x) ∈ (b4?this : ∅) ∪ (b5?x : ∅) ∪ (b6?o : ∅) access to this.y
(b1?o : (b2?this : x)) ∈ (b4?this : ∅) ∪ (b5?x : ∅) ∪ (b6?o : ∅) access to o.y

(b4?r1 : ∅) ∪ (b5?lock : ∅) ∪ (b6?r2 : ∅) ⊆ {lock} requires clause for call
(b2?r1 : lock) = (b3?lock : r1) parameter type eq call

(e) Boolean Formula

[(b1 ∧ b4) ∨ (¬b1 ∧ b5)]
∧ [(b1 ∧ b6) ∨ (¬b1 ∧ ((b2 ∧ b4) ∨ (¬b2 ∧ b5)))]
∧ [¬b4 ∧ ¬b6]
∧ [(b2 ∧ ¬b3) ∨ (¬b2 ∧ b3)]

access to this.y
access to o.y
requires clause for call
parameter type eq call

Fig. 2. Example program and type inference constraints.
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2.3. Type rules

The core of the RFJ2 type system is defined by the judgment:

P; E; s , e : t & C̄

Here, the program P is included to provide access to class declarations; E is an environment providing types for the
free variables of the expression e; the lock set s describes the locks held when executing e; t is the type inferred for e;
and C̄ is the generated set of constraints.

A typing environment can include bindings for both regular and ghost variables:

E ::= ∅ | E, t x | E, ghost x

Our constraint language includes equality constraints between lock expressions and containment constraints between
lock set expressions:

C ::= l = l | s ⊆ s

The complete set of type rule for expressions appears in Fig. 3, and auxiliary judgments and rules are presented in
Fig. 4. Most of the type rules are straightforward, and we briefly describe the more interesting aspects of each rule.

The rule [EXP NULL] assigns any well-formed type to the term null. The auxiliary judgment P; E , t & C̄
checks that the type t is well-formed and that it only mentions valid lock names. For example, if t is c〈l〉, then the
generated constraint set C̄ would include the requirement that l ∈ dom(E), which is an abbreviation for the constraint
{l} ⊆ dom(E).

The rule [EXP VAR] extracts the type of a variable from a well-formed environment. An environment is well-
formed, written P , E & C̄ , if all types appearing in E are well-formed. The rule [EXP SYNC] for synchronized x e
type checks e with an extended lock set that includes x , since the lock x is held when evaluating e.

The rule [EXP REF] for a field reference e.fn checks that e has some type cn〈l1..n〉 and that cn has a field fn of type
t , guarded by lock l. Since the protecting lock expression l (and type t) may refer to the ghost parameters x1..n and the
implicitly bound self-reference this, none of which are in scope at the field access, we introduce the substitution θ

which substitutes appropriate expressions for these variables. The constraint θ(l) ∈ s, an abbreviation for {θ(l)} ⊆ s,
ensures that the substituted lock expression is in the current lock set. The type of the field dereference is θ(t), which
must be well-formed. The rule [EXP ASSIGN] is the analogous rule for field update.

The rule [EXP INVOKE] for a method invocation expression e.mn〈l′1..k〉(e1..d) is similar to field access, but slightly
more complex due to method parameters and ghost parameters. The rule checks that e has some type cn〈l1..n〉 and that
cn includes a matching method declaration

t mn〈ghost y1..k〉(t j z j∈1..d
j ) requires s′ { e′ }

The rule then constructs the substitution

θ = [this := e, xi := li i∈1..n, yi := l′i
i∈1..k, zi := ei

i∈1..d ]
which substitutes

• the receiver’s name e for this;
• the lock expressions l1..n in the receiver’s type for the class’ ghost parameters x1..n ;
• the actual lock expression arguments l′1..k for the method’s ghost parameters y1..k ; and
• the actual method arguments e1..d for the method’s formal parameters z1..d .

Each method argument e j must have type θ(t j ), and the return type θ(t) must be well-formed. In addition, the
constraint θ(s′) ⊆ s ensures that all locks specified in the requires set s′ are held at this call site.

The rule [EXP NEW] for an object creation expression newy cn〈l1..n〉(e1..k) first retrieves the corresponding class
declaration

class cn〈ghost x1..n〉 { field1..k meth1..m }
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P; E; s , e : t & C̄

[EXP NULL]

P; E , t & C̄
P; E; s , null : t & C̄

[EXP VAR]
P , E & C̄

E = E1, t x, E2

P; E; s , x : t & C̄

[EXP SYNC]
P; E; s , x : t ′ & C̄

P; E; s ∪ {x} , e : t & C̄ ′

P; E; s , synchronized x e : t & (C̄ ∪ C̄ ′)

[EXP REF]
P; E; s , e : cn〈l1..n〉 & C̄

class cn〈ghost x1..n〉
{. . . t fn guarded by l . . .} ∈ P

θ = [this := e, x j := l j
j∈1..n]

P; E , θ(t) & C̄ ′

P; E; s , e.fn : θ(t) & (C̄ ∪ C̄ ′ ∪ {θ(l) ∈ s})

[EXP ASSIGN]
P; E; s , e : cn〈l1..n〉 & C̄

class cn〈ghost x1..n〉
{. . . t fn guarded by l . . .} ∈ P

θ = [this := e, x j := l j
j∈1..n]

P; E , e′ : θ(t) & C̄ ′

P; E; s , e.fn = e′ : θ(t) & (C̄ ∪ C̄ ′ ∪ {θ(l) ∈ s})

[EXP INVOKE]
P; E; s , e : cn〈l1..n〉 & C̄

class cn〈ghost x1..n〉 {. . . t mn〈ghost y1..k〉(t j z j∈1..d
j ) requires s′ { e′ } . . .} ∈ P

θ = [this := e, xi := li i∈1..n, yi := l′i
i∈1..k, zi := ei

i∈1..d ]
P; E; s , e j : θ(t j ) & C̄ j ∀ j ∈ 1..d

P; E , θ(t) & C̄ ′

C̄ ′′ = C̄ ∪ C̄1..d ∪ C̄ ′ ∪ {θ(s′) ⊆ s}
P; E; s , e.mn〈l′1..k〉(e1..d) : θ(t) & C̄ ′′

[EXP NEW]
θ = [x j := l j

j∈1..n, this := y]
P; E, ghost y; s , ei : θ(ti ) & C̄i ∀i ∈ 1..k
class cn〈ghost x1..n〉 { field1..k meth1..m } ∈ P

fieldi = ti fni guarded by l ′i ∀i ∈ 1..k
P; E , cn〈l1..n〉 & C̄ ′

C̄ ′′ = C̄1..k ∪ C̄ ′ ∪ {l1 ∈ dom(E), . . . , ln ∈ dom(E)}
P; E; s , newy cn〈l1..n〉(e1..k) : cn〈l1..n〉 & C̄ ′′

[EXP LET]

P; E; s , e1 : t1 & C̄1
P; E, t x; s , e2 : t2 & C̄2

θ = [x := e1]
P; E , θ(t2) & C̄3

C = (C̄1 ∪ C̄2 ∪ C̄3)

P; E; s , let x = e1 in e2 : θ(t2) & C

[EXP FORK]
P; E; s , e : cn〈l1..n〉 & C̄

class cn〈ghost x1..n〉 {. . . meth . . .} ∈ P
meth = t ′ run〈ghost thread lock〉()

requires thread lock { e′ }
P; E; s , e.fork : t & C̄

[EXP TYPE EQ]

P; E; s , e : cn〈l1..n〉 & C̄
P; E , cn〈l′1..n〉 & C̄ ′

C̄ ′′ = C̄ ∪ C̄ ′ ∪ {l1 = l′1, . . . , ln = l′n}
P; E; s , e : cn〈l′1..n〉 & C̄ ′′

Fig. 3. Type rules, part I.
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P; E , t & C̄

[TYPE C]
P , E & C̄

class cn〈ghost x i∈1..n
i 〉 . . . ∈ P

C̄ ′ = C̄ ∪ {li ∈ dom(E) i∈1..n}
P; E , cn〈l1..n〉 & C̄ ′

P , E & C̄

[ENV EMPTY]

P , ∅ & ∅

[ENV X]

P; E , t & C̄
x /∈ dom(E)

P , E, t x & C̄

[ENV GHOST]

P , E & C̄
x /∈ dom(E)

P , E, ghost x & C̄

P; E , meth & C̄

[METHOD]
E ′ = E, ghost x1..n, arg1..d

P; E ′; s , e : t & C̄
C̄ ′ = C̄ ∪ {s ⊆ dom(E ′)}

s is either {y1, . . . , yk} or β

P; E , t mn〈ghost x1..n〉(arg1..d) requires s { e } & C̄ ′

P; E , field & C̄

[FIELD]

P; E , t & C̄
C̄ ′ = C̄ ∪ {l ∈ dom(E)}

P; E , t fn guarded by l & C̄ ′

P , defn & C̄

[CLASS]

defn = class cn〈ghost x1..n〉{ field1.. j meth1..k}
E = ghost x1..n, cn〈x1..n〉 this
P; E , fieldi & C̄i ∀i ∈ 1.. j
P; E , methi & C̄ ′i ∀i ∈ 1..k

C̄ = C̄1.. j ∪ C̄ ′1..k

P , defn & C̄

P , C̄

[PROG]
no class is declared twice in P

no field name appears more than once per class
no method name appears more than once per class

P = defn1..n e
P , defni & C̄i ∀i ∈ 1..n

P; ghost main lock; {main lock} , e : t & C̄
P , C̄1..n ∪ C̄

Fig. 4. Type rules, part II.

The substitution θ = [x j := l j
j∈1..n, this := y] then replaces the ghost parameters to cn with the actual arguments

for the given instantiation, and it replaces occurrences of the self-reference this by y. In effect, this rule uses the
name y as a placeholder for the object that is about to be constructed. The rule checks that each field initialization
expression ei has the appropriate type θ(ti ) and that each lock l1..n is in scope.

The rule [EXP LET] for let x = e1 in e2 checks the body e2 in an environment extended with a binding for x .
Note that t2, the type of e2, may refer to x . Thus, the rule assigns to the whole let expression the type t2[x := e1]
in order to prevent x from escaping its scope. The rule [EXP FORK] for e.fork ensures that e contains a run method
with the signature:

t ′ run〈ghost thread lock〉() requires thread lock { e′ }

This signature contains a special ghost parameter named thread lock. This lock is held throughout the entire lifetime
of the new thread, and so may be used to protect data local to this thread.

Fig. 4 includes judgments and rules to determine whether types, methods, fields, environments, and classes are
well-formed. The rule [METHOD] states that a method is well-formed if its body has the declared return type when
checked in an environment extended with the method’s ghost and normal parameters. The requires clause must
also be either a set of valid lock names {y1, . . . , yk} or a lock set variable β. The rule [FIELD] states that a field is
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well-formed if its type is well-formed and its protecting lock is a valid lock name. The rule [CLASS] ensures that all
fields and methods of a class definition are well-formed.

The rule [PROG] defines the top-level judgment P , C̄ , where C̄ is the generated set of constraints for the program
P . Applying these type rules to the example program Ref of Fig. 2(a) yields the constraints shown in Fig. 2(b). (We
ignore main lock in this example for simplicity.)

In previous work, we proved the soundness of a somewhat more complex type system for preventing race
conditions [13]. The soundness of RFJ2 could be established via a similar argument, but is omitted here for brevity.

2.4. Constraint satisfiability

We next address the question of how to solve the generated constraints C̄ over the locking variables. An assignment

A : (LockVar → Var) ∪ (LockSetVar → 2Var)

resolves lock and lock set variables to corresponding program variables and sets of program variables, respectively.
We extend assignments in a straightforward manner to lock expressions, lock set expressions, and substitutions, as
follows. In particular, since an assignment resolves all locking variables, any delayed substitutions can be immediately
performed.

A : l → Var
A(x) = x

A(l · θ) = A(θ)(A(l))

A : s → 2Var

A(∅) = ∅
A({l}) = {A(l)}

A(s1 ∪ s2) = A(s1) ∪ A(s2)

A(s · θ) = A(θ)(A(s))

A : θ → θ

A([x1 := l1, . . . , xn := ln]) = [x1 := A(l1), . . . , xn := A(ln)]
We extend assignments in a compatible manner to other syntactic units, such as constraints, expressions, programs,
etc.

An assignment A satisfies a constraint C (written A |1 C) as follows:

A |1 s1 ⊆ s2 iff A(s1) ⊆ A(s2)

A |1 l1 = l2 iff A(l1) = A(l2)

If A |1 C for all C ∈ C̄ then A is a solution for C̄ , written A |1 C̄ . A set of constraints C̄ is valid, written |1 C̄ , if
every assignment is a solution for C̄ . For example, the constraints of Fig. 2(b) for the program Ref are satisfied by the
assignment:

α1 = α2 = x
α3 = α4 = lock
β = {x}

A program P is well-typed if P , C̄ and the constraints C̄ are satisfiable. If a solution A for the constraints C̄ exists,
the following lemmas show that the explicitly typed program A(P) yields the constraint set A(C̄), and furthermore,
that this constraint set A(C̄) is valid. Hence, the explicitly typed program A(P) is well-typed.

Lemma 1. If P , C̄ then A(P) , A(C̄).

Proof. See Appendix A. !

Lemma 2. Given an assignment A and constraints C̄, A |1 C̄ iff |1 A(C̄).

Proof. See Appendix A. !

Theorem 3. If P , C̄ and A |1 C̄ then A(P) , A(C̄) and |1 A(C̄).
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Proof. Follows from Lemmas 1 and 2. !

For explicitly typed programs, the generated constraints C̄ do not contain locking variables, and so checking the
satisfiability of C̄ is straightforward. In the more general case where P is not explicitly typed, the type inference
problem involves searching for a solution A for the generated constraints C̄ . Due to the interaction between
parameterized classes and dependent types, the type inference problem for RFJ2 (and similarly for rccjava) is NP-
complete.

Theorem 4. For an arbitrary RFJ2 program P, the problem of finding an assignment A such that A(P) is explicitly
typed and well-typed is NP-complete.

Proof. By a reduction of the propositional satisfiability problem into the type inference problem, as shown in
Appendix B. !

Despite this worst-case complexity result, the next section presents a type inference algorithm for RFJ2 that has
proven effective in practice.

3. Solving constraint systems

3.1. Generating Boolean constraints

The type rules generate constraints over the various locking variables mentioned in the program. For each lock
variable α, these constraints include a scope constraint α ∈ {x1, . . . , xn} that constrains α to be one of the variables
in scope where α is mentioned. A similar constraint β ⊆ {x1, . . . , xn} is introduced for each lock set variable β.
These scope constraints allow us to use Boolean variables to encode the possible choices for each locking variable. A
conditional lock expression L is a either a variable x or a conditional expression b? L1 : L2, which denotes L1 if the
Boolean variable b is true, and denotes L2 otherwise. A conditional lock set expression S is either the empty set, a set
union, a singleton set, or a conditional expression b? S1 : S2. A Boolean constraint D is either an equality constraint
between conditional lock expressions, or a subset constraint between conditional lock set expressions.

b ∈ BoolVar (Boolean variables)
L ::= x | b? L1 : L2 (conditional lock expressions)
S ::= ∅ | {L} | S ∪ S | b? S1 : S2 (conditional lock set expressions)

D ::= S ⊆ S | L = L (Boolean constraints)

We now describe how to translate the constraints C̄ into an equivalent set of Boolean constraints D̄. From the scope
constraints in C̄ , we generate a conditional assignment

Y : (LockVar → L) ∪ (LockSetVar → S)

that encodes the possible choices for each locking variable using fresh Boolean variables. For example, the scope
constraints α ∈ {x1, . . . , xn} and β ⊆ {y1, . . . , ym} yield2:

Y (α) = b1?x1 : (b2?x2 : (. . . bn−1?xn−1 : xn) . . .)

Y (β) = (b′
1?{y1} : ∅) ∪ · · · ∪ (b′

m?{ym} : ∅)

We extend the conditional assignment Y to translate lock expressions to conditional lock expressions, lock set
expressions to conditional lock set expressions, and to translate each constraint C to a Boolean constraint D = Y (C),
as follows. Since the conditional assignment resolves locking variables, as part of this translation we immediately
apply any delayed substitutions, to yield a substitution-free Boolean constraint:

2 We could encode the choice for the first constraint as a decision tree with only log n Boolean variables. Our implementation uses this alternative
to minimize the number of variables introduced during translation.
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Y : l → L
Y (x) = x

Y (l · θ) = Y (θ)(Y (l))

Y : C → D
Y (s1 ⊆ s2) = Y (s1) ⊆ Y (s2)

Y (l1 = l2) = Y (l1) = Y (l2)

Y : s → S
Y (∅) = ∅

Y ({l}) = {Y (l)}
Y (s1 ∪ s2) = Y (s1) ∪ Y (s2)

Y (s · θ) = Y (θ)(Y (s))

Y ([x1 := l1, . . . , xn := ln]) =
[x1 := Y (l1), . . . , xn := Y (ln)]

Fig. 2(c) and (d) show the conditional assignment and Boolean constraints for the example program Ref.

3.2. Satisfiability of Boolean constraints

A truth assignment

B : BoolVar ⇀ Boolean

assigns truth values to Boolean variables. We extend truth assignments from Boolean variables to conditional lock
expressions (L) and conditional lock set expressions (S) as follows.

B : L → Var
B(x) = x

B(b? L1 : L2) =
{

B(L1) if B(b)

B(L2) if ¬B(b)

B : S → 2Var

B(∅) = ∅
B({L}) = {B(L)}

B(b? S1 : S2) =
{

B(S1) if B(b)

B(S2) if ¬B(b)

B(S1 ∪ S2) = B(S1) ∪ B(S2)

A truth assignment B satisfies a Boolean constraint D as follows:

B |1 S1 ⊆ S2 iff B(S1) ⊆ B(S2)

B |1 L1 = L2 iff B(L1) = B(L2)

Similarly, B satisfies a set of Boolean constraints D̄ if B |1 D for each D ∈ D̄. For example, the Boolean constraints
of Fig. 2(d) are satisfied by the truth assignment:

B(b1) = B(b2) = B(b4) = B(b6) = false
B(b3) = B(b5) = true

The application of a truth assignment B to a conditional assignment Y yields the (unconditional) assignment B(Y ),
defined as:

B(Y ) : (LockVar → Var) ∪ (LockSetVar → 2Var)
B(Y )(α) = B(Y (α))

B(Y )(β) = B(Y (β))

The translation from constraints to Boolean constraints is semantics preserving, in the sense that the original
constraints are also satisfiable if and only if the generated Boolean constraints are satisfiable.

Theorem 5. Suppose D̄ = Y (C̄) and let B be a truth assignment. Then B(Y ) |1 C̄ if and only if B |1 D̄.

Proof. See Appendix A. !

3.3. Solving Boolean constraints

The final step is to find a truth assignment B satisfying the generated Boolean constraints D̄. We accomplish this
step by translating D̄ into a Boolean formula F of the form:

F ::= true | false | b | F ∨ F | F ∧ F | ¬F
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Such Boolean formulas can be solved by a standard propositional satisfiability solver such as Chaff [14]. This
translation from Boolean constraints into Boolean formulas is as follows::

[[·]] : D̄ → F
[[D̄]] = ∧D∈D̄[[D]]

[[·]] : D → F
[[x = x]] = true
[[x = y]] = false if x /≡ y

[[L = (b?L1 : L2)]] = (b ∧ [[L = L1]]) ∨ (¬b ∧ [[L = L2]])
[[(b?L1 : L2) = L]] = [[L = (b?L1 : L2)]]

[[∅ ⊆ S]] = true
[[(S1 ∪ S2) ⊆ S]] = [[S1 ⊆ S]] ∧ [[S2 ⊆ S]]

[[(b?S1 : S2) ⊆ S]] = (b ∧ [[S1 ⊆ S]]) ∨ (¬b ∧ [[S2 ⊆ S]])
[[{L} ⊆ ∅]] = false

[[{L} ⊆ (b?S1 : S2)]] = (b ∧ [[{L} ⊆ S1]]) ∨ (¬b ∧ [[{L} ⊆ S2]])
[[{L} ⊆ (S1 ∪ S2)]] = [[{L} ⊆ S1]] ∨ [[{L} ⊆ S2]]

[[{L1} ⊆ {L2}]] = [[L1 = L2]]
To illustrate this translation, Fig. 2(e) presents the Boolean formulas for the four constraints from our example

program. This translation is semantics preserving with respect to the standard notion of satisfiability B |1 F for
Boolean formulas.

Theorem 6. If F = [[D̄]] then for all B, B |1 F if and only if B |1 D̄.

Proof. By structural induction on each D ∈ D̄.

In summary, given a program P with locking variables, our type inference algorithm:

(1) generates from P a collection of constraints C̄ over the locking variables;
(2) extracts a conditional assignment Y from C̄ ;
(3) generates Boolean constraints D̄ = Y (C̄);
(4) generates a corresponding Boolean formula F = [[D̄]];
(5) uses a propositional satisfiability solver to determine a truth assignment B for F (in the case where F is satisfiable);

and
(6) generates the explicitly typed program A(P), where the assignment A is given by A = B(Y ).

That the generated program A(P) is well-typed follows from Theorem 3, since B |1 D̄ by Theorem 6 and A |1 C̄ by
Theorem 5. Conversely, if the generated formula F is unsatisfiable, then there is no assignment A such that A(P) is
well-typed.

4. Implementation

We have implemented our type inference algorithm in the Rcc/Sat checker. This checker supports the full Java
programming language, although it does not currently detect race conditions on array accesses. It takes as input an
unannotated or partially annotated program, where any typing annotations are provided in comments starting with
“#”, as in /*# guarded by y */.

Rcc/Sat proceeds by first adding a predetermined number of ghost parameters to classes and methods lacking
user-specified parameters. Next, for each unguarded, non-volatile field, Rcc/Sat adds the annotation guarded by α,
where α is fresh. Rcc/Sat also adds any missing requires annotations and ghost parameters, again using fresh
locking variables. Rcc/Sat then applies our type inference algorithm. If the generated constraints are satisfiable, then
the satisfying assignment is used to generate an explicitly typed version of the program. If the generated constraints
are not satisfiable, Rcc/Sat reports the potential synchronization problems to the user, as described in Section 4.2
below.
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4.1. Java features

The RFJ2 type system extends in a fairly natural manner to the full Java language. In this section, we highlight a
few of the more interesting and substantial extensions.

Scope constraints. In the RFJ2 language, the only valid lock expressions are variables in scope. In real Java
programs, however, more complex lock expressions are often used. For example, the following declaration uses the
lock expression this.lock:

class Counter {
final Object lock = new Object();
int num /*# guarded_by this.lock */;
...

}

If Rcc/Sat only considered variable names when constructing the scope constraints, we could not infer the guarded by
annotation for this program, since this.lock would not be included in the scope constraint for the num field. To
handle cases like this, we extend the definition of valid lock names to be any final object references. This set of
expressions includes:

(1) this;
(2) ghost parameters;
(3) final variables;
(4) final static fields; and
(5) field dereferences of the form e. f , where e is a final object reference expression and f is a final field.

Rcc/Sat generates the set of expressions matching this characterization while constructing scope constraints. Since
this set may be infinite, we heuristically limit it to expressions with at most two field accesses.

Inheritance, subtyping, and interfaces. Given the declaration

class C〈ghost a1, . . . , an〉 extends D〈ghost b1, . . . , bk〉 { . . . }

we consider the type instantiation C〈l1..n〉 to be an immediate subtype of D〈m1..k〉 provided mi ≡ bi [a j := l j
j∈1..n]

for all i ∈ 1..k. The subtyping relation is the reflexive and transitive closure of this rule. The signature of an overriding
method must match that of the overridden form, after applying the type parameter substitutions induced by the
inheritance hierarchy. Interfaces are handled similarly.

Inner classes. Non-static inner classes may access the type parameters from the enclosing class and may declare their
own parameters. Thus, the complete type for such a class is Outer〈l1..n〉.Inner〈m1..k〉.

Static fields and methods. Static members may not refer to type parameters of the enclosing class since static
members are not associated with a specific instantiation of the class.

Thread objects. To allow Thread objects to store thread-local data in their fields, Rcc/Sat adds an implicit final
field thread lock to each Thread class. This field is analogous to (and replaces) the ghost parameter on the
run method in RFJ2. It may guard other fields, and it is assumed to be held when run is invoked. A potential
for unsoundness exists if multiple threads invoke the run method on the same object concurrently, although this
unsoundness could be removed with additional static analyses or dynamic checks.

Escape mechanisms. We provide an escape from the RFJ2 type system through a “no warn” annotation that
suppresses the generation of constraints for a line of code. Also, since ghost parameters are erased at run time, the
ghost parameters in typecasts of the form (C〈a〉)x are unchecked, as in C, rather than dynamically checked, as in
Java. The soundness guarantees of our type system do not apply when these mechanisms are used.
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4.2. Reporting errors

We introduce two important improvements to our type inference algorithm that enable Rcc/Sat to pinpoint likely
errors in the program when the generated constraints are unsatisfiable.

Identifying field declarations with race conditions. Rcc/Sat checks each field declaration separately, in order to
identify fields with potential race conditions. To check a particular field declaration, Rcc/Sat generates the constraints
as before, except that it only adds field access constraints for accesses to this field. If the resulting constraints are
satisfiable, then this field is race-free.

There is a possibility that a type instantiation C〈α〉 of a class C〈ghost x〉 will yield different solutions, say C〈l1〉
and C〈l2〉, when checking different fields. In this case, we can compose the results of the separate analyses by
introducing additional type parameters in to the class declaration, such as C〈ghost x1, x2〉, and instantiating the
class as C〈l1,l2〉 at the conflicting location.

Identifying field accesses with race conditions. When there are race conditions on a field, it is often desirable to
infer the most likely lock protecting that field and to generate errors for accesses where that lock is not held. Consider,
for example, the following program, which has a race condition on the field c:

1: class C〈ghost y〉 {
2: int c guarded by α;
3: void f1() requires y { c = 1; }
4: void f2() requires y { c = 2; }
5: void f3() requires this { c = 3; }
6: }

Our tool could produce an error indicating that no valid guard for the field c exists:

C.java:2: No consistent protecting lock for field ’c’.

However, a more useful warning would identify the single field access that violates the most likely locking discipline:

C.java:5: Lock ’y’ not held on access to ’c’.
Locks held: { this }.

To pinpoint likely error locations, we express type inference as a MAX-SAT optimization problem over weighted
constraints, instead of a SAT decision problem. A weighted constraint W = C |w associates a weight w with a
constraint C . The MAX-SAT optimization problem is, given regular constraints C̄ and weighted constraints W̄ , to
compute the optimal assignment A that (1) satisfies all constraints in C̄ and (2) maximizes the sum:

∑
{w | C |w ∈ W̄ ∧ A |1 C}

For the example program above, we generate the following collection of regular and weighted constraints:

α ∈ {y, this, no lock} Scope constraint for c
α ∈ {y, this} |5 Requirement that c is guarded by a valid lock
α ∈ {y, no lock} |2 Access constraint for c from f1
α ∈ {y, no lock} |2 Access constraint for c from f2
α ∈ {this, no lock} |2 Access constraint for c from f3

The lock name no lock is used by the checker to indicate that no reasonable guarding lock can be found for a field.
The first (regular) constraint asserts that the guard for c is visible at the field declaration; the second (weighted)
constraint asserts that the guard for c is a real lock and not no lock; and the last three (weighted) constraints assert
that the lock is held on each access.

For these constraints, the maximal solution A is the assignment α = y, with a value of 9. We then generate error
messages for all constraints in W̄ that are not satisfied by A. Specifically, the constraint α ∈ {this, no lock} |2
is not satisfied by this maximal assignment A, which results in the above warning message for the field access at
line 5. Conversely, if the optimal assignment did not satisfy the constraint α ∈ {y, this} |5, we would generate the
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corresponding error message:

C.java:2: No consistent protecting lock for field ’c’.

Rcc/Sat assigns constraints for field declarations the weight 5 and constraints for field accesses the weight 2.
Therefore, Rcc/Sat reports potential race conditions on accesses to a field if that field has fewer than three race
conditions under the most likely protecting lock. If a field has three or more race conditions under any potential
protecting lock, Rcc/Sat reports a “no consistent protecting lock” warning on the field declaration. We have found that
this heuristic works well in practice.

We solve the MAX-SAT constraint optimization problem over W̄ and C̄ by translating it into the input for
the tool PBS [4]. The translation is similar to the case without weights. PBS can find optimal assignments for
formulas including up to 50–100 weighted clauses. Optimizing over a larger number of weighted clauses is currently
computationally intractable. Thus, we still check one field at a time and only optimize over constraints generated by
field accesses, placing all constraints for requires clauses and type equality in C̄ . If C̄ is not satisfiable, we forego
the optimization step and instead generate error messages for constraints in the smallest unsatisfiable core of C̄ , which
we find with Chaff [14].

4.3. Improving precision

Rcc/Sat implements a somewhat more expressive type system than that described in Section 2 to handle the
synchronization patterns of large programs more effectively. In particular:

• Unreachable code is not type checked.
• Read-shared fields do not need guarding locks. A read-shared field is a field that is initialized while local to its

creating thread, and subsequently shared in read-only mode among multiple threads.
• A field’s protecting lock need not be held for accesses occurring when only a single thread exists or when the object

has not escaped its creating thread.

The checker currently uses quite basic implementations of rapid type analysis [15], escape analysis [16], and control-
flow analysis for this step. Using more precise analyses would further improve our type inference algorithm.

5. Evaluation

We applied Rcc/Sat to eight benchmark programs: elevator, a discrete event simulator [17]; tsp, a Traveling
Salesman Problem solver [17]; sor, a scientific computing program [17]; the mtrt ray-tracing program and jbb
business objects simulator benchmarks [18]; and the moldyn, montecarlo, and raytracer benchmarks [19]. We
ran these experiments on a 3.06 GHz Pentium 4 processor with 2 GB of memory, with Rcc/Sat configured to insert
one ghost parameter on classes, interfaces, and instance methods and two parameters on static methods. The checker
assumes no race conditions occur in library code called from the benchmark programs.

Table 1 shows, for each benchmark, the size in lines of code, the overall time for type inference, and the average
type inference time per field. It also shows the size of the constraint problem generated, in number of constraints and
the number of variables and clauses in the resulting Boolean formula, after conversion to CNF.3

We include performance measurements for two different underlying solvers, the Chaff SAT solver [14] and the
PBS weighted MAX-SAT solver [4]. The running times for Rcc/Sat with Chaff are significantly better because Chaff
solves a SAT problem (rather than a weighted MAX-SAT problem). Also, Rcc/Sat takes advantage of several features
of Chaff. First, Rcc/Sat uses Chaff’s incremental solving interface to solve the many near-identical SAT problems
generated when processing fields one at a time. Second, Chaff can run in the same process as Rcc/Sat, avoiding the
need to communicate to the solver via files. In contrast, when using PBS to solve weighed MAX-SAT problems to
generate precise error messages, writing and reading these files accounts for up to 25%–35% of Rcc/Sat’s running
time. While these differences make it difficult to directly compare the performance of Chaff and PBS in this setting,
they do illustrate some of the engineering and performance trade-offs in the design of Rcc/Sat.

3 The measurements differ from our preliminary results [20] due to various improvements in the Rcc/Sat implementation.
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Table 1
Benchmark programs

Program Size Time w/PBS (s) Time w/Chaff (s) Number SAT problem size
(LOC) Total per field Total per field of constraints variables clauses

elevator 529 3.3 0.14 2.9 0.12 267 1,449 3,831
tsp 723 4.4 0.11 3.16 0.08 286 1,846 5,183
sor 687 2.6 0.08 2.4 0.07 117 679 400
raytracer 1,982 15.0 0.19 5.7 0.04 689 6,745 17,263
moldyn 1,408 8.4 0.07 4.4 0.04 816 2,352 4,713
montecarlo 3,674 17.9 0.15 7.9 0.07 820 6,515 15,020
mtrt 11,315 155.2 0.85 37.1 0.20 3,769 39,609 112,493
jbb 30,519 2022.5 2.56 343.1 0.43 11,148 96,130 259,352

Table 2
Results of Rcc/Sat inference

Program Number of manual annotations Fields
Total Read-shared Race-free No guard

elevator 0 23 17 6 0
tsp 3 37 21 13 3
sor 1 29 22 7 0
raytracer 2 77 45 28 4
moldyn 3 107 57 44 6
montecarlo 1 110 68 42 0
mtrt 6 181 114 63 4
jbb 40 787 472 295 20

When using Chaff on the larger benchmarks, the preliminary analyses described in Section 4.3 typically consumed
less than 5%–10% of the time. In general, Rcc/Sat spent roughly 4%–10% of the overall time performing the constraint
translations and 30%–60% of the overall time solving SAT problems. The remaining time was divided among standard
type checking, generating the initial constraints, and writing annotated versions of the code to disk.

In Table 2, the “Manual Annotations” column reflects the number of annotations manually inserted into each
program to guide the analysis. We added these few annotations to suppress warnings in situations where immediately
identifiable local properties ensured correctness. The manual annotations were inserted, for example, to delineate
single-threaded parts of the program; to explicitly instantiate classes in two places where the scope constraint
generation heuristics did not consider the appropriate locks; to declare classes as parameterized by more ghost
parameters than the default; and to identify thread-local object references not found by our escape analysis.

In jbb, we also added annotations to suppress spurious race condition warnings on roughly 25 fields with benign
races. These fields were designed to be write-protected [7], meaning that a lock protects write accesses, but read
accesses were not synchronized. This idiom is unsafe if misused but permits synchronization-free accessor methods.

The last four columns show the total number of fields in the program, as well as their breakdown into read-shared
fields, race-free fields, and unguarded fields. The analyses described in Section 4.3 reduced the number of unguarded
fields by 20%–75%, a significant percentage.

We also performed the same experiments with Rcc/Sat configured to insert zero or two type parameters for classes
instead of one. When no type parameters were added, the number of unguarded fields increased dramatically because
thread-local data could not be properly identified. When two parameters were added to each class (and three to static
methods), the results for jbb improved slightly over the standard configuration.

Rcc/Sat identified three fields in the tsp benchmark on which there are intentional races [21,7]. On raytracer,
Rcc/Sat identified a previously known race on a checksum field and reported spurious warnings on three fields. It also
identified a known race on a counter in mtrt. We believe that the remaining warnings for modlyn, mtrt, and jbb are
spurious and could be eliminated by inserting additional annotations or, in some cases, by improving the precision of
the additional analyses of Section 4.3.
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Overall, these results are quite promising. Manually inserting a small number of annotations enables Rcc/Sat to
verify that the vast majority (92%–100%) of fields are race-free. These results show a substantial improvement over
previous type inference algorithms for race-free type systems, such as Houdini/rcc.

6. Related work

Boyapati and Rinard have defined a race-free type system with a notion of object ownership [12]. They include
special owners to indicate thread-local data, thereby allowing a single class declaration to be used for both thread-local
instances and shared instances, which motivated some of our refinements in RFJ2. They present an intra-procedural
algorithm to infer ownership parameters for class instantiations within a method. This simpler intra-procedural context
yields equality constraints over lock variables, which can be efficiently solved using union-find. We believe it may
be possible to extend our inter-procedural type inference algorithm to accommodate ownership types. Grossman has
developed a race-free type system for Cyclone, a statically safe variant of C [22]. Cyclone has a number of additional
features, such as existential quantification and singleton types, and it remains to be seen how our techniques would
apply in this setting.

The requires annotations used in our type system essentially constrain the effects that the method may produce.
Thus, we are performing a form of effect reconstruction [23,24], but our dependent types are not amenable
to traditional effect reconstruction techniques. Similarly, the constraints of our type system do not exhibit the
monotonicity properties that permit polynomial time algorithms for other constraint-based analyses (see, for example,
Aiken’s survey [25]). Cardelli [26] was among the first to explore type checking for dependent types. Our dependent
types are comparatively limited in expressive power, but the resulting type checking and type inference problems are
decidable.

Eraser [27] is a tool for detecting race conditions in unannotated programs dynamically (though it may fail to
detect certain errors because of insufficient test coverage). Recent work extends the Eraser algorithm to handle
object-oriented programming language features [28] and to leverage static analysis for improved precision and
performance [29]. Agarwal and Stoller [30] present a dynamic type inference technique for the type system of
Boyapati and Rinard. Their technique extracts locking information from a program trace and then performs a static
analysis involving unique pointer analysis [31] and intra-procedural ownership inference [12] to construct annotations.
These dynamic analyses complement our static approach, and it may be possible to leverage their results to facilitate
type inference.

A variety of other approaches have been developed for race prevention; these include abstract interpretation [32],
dataflow analyses [33,34], model checking [35–38], and type systems for process calculi [39,40].

A common and significant problem with many type inference techniques is the inability to construct meaningful
error messages when inference fails (see, for example, [41–43]). An interesting contribution of our approach is that we
view type inference as an optimization problem over a set of constraints that attempts to produce the most reasonable
error messages for a program.

Heine and Lam [44] generate meaningful error messages for a constraint-based unique pointer analysis by solving
0-1 inequality constraints with a specialized tool that processes constraints incrementally, starting with those most
likely to be correct. One option for future work is to develop such a specialized solver for our constraints, which may
improve performance as well as error reporting.

7. Conclusions

This paper contributes a new type inference algorithm for race-free type systems, which is based on reduction
to propositional satisfiability. Our experimental results demonstrate that this approach works well in practice on
benchmarks of up to 30,000 lines of code. Extending this approach to significantly larger benchmarks remains an
issue for future work. We also demonstrate extensions to facilitate reliable error reporting.

We believe the resulting annotations and race-free guarantee provided by our type inference system have a range of
applications in the analysis, validation, and verification of multithreaded programs. In particular, they provide valuable
documentation to the programmer, they facilitate checking other program properties such as atomicity, and they can
help reduce state explosion in model checkers.
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Appendix A. Proofs

This section presents the proofs for the lemmas and theorems presented in the paper (except for Theorem 4, whose
proof is presented in Appendix B).

Restatement of Lemma 2. Given an assignment A and constraints C̄, A |1 C̄ iff |1 A(C̄).

Proof. Let A′ be an arbitrary assignment. We prove the lemma by case analysis by each C ∈ C̄ :

• Suppose C = (l1 = l2). Then

A |1 C
iff A(l1) = A(l2)
iff A′(A(l1)) = A′(A(l2)) by Lemma 7
iff A′ |1 (A(l1) = A(l2))
iff A′ |1 A(C)

• The case where C = (s1 ⊆ s2) follows by similar reasoning. !

The following technical lemma states that a lock expression l is insensitive to assignment application if it does not
contain any locking variables:

Lemma 7. Given assignments A and A′ and lock expression l, A′(A(l)) = A(l).

Proof. By case analysis on the structure of l. !

We next show that application of an assignment distributes over substitution.

Lemma 8. For any assignment A and substitution θ :

(1) A(θ(l)) = (A(θ))(A(l)) for all l.
(2) A(θ(s)) = (A(θ))(A(s)) for all s.
(3) A(θ(t)) = (A(θ))(A(t)) for all t .

Proof. The first two cases follow from the definition of the application of an assignment to a lock expression and a
lock set expression, respectively. The last case holds since t = cn〈l1, . . . , ln〉. !

The constraints generated for a program are related to the constraints generated for the same program after an
assignment has been applied, as follows.

Restatement of Lemma 1. If P , C̄ then A(P) , A(C̄).

Proof. We proceed by simultaneous induction over the following seven statements:

1. if P , C̄ then A(P) , A(C̄);
2. if P , defn & C̄ then A(P) , defn & A(C̄);
3. if P; E , t & C̄ then A(P); A(E) , A(t) & A(C̄);
4. if P , E & C̄ then A(P) , A(E) & A(C̄);
5. if P; E , field & C̄ then A(P); A(E) , A(field) & A(C̄);
6. if P; E , meth & C̄ then A(P); A(E) , A(meth) & A(C̄); and
7. if P; E; s , e : t & C̄ then A(P); A(E); A(s) , A(e) : A(t) & A(C̄).

Each statement follows by a case analysis. We show a few representative cases.
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• Consider statement (1). The only way to derive P , C̄ is by rule [PROG], based on the antecedents:

no class is declared twice in P
no field name appears more than once per class
no method name appears more than once per class
P = defn1..n e
P , defni & C̄i ∀i ∈ 1..n
P; ghost main lock; {main lock} , e : t & C̄ ′

where C̄ = C̄1..n ∪ C̄ ′. Since all field, class, and method names remain the same when constructing A(P) =
A(defn1..n) A(e), it is clear that the first three antecedents also hold for A(P). By the inductive hypotheses:

A(P) , A(defni ) & A(C̄i ) ∀i ∈ 1..n
A(P); A(ghost main lock); A({main lock}) , A(e) : A(t) & A(C̄ ′)

and we may conclude A(P) , A(C̄) by rule [PROG].
• Consider statement (5), and suppose

P; E , t fn guarded by l & C̄

is derived by the rule [FIELD] based on the antecedents P; E , t & C̄ ′ and C̄ = C̄ ′ ∪ {l ∈ dom(E)}. By the
inductive hypothesis, A(P); A(E) , A(t) & A(C̄ ′). By the rule [FIELD], we can conclude:

A(P); A(E) , A(t fn guarded by l) & A(C̄)

• Consider statement (7). We proceed by case analysis on the rules to conclude P; E; s , e : t & C̄ , and show a
representative case:

. [EXP REF]: In this case e = e′.fn, t = θ(t ′), and C̄ = C̄ ′′ ∪ C̄ ′ ∪ {θ(l) ∈ s} such that

P; E; s , e′ : cn〈l1..n〉 & C̄ ′′

class cn〈ghost x1..n〉 {. . . t′ fn guarded by l . . .} ∈ P
θ = [this := e′, x j := l j

j∈1..n]
P; E , θ(t ′) & C̄ ′

By the inductive hypotheses:

A(P); A(E); A(s) , A(e′) : cn〈A(l1..n)〉 & A(C̄ ′′)
A(P); A(E) , A(θ(t ′)) & A(C̄ ′)

Also, we know that

class cn〈ghost x1..n〉 {. . . A(t ′) fn guarded by A(l) . . .} ∈ A(P)

A(θ) = [this := A(e′), x j := A(l j )
j∈1..n]

Note that A(θ(t ′)) = (A(θ))(A(t ′)) and (A(θ(l)) = (A(θ))(A(l)) from Lemma 8. From these, we have

A(P); A(E) , (A(θ))(A(t ′)) & A(C̄ ′)
A(C̄) = A(C̄ ′′) ∪ A(C̄ ′) ∪ {(A(θ))(A(l)) ∈ A(s)}

and we can conclude that

A(P); A(E); A(s) , A(e′).fn : A(θ(t ′)) & A(C̄). !

Let ϕ = [x1 := L1, . . . , xn := Ln] be a conditional substitution that maps variables to conditional lock
expressions.

Lemma 9. For all boolean assignments B, conditional substitutions ϕ, conditional lock expressions L, and
conditional lock set expressions S:

(1) B(ϕ(L)) = B(ϕ(B(L))).
(2) B(ϕ(S)) = B(ϕ(B(S))).
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Proof. (1) By structural induction on L .
• If L = x , then

B(ϕ(B(L)))

= B(ϕ(B(x)))

= B(ϕ(x))

= B(ϕ(L))

• If L = b? L1 : L2, then, assuming B(b), have

B(ϕ(B(L)))

= B(ϕ(B(b? L1 : L2)))

= B(ϕ(B(L1)))

= B(ϕ(L1)) by induction
= B(b? ϕ(L1) : ϕ(L2))

= B(ϕ(L))

A similar argument holds if ¬B(b).
(2) The case for S is similar. !

Lemma 10. For all boolean assignments B, conditional assignments Y , lock expressions l, and lock set expressions
s:

(1) (B(Y ))(l) = B(Y (l)).
(2) (B(Y ))(s) = B(Y (s)).

Proof. (1) By structural induction on l.
• Suppose l = x . Then (B(Y ))(x) = x = B(Y (x)).
• Suppose l = α. Then (B(Y ))(α) = B(Y (α)) by the definition of B(Y ).
• Suppose l = l′ · θ . Then

(B(Y ))(l)
= (B(Y ))(l′ · θ)

= (B(Y )(θ))(B(Y )(l′))
= (B(Y )(θ))(B(Y (l′))) by induction
= (B(Y )(θ))(x) where x = B(Y (l′))
= (B(Y ))(θ(x)) by definition of the application of

an assignment B(Y ) to substitution θ

= B(Y (θ(x))) by induction

Similarly,

B(Y (l))
= B(Y (l′ · θ))

= B(Y (θ)(Y (l′)))
= B(Y (θ)(B(Y (l′)))) by Lemma 9

replacing ϕ and L with Y (θ) and Y (l′)
= B(Y (θ)(x)) by definition of x above
= B(Y (θ(x))) by definition of the application of

a conditional assignment Y to substitution θ

Hence (B(Y ))(l′ · θ) = B(Y (l′ · θ)).
(2) The proof for s is similar. !

Restatement of Theorem 5. Suppose D̄ = Y (C̄) and let B be a truth assignment. Then B(Y ) |1 C̄ if and only if
B |1 D̄.

Proof. By case analysis of each C ∈ C̄ .
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• Suppose C = (l1 = l2). Then

(B(Y )) |1 C
iff (B(Y )) |1 l1 = l2
iff (B(Y ))(l1) = (B(Y ))(l2)
iff B(Y (l1)) = B(Y (l2)) by Lemma 10
iff B |1 Y (l1) = Y (l2)
iff B |1 Y (l1 = l2)
iff B |1 Y (C)

• The case where C = (s1 ⊆ s2) follows by similar reasoning. !

Appendix B. Proof of Theorem 4

Restatement of Theorem 4. For an arbitrary RFJ2 program P, the problem of finding an assignment A such that
A(P) is explicitly typed and well-typed is NP-complete.

Proof. This follows from the following Lemmas 11 and 12, which show that propositional satisfiability is reducible to
type inference, and the fact that the type rules describe a syntax-directed type checker that can verify that an explicitly
annotated program is well-typed in polynomial time. !

We first show how to translate a propositional satisfiability problem into a RFJ2 type inference problem, and then
prove the correctness of this translation.

B.1. Translation

We start with a 3-SAT instance T with u variables v1, . . . , vu and n clauses:

d1,1 ∨ d1,2 ∨ d1,3
d2,1 ∨ d2,2 ∨ d2,3

...

dn,1 ∨ dn,2 ∨ dn,3

where each d j,k is either vi or ¬vi for some i . We assume no clause refers to any variable vi more than once.
Given such a 3-SAT instance T we generate a corresponding partially annotated program P such that P is typeable

if and only if T is satisfiable. Moreover, given an annotated version P ′ of P , we can generate a corresponding
satisfying assignment for T .

The program P contains the following classes Object and F:

class Object { }
class F〈ghost X〉 { }

In addition, for each clause j , we define a class C j in P . We use the lock variables γ j as placeholders for unknown
locks.

class C j〈ghost a1, a2, a3〉 {
Object y guarded by γi;
Object z1 guarded by a1;
Object z2 guarded by a2;
Object z3 guarded by a3;
F〈a1〉 w1 guarded by this;
F〈a2〉 w2 guarded by this;
F〈a3〉 w3 guarded by this;

}
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class S {
void m() requires ∅ {
let pi = new Object() // for i ∈ 1..u

ni = new Object()

c j = new C j〈α j,1, α j,2, α j,3〉 // for j ∈ 1..n

in {
// (a)
synchronized(pi, ni) // for j ∈ 1..n, k ∈ 1..3, i ∈ 1..u

{ c j.zk = null; } // such that d j,k ∈ {vi , ¬vi }

// (b)
synchronized(c j, c j ′) // for j, j ′ ∈ 1..n, k, k′ ∈ 1..3

{ c j.wk = c j ′.wk′; } // such that j /= j ′ and d j,k and d j ′,k′

// refer to the same variable

// (c)
synchronized(p j,1,p j,2,p j,3) // for j ∈ 1..n

{ c j.y = null; }
}

}
}

Fig. B.1. Class S generated from a 3-SAT instance.

Finally, P also contains the following class S appearing in Fig. B.1. In this definition, we use p j,k to refer to a
particular lock, depending on d j,k :

p j,k =
{
pi if di, j = vi
ni if di, j = ¬vi

In addition, we use the notation synchronized(e1, e2) { e } as an abbreviation for

synchronized(e1) { synchronized(e2) { e } }
In essence, the code in part (a) enforces that the lock α j,k corresponding to term d j,k is set to either pi or ni . It

will be pi if vi is true in the truth assignment we construct and ni if vi is false. Part (b) ensures that all type variables
corresponding to terms referring to the same variable are equal, i.e. the type variables for terms referring to vi are
either all pi or all ni . Part (c) ensures that at least one term in each clause of T is satisfied.

B.2. Correctness of the translation

Suppose we can infer valid locks for the resulting program. We construct the satisfying assignment for the variables
in the 3-SAT problem as follows. For all i ∈ 1..u,

vi =
{

true if there exist j, k such that d j,k is vi and γ j is ak
false otherwise

Lemma 11. This truth assignment satisfies T .

Proof. Consider any clause j . It must be that γ j ∈ {a1, a2, a3} because only locks external to class C j are held when
c j.y is accessed in the code for clause j in part (c). Suppose that γ j = ak. There are two cases to consider:

(1) Suppose d j,k is vi . Then vi = true and clause j is satisfied.
(2) Suppose d j,k is ¬vi .
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(a) If vi = false, then clause j is satisfied.
(b) Suppose vi = true. Then there exists j ′, k′ such that

γ j = ak ∧ d j,k = ¬vi
γ ′

j = ak′ ∧ d j ′,k′ = vi

These two lines imply that the following two statements appear in S:

synchronized(pi, ni) { c j.zk = null; }
synchronized(pi, ni) { c j ′.zk′ = null; }

Since no other locks besides pi and ni are held when c j.zk and c j ′.zk′ are accessed, we have that

α j,k ∈ {pi, ni}
α j ′,k′ ∈ {pi, ni}

Also, the type of c j.zk is F〈α j,k〉, and the type of c j ′.zk′ is F〈α j ′,k′ 〉. Since d j,k and d j ′,k′ refer to the same
variable, we have the following code

synchronized(c j, c j ′) { c j.wk = c j ′.wk′; }
From this, it must be that F〈α j,k〉 is the same type as F〈α j ′,k′ 〉. Therefore, α j,k = α j ′,k′ .

In addition, the following line must exist in m for clause j :

synchronized(p j,1,p j,2,p j,3) { c j.y = null; }
Since the field y in class C j is guarded by γ j and γ j = ak, the lock α j,k must be held when c j.y is

accessed in the statement above. Since d j,k = ¬vi , then ni is in the lock set {p j,1, p j,2, p j,3} However, pi is
not in this set since we assume no SAT clause contains both a variable and its negation. Therefore, α j,k = ni .

Similarly, the following line of code appears in m for clause j ′:

synchronized(p j ′,1,p j ′,2,p j ′,3) { c j ′.y = null; }
The lock α j ′,k′ must be held when c j ′.y is accessed in this statement. Since d j ′,k′ = vi , then pi is in the set
{p j,1, p j,2, p j,3}. However, ni is not in this set since we assume no clause contains both a variable and its
negation. Therefore, α j ′,k′ = pi .

But, α j,k = α j ′,k′ , and we have a contradiction. Thus, the case where d j,k is ¬vi and vi = true cannot
happen. !

Consider any satisfying truth assignment for T . We may construct an assignment to locking variables from this
truth assignment that shows P is typeable as follows. For all j ∈ 1..n,

γi = ak such that d j,k is true under the satisfying truth assignment.

Such a k must exist for each j . For all j, k,

α j,k =
{
pi if d j,k refers to vi and vi = true
ni if d j,k refers to vi and vi = false

Lemma 12. This assignment shows that P is typeable.

Proof. We consider the typing requirements for the method m in S and demonstrate that all guarded by and type
equality requirements are satisfied.

First, consider each statement of the form
synchronized(pi, ni) { c j.zk = null; }

where d j,k ∈ {vi , ¬vi }. The lock α j,k guards the field c j.zk and must be acquired before accessing c j.zk. If
vi = true, then α j,k = pi , and the field access is race-free since the code synchronizes on pi . Similarly, if vi = false,
then α j,k = ni , and the field access is race-free.

Next, consider each statement
synchronized(c j, c j ′) { c j.wk = c j ′.wk′; }
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class Object { }

class F〈ghost X〉 { }

class C1〈ghost a1,a2,a3〉 {
Object y guarded by γ1;
Object z1 guarded by a1;
Object z2 guarded by a2;
Object z3 guarded by a3;
F〈a1〉 w1 guarded by this;
F〈a2〉 w2 guarded by this;
F〈a3〉 w3 guarded by this;

}

class C2〈ghost a1 a2,a3〉 {
Object y guarded by γ2;
Object z1 guarded by a1;
Object z2 guarded by a2;
Object z3 guarded by a3;
F〈a1〉 w1 guarded by this;
F〈a2〉 w2 guarded by this;
F〈a3〉 w3 guarded by this;

}

class S {
void m() requires ∅ {
let p1 = new Object()

n1 = new Object()
p2 = new Object()
n2 = new Object()
p3 = new Object()
n3 = new Object()
c1 = new C j〈α1,1, α1,2, α1,3〉
c2 = new C j〈α2,1, α2,2, α2,3〉

in {
synchronized(p1,n1) { c1.z1=null; }
synchronized(p2,n2) { c1.z2=null; }
synchronized(p3,n3) { c1.z3=null; }
synchronized(p1,n1) { c2.z1=null; }
synchronized(p2,n2) { c2.z2=null; }
synchronized(p3,n3) { c2.z3=null; }

synchronized(c1,c2) { c1.w1=c2.w1; }
synchronized(c1,c2) { c1.w2=c2.w2; }
synchronized(c1,c2) { c1.w3=c2.w3; }

synchronized(p1,n2,p3) { c1.y=null;}
synchronized(n1,p2,p3) { c2.y=null;}

}
}

}

Fig. B.2. Program corresponding to the example SAT instance.

where d j,k and d j ′,k′ refer to the same variable vi . In this case, the typing requirements are that the locks guarding
the fields c j.wk and c j ′.wk′ are held, and that the types of c j.wk and c j ′.wk′ are equal. The locks are clearly held
since the code synchronizes on them. The type of c j.wk is F〈α j,k〉 and the type of c j ′.wk′ is F〈α j ′,k′ 〉. Given the
construction of the substitution above, α j,k and α j ′,k′ will either both be pi or both be ni .

Finally, consider each statement

synchronized(p j,1,p j,2,p j,3) { c j.y = null; }
The lock γ j guarding c j.y is ak, for some k such that d j,k is true under the truth assignment. Since c j is an
instantiation for C j , with lock argument α j,k for ak, the lock α j,k must be held when c j.y is accessed. There are
two cases:

(1) α j,k = pi : Then d j,k refers to vi and vi = true. Since d j,k must be true, d j,k = vi . Thus, p j,k = pi , and α j,k is
held inside the synchronized statement.

(2) α j,k = ni : Then d j,k refers to vi and vi = false. Since d j,k must be true, d j,k = ¬vi . Thus, p j,k = ni , and α j,k is
held inside the synchronized statement. !

B.3. Example

Consider the SAT problem:

v1 ∨ ¬v2 ∨ v3
¬v1 ∨ v2 ∨ v3

This SAT problem reduces to the type and effect inference problem for the program in Fig. B.2.
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The following substitution for lock variables converts that partially-typed program into a well-typed program.
(Other substitutions also exist.)

γ1 = a1
γ2 = a3

α1,1 = p1
α1,2 = n2
α1,3 = p3

α2,1 = p1
α2,2 = n2
α2,3 = p3

From this substitution we generate the truth assignment where v1 = true, v2 = false, and v3 = true. This truth
assignment satisfies the original 3-SAT problem.

It is also straightforward to construct substitutions for the type variables that make the program well-typed for any
satisfying assignment of the 3-SAT problem.
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