
A Type System for Object Initialization
In the JavaTM Bytecode Language∗

Stephen N. Freund John C. Mitchell
Department of Computer Science

Stanford University
Stanford, CA 94305-9045

{freunds, mitchell}@cs.stanford.edu

Abstract

In the standard Java implementation, a Java language
program is compiled to Java bytecode. This bytecode
may be sent across the network to another site, where it
is then interpreted by the Java Virtual Machine. Since
bytecode may be written by hand, or corrupted during
network transmission, the Java Virtual Machine con-
tains a bytecode verifier that performs a number of con-
sistency checks before code is interpreted. As illustrated
by previous attacks on the Java Virtual Machine, these
tests, which include type correctness, are critical for sys-
tem security. In order to analyze existing bytecode ver-
ifiers and to understand the properties that should be
verified, we develop a precise specification of statically-
correct Java bytecode, in the form of a type system.
Our focus in this paper is a subset of the bytecode lan-
guage dealing with object creation and initialization.
For this subset, we prove that for every Java bytecode
program that satisfies our typing constraints, every ob-
ject is initialized before it is used. The type system is
easily combined with a previous system developed by
Stata and Abadi for bytecode subroutines. Our anal-
ysis of subroutines and object initialization reveals a
previously unpublished bug in the Sun JDK bytecode
verifier.

1 Introduction

The Java programming language is a statically-typed
general-purpose programming language with an imple-
mentation architecture that is designed to facilitate
transmission of compiled code across a network. In

∗Supported in part by NSF grants CCR-9303099 and CCR-
9629754, ONR MURI Award N00014-97-1-0505, and a NSF Graduate
Research Fellowship.

To appear in OOPSLA ’98.

the standard implementation, a Java language pro-
gram is compiled to Java bytecode and this bytecode
is then interpreted by the Java Virtual Machine. While
many previous programming languages have been im-
plemented using a bytecode interpreter, the Java archi-
tecture differs in that programs are commonly transmit-
ted between users across a network in compiled form.

Since bytecode may be written by hand, or corrupted
during network transmission, the Java Virtual Machine
contains a bytecode verifier that performs a number
of consistency checks before code is interpreted. Fig-
ure 1 shows the point at which the verifier checks a
program during the compilation, transmission, and ex-
ecution process. After a class file containing Java byte-
codes is loaded by the Java Virtual Machine, it must
pass through the bytecode verifier before being linked
into the execution environment and interpreted. This
protects the receiver from certain security risks and var-
ious forms of attack.

The verifier checks to make sure that every opcode
is valid, all jumps lead to legal instructions, methods
have structurally correct signatures, and that type con-
straints are satisfied. Conservative static analysis tech-
niques are used to check these conditions. As a result,
many programs that would never execute an erroneous
instruction are rejected. However, any bytecode pro-
gram generated by a conventional compiler is accepted.
The need for conservative analysis stems from the un-
decidability of the halting problem, as well as efficiency
considerations. Specifically, since most bytecode is the
result of compilation, there is very little benefit in de-
veloping complex analysis techniques to recognize pat-
terns that could be considered legal but do not occur in
compiler output.

The intermediate bytecode language, which we re-
fer to as JVML, is a typed, machine-independent form
with some low-level instructions that reflect specific
high-level Java source language constructs. For exam-
ple, classes are a basic notion in JVML, and there is
a form of “local subroutine” call and return designed

Java

Compiler
Loader

Bytecode

Interpreter

class file

B.class

! ! !

"

"

"

#

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
.}

}

class A {
void f() {
...

A.java A.class

class file

Java Virtual Machine

Verifier

Linker

network

Trusted CodeUntrusted Code

Figure 1: The Java Virtual Machine

to allow efficient implementation of the source language
try-finally construct. While some amount of type in-
formation is included in JVML to make type-checking
possible, there are some high-level properties of Java
source code that are not easy to detect in the resulting
bytecode. One example is the last-called first-returned
property of the local subroutines. While this property
will hold for every JVML program generated by compil-
ing Java source, some effort is required to confirm this
property in bytecode programs [SA98].

Another example is the initialization of objects be-
fore use. While it is clear from the Java source language
statement

A x = new A(〈parameters〉)

that the A class constructor will be called before any
methods can be invoked through the pointer x, this is
not obvious from a simple scan of the resulting JVML
program. One reason is that many bytecode instruc-
tions may be needed to evaluate the parameters for the
call to the constructor. In the bytecode, these will be
executed after space has been allocated for the object
and before the object is initialized. Another reason, dis-
cussed in more detail in Section 2, is that the structure
of the Java Virtual Machine requires copying of point-
ers to uninitialized objects. Therefore, some form of
aliasing analysis is needed to make sure that an object
is initialized before it is used.

Several published attacks on early forms of the Java
Virtual Machine illustrate the importance of the byte-
code verifier for system security. To cite one specific

example, a bug in an early version of Sun’s bytecode
verifier allowed applets to create certain system objects
which they should not have been able to create, such
as class loaders [DFW96]. The problem was caused by
an error in how constructors were verified and resulted
in the ability to potentially compromise the security of
the entire system. Clearly, problems like this give rise
to the need for a correct and formal specification of
the bytecode verifier. However, for a variety of reasons,
there is no established formal specification; the primary
specification is an informal English description that is
occasionally at odds with current verifier implementa-
tions.

Building on a prior study of the bytecodes for local
subroutine call and return [SA98], this paper develops
a specification of statically-correct bytecode for a frag-
ment of JVML that includes object creation (alloca-
tion of memory) and initialization. This specification
has the form of a type system, although there are sev-
eral technical ways in which a type system for low-level
code with jumps and type-varying use of stack locations
(or registers) differs from conventional high-level type
systems. We prove soundness of the type system by
a traditional method using operational semantics. It
follows from the soundness theorem that any bytecode
program that passes the static checks will initialize ev-
ery object before it is used. We have examined a broad
range of alternatives for specifying type systems capa-
ble of identifying that kind of error. In some cases, we
found it possible to simplify our specification by being

2

more or less conservative than current verifiers. How-
ever, we generally resisted the temptation to do so since
we hoped to gain some understanding of the strength
and limitations of existing verifier implementations.

In addition to proving soundness for the simple lan-
guage, we have structured the main lemmas and proofs
so that they apply to any additional bytecode com-
mands that satisfy certain general conditions. This
makes it relatively straightforward to combine our anal-
ysis with the prior work of Abadi and Stata, showing
type soundness for bytecode programs that combine ob-
ject creation with subroutines. In analyzing the interac-
tion between object creation and subroutines, we have
identified a previously unpublished bug in the Sun im-
plementation of the bytecode verifier. This bug allows a
program to use an object before it has been initialized;
details appear in Section 7. Our type-based framework
also made it possible to evaluate various repairs to fix
this error and prove correctness for a modified system.

Section 2 describes the problem of object initializa-
tion in more detail, and Section 3 presents JVMLi,
the language which we formally study in this paper.
The operational semantics and type system for this lan-
guage is presented in Section 4. Some sound extensions
to JVMLi, including subroutines, are discussed in Sec-
tion 6, and Section 7 describes how this work relates to
Sun’s implementation. Section 8 discusses some other
projects dealing with bytecode verification, and Sec-
tion 9 gives directions for future work and concludes.

2 Object Initialization

As in many other object-oriented languages, the Java
implementation creates new objects in two steps. The
first step is to allocate space for the object. This usually
requires some environment-specific operation to obtain
an appropriate region of memory. In the second step,
user-defined code is executed to initialize the object. In
Java, the initialization code is provided by a constructor
defined in the class of the object. Only after both of
these steps are completed can a method be invoked on
an object.

In the Java source language, allocation and initial-
ization are combined into a single statement. This is
illustrated in the following code fragment.

Point p = new Point(3);
p.Print();

The first line indicates that a new Point object should
be created and calls the Point constructor to initialize
this object. The second line invokes a method on this
object and therefore can be allowed only if the object
has been initialized. Since every Java object is created
by a statement like the one in the first line here, it does

not seem difficult to prevent Java source language pro-
grams from invoking methods on objects that have not
been initialized. While there are a few subtle situations
to consider, such as when a constructor throws an ex-
ception, the issue is essentially clear cut.

It is much more difficult to recognize initialization-
before-use in bytecode. This can be seen by looking at
the five lines of bytecode that are produced by compiling
the preceding two lines of source code:

1: new #1 <Class Point>
2: dup
3: iconst_3
4: invokespecial #4 <Method Point(int)>
5: invokevirtual #5 <Method void Print()>

The most striking difference is that memory allocation
(line 1) is separated from the constructor invocation
(line 4) by two lines of code. The first intervening line,
dup, duplicates the pointer to the uninitialized object.
The reason for this instruction is that a pointer to the
object must be passed to the constructor. A convention
of parameter passing for the stack-based architecture is
that parameters to a function are popped off the stack
before the function returns. Therefore, if the address
were not duplicated, there would be no way for the code
creating the object to access it after it is initialized. The
second line, iconst 3 pushes the constructor argument
3 onto the stack. If p were used again after line 5 of
the bytecode program, another dup would have been
needed prior to line 5.

Depending on the number and type of constructor
arguments, many different instruction sequences may
appear between object allocation and initialization. For
example, suppose that several new objects are passed as
arguments to a constructor. In this case, it is necessary
to create each of the argument objects and initialize
them before passing them to the constructor. In gen-
eral, the code fragment between allocation and initial-
ization may involve substantial computation, including
allocation of new objects, duplication of object point-
ers, and jumps to or branches from other locations in
the code.

Since pointers may be duplicated, some form of alias-
ing analysis must be used. More specifically, when a
constructor is called, there may be several pointers to
the object that is initialized as a result, as well as point-
ers to other uninitialized objects. In order to verify code
that uses pointers to initialized objects, it is therefore
necessary to keep track of which pointers are aliases
(name the same object). Some hint for this is given by
the following bytecode sequence:

3

1: new #1 <Class Point>
2: new #1 <Class Point>
3: dup
4: iconst_3
5: invokespecial #4 <Method Point(int)>
6: invokevirtual #5 <Method void Print()>

When line 5 is reached during execution, there will be
two different uninitialized Point objects. If the byte-
code verifier is to check object initialization statically,
it must be able to determine which references point to
the object that is initialized at line 5 and which point
to the remaining uninitialized object. Otherwise, the
verifier would either prevent use of an initialized object
or allow use of an uninitialized one. (The bytecode pro-
gram above is valid and accepted by verifiers using the
static analysis described below.)

Sun’s Java Virtual Machine Specification [LY96] de-
scribes the alias analysis used by the Sun JDK verifier.
For each line of the bytecode program, some status in-
formation is recorded for every local variable and stack
location. When a location points to an object that is
known not to be initialized in all executions reaching
this statement, the status will include not only the prop-
erty uninitialized, but also the line number on which the
uninitialized object would have been created. As refer-
ences are duplicated on the stack and stored and loaded
in the local variables, the analysis also duplicates these
line numbers, and all references having the same line
number are assumed to refer to the same object.

When an object is initialized, all pointers that refer
to objects created at the same line number are set to
initialized. In other words, all references to uninitialized
objects of a certain type are partitioned into equivalence
classes according to what is statically known about each
reference, and all references that point to uninitialized
objects created on the same line are assumed to be
aliases. This is a very simple and highly conservative
form of aliasing analysis; far more sophisticated meth-
ods might be considered. However, the approach can be
implemented efficiently and it is sufficiently accurate to
accept bytecode produced by standard compilers.

Our specification of statically-correct Java bytecode
in Section 4 uses the same form of aliasing analysis as
the Sun JDK verifier. Since our approach is type based,
the status information associated with each reference is
recorded as part of its type.

One limitation of aliasing analysis based on line
numbers is that no verifiable program can ever be able
to reference two objects allocated on the same line,
without first initializing at least one of them. If this sit-
uation were to occur, references would exist to two dif-
ferent objects from the same static aliasing-equivalence
class. Unfortunately, there was an oversight in this re-
gard in the development of the Sun verifier, which al-

lowed such a case to exist (as of version 1.1.4). As
discussed in Section 7, aliasing based on line num-
bers makes it problematic for a subroutine to return
an uninitialized object.

3 JVMLi

This section describes the JVMLi language, a subset of
JVML encompassing basic constructs and object initial-
ization. Although this language is much smaller than
JVML, it is sufficient to study object initialization and
formulate a sound type system encompassing the static
analysis described above. The run-time environment
for JVMLi consists only of an operand stack and a fi-
nite set of local variables. A JVMLi program will be a
sequence of instructions drawn from the following list:

instruction ::= push 0 | inc | pop
| if L
| store x | load x
| new σ | init σ | use σ
| halt

where x is a local variable name, σ is an object type, and
L is an address of another instruction in the program.
Informally, these instructions have the following effects:

push 0: pushes integer 0 onto the stack.

inc: adds one to the value on the top of the stack, if
that value is an integer.

pop: removes the top element from the stack, provided
that the stack is not empty.

if L: if the top element on the stack is not 0, execu-
tion jumps to instruction L. Otherwise, execution
steps to the next sequential instruction. This as-
sumes that the top element is an integer.

store x: removes a value from the top of the stack and
stores it into local variable x.

load x: loads the value from local variable x and places
it on the top of the stack.

halt: terminates program execution.

new σ: allocates a new, uninitialized object of type σ
and places it on the stack.

init σ: initializes the object on top of the operand
stack, which must be a previously uninitialized ob-
ject obtained by a call to new σ. This represents
calling the constructor of an object. In this model,
we assume that constructors always properly ini-
tialize their argument and return. However, as
described in Section 6, there are several additional

4

properties which must be checked to verify that
constructors do in fact behave correctly.

use σ: performs an operation on an initialized object
of type σ. This is an abstraction of several op-
erations in JVML, including method invocation
(invokevirtual) and accessing an instance field
(putfield/getfield).

In each case, all explicit or implicit assumptions
must be satisfied in order for the statement to be ex-
ecuted. For example, a pop instruction cannot be ex-
ecuted if the stack is empty. The exact conditions re-
quired to execute each instruction are specified in the
definition of the operational semantics, in Section 4.3.
Although dup does not appear in JVMLi for simplicity,
aliasing may arise by storing and loading object refer-
ences from the local variables.

4 Operational and Static Semantics

4.1 Notation

This section briefly reviews the framework developed
by Stata and Abadi in [SA98] for studying JVML. We
begin with a set of instruction addresses Addr. Al-
though we shall use integers to represent elements of
this set, we will distinguish elements of Addr from in-
tegers. A program is formally represented as a partial
function from addresses to instructions. Dom(P) is the
set of addresses used in program P , and P [i] is the ith

instruction in program P . Dom(P) will always include
address 1 and is usually a range {1, . . . , n} for some n.

Equality on partial maps is defined as

f = g iff Dom(f) = Dom(g)∧∀y ∈ Dom(f). f [y] = g[y]

Update and substitution operations are also defined.
∀y ∈ Dom(f):

(f [x '→ v])[y] =
{

v if x = y
f [y] otherwise

([b/a]f)[y] = [b/a](f [y]) =
{

b if f [y] = a
f [y] otherwise

where a, b, and v range over the codomain of f . This
notation for partial maps will be used throughout this
paper.

Sequences will also be used. The empty sequence is
ε, and v · s represents placing v on the front of sequence
s. A sequence of one element, v · ε, will sometimes be
abbreviated to v. When convenient, we shall also treat
sequences as partial maps from positions to elements of
the sequence. For a sequence s, Dom(s) is the set of
indices into s, and s[i] is the ith element in s from the
right. Substitution is also defined on sequences, in the
same manner as substitution on partial maps.

4.2 Values and Types

The types will be integers and object types. For objects,
we assume there is some set T of possible object types.
These types include all class names to which a program
may refer. In addition, there is a set T̂ of types for
uninitialized objects. The contents of this set is defined
in terms of T :

σ̂i ∈ T̂ iff σ ∈ T ∧ i ∈ Addr

The type σ̂i is used for an object of type σ allocated on
line i of a program, until it has been initialized. Given
these definitions, JVMLi types are generated by the
grammar:

τ ::= Int | σ | σ̂i | Top

where σ ∈ T and σ̂i ∈ T̂ . The type Int will be used for
integers. We discuss the addition of other basic types in
Section 6. The type Top is the supertype of all types,
with any value of any type also having type Top. This
type will represent unusable values in our static analy-
sis. In general, a type meta-variable τ may refer to any
type, including any object type σ ∈ T or uninitialized-
object type σ̂i ∈ T̂ . In the case that a type meta-
variable is known to refer to some uninitialized object
type, we will write it as τ̂ , for example.

Each object type and uninitialized object type has a
corresponding infinite set of values which can be distin-
guished from values of any other type. For any object
type σ, this set of values is Aσ. Likewise, there is a set
of values Aσ̂i for all uninitialized object types σ̂i. In
our model, we only need to know one piece of informa-
tion for each object, namely, whether or not it has been
initialized. Therefore, drawing uninitialized and initial-
ized object “references” from different sets is sufficient
for our purposes, and we do not need to model an ob-
ject store. As we will see below, this representation has
some impact on how object initialization is modeled in
our operational semantics. Values of the form â or b̂
will refer to values known to be of some uninitialized
object type.

The basic type rules for values are:

v is a value
v : Top

n is an integer
n : Int

a ∈ Aτ , τ ∈ T ∪ T̂
a : τ

We also extend values and types to sequences:

ε : ε
a : τ s : α
a · s : τ · α

4.3 Operational Semantics

The bytecode interpreter for JVMLi is modeled using
the standard framework of operational semantics. Each

5

P [pc] = inc
P * 〈pc, f, n · s〉 → 〈pc + 1, f, (n + 1) · s〉

P [pc] = pop
P * 〈pc, f, v · s〉 → 〈pc + 1, f, s〉

P [pc] = push 0
P * 〈pc, f, s〉 → 〈pc + 1, f, 0 · s〉

P [pc] = load x
P * 〈pc, f, s〉 → 〈pc + 1, f, f [x] · s〉

P [pc] = store x
P * 〈pc, f, v · s〉 → 〈pc + 1, f [x '→ v], s〉

P [pc] = if L
P * 〈pc, f, 0 · s〉 → 〈pc + 1, f, s〉

P [pc] = if L
n += 0

P * 〈pc, f, n · s〉 → 〈L, f, s〉

P [pc] = new σ
â ∈ Aσ̂pc ,Unused(â, f, s)

P * 〈pc, f, s〉 → 〈pc + 1, f, â · s〉

P [pc] = init σ
â ∈ Aσ̂j

a ∈ Aσ,Unused(a, f, s)
P * 〈pc, f, â · s〉 → 〈pc + 1, [a/â]f, [a/â]s〉

P [pc] = use σ
a ∈ Aσ

P * 〈pc, f, a · s〉 → 〈pc + 1, f, s〉

Figure 2: JVMLi operational semantics.

instruction is characterized by a transformation of ma-
chine states, where a machine state is a tuple 〈pc, f, s〉
with the following meaning:

• pc is a program counter, indicating the address of
the instruction that is about to be executed.

• f is a total map from Var, the set of local vari-
ables, to the values stored in the local variables in
the current state.

• s is a stack of values representing the operand
stack for the current state in execution.

The machine begins execution in state 〈1, f0, ε〉. In this
state, the first instruction in the program is about to
be executed, the operand stack is empty, and the local
variables may contain any values. This means that f0

may map the local variables to any values.
Each bytecode instruction has one or more rules in

the operational semantics. These rules use the judg-
ment

P * 〈pc, f, s〉 → 〈pc′, f ′, s′〉

to indicate that a program P in state 〈pc, f, s〉 can
move to state 〈pc′, f ′, s′〉 in one step. The complete
one-step operational semantics for JVMLi is shown in
Figure 2. In that figure, n is any integer, v is any value,
L and j are any addresses, and x is any local variable.

These operational semantic rules, with the exception of
those added to study object initialization, are discussed
in detail in [SA98]. The rules have been designed so
that a step cannot be made from an illegal state. For
example, it is not possible to execute a pop instruction
when there is an empty stack.

The rules for allocating and initializing objects need
to generate object values not in use by the program.
The only values in use are those which appear on the
operand stack or in the local variables. Therefore, the
notion of being unused may be characterized by

(unused)

a +∈ s
∀y ∈ Var. f [y] += a

Unused(a, f, s)

When a new object is created, a currently unused
value of an uninitialized object type is placed on the
stack. The type of that value is determined by the ob-
ject type named in the instruction and the line number
of the instruction. When the value for an uninitial-
ized object is initialized by an init σ instruction, all
occurrences of that value are replaced by a new value
corresponding to an initialized object. In some sense,
initialization may be thought of as a substitution of a
new, initialized object for an uninitialized object. The
new value is required to be unused. This allows the
program to distinguish between different objects of the

6

(inc)

P [i] = inc
F i+1 = F i

Si+1 = Si = Int · α
i + 1 ∈ Dom(P)

F , S, i * P
(if)

P [i] = if L
F i+1 = FL = F i

Si = Int · Si+1 = Int · SL

i + 1 ∈ Dom(P)
L ∈ Dom(P)
F , S, i * P

(pop)

P [i] = pop
F i+1 = F i

Si = τ · Si+1

i + 1 ∈ Dom(P)
F , S, i * P

(push 0)

P [i] = push 0
F i+1 = F i

Si+1 = Int · Si

i + 1 ∈ Dom(P)
F , S, i * P

(load)

P [i] = load x
x ∈ Dom(Fi)
F i+1 = F i

Si+1 = F i[x] · Si

i + 1 ∈ Dom(P)
F , S, i * P

(store)

P [i] = store x
x ∈ Dom(Fi)

F i+1 = F i[x '→ τ]
Si = τ · Si+1

i + 1 ∈ Dom(P)
F , S, i * P

(halt)
P [i] = halt
F , S, i * P

(new)

P [i] = new σ
F i+1 = F i

Si+1 = σ̂i · Si

σ̂i +∈ Si

∀y ∈ Dom(F i). F i[y] += σ̂i

i + 1 ∈ Dom(P)
F , S, i * P

(init)

P [i] = init σ
F i+1 = [σ/σ̂j]F i

Si = σ̂j · α
Si+1 = [σ/σ̂j]α
j ∈ Dom(P)

i + 1 ∈ Dom(P)
F , S, i * P

(use)

P [i] = use σ
F i+1 = F i

Si = σ · Si+1

i + 1 ∈ Dom(P)
F , S, i * P

Figure 3: Static semantics.

7

same type after they have been initialized, but this fact
is not necessarily needed to study the properties ad-
dressed by this paper.

4.4 Static Semantics

A program P is well typed if there exist F and S such
that

F , S * P ,

where F is a map from Addr to functions mapping
local variables to types, and S is a map from Addr to
stack types such that Si is the type of the operand stack
at location i of the program. As described in [SA98],
elements in a map over Addr are accessed as F i instead
of F [i]. Thus, F i[y] is the type of local variable y at line
i of a program.

The Java Virtual Machine Specification [LY96] de-
scribes the verifier as both computing the type informa-
tion stored in F and S and checking it. However, we
assume that the information stored in F and S has al-
ready been computed prior to the type checking stage.
This simplifies matters since it separates the two tasks
and prevents the type synthesis from complicating the
static semantics. In other words, we only need to trust
the implementation of the type checker, and not the im-
plementation of the type inferencing part of the anal-
ysis. If the two stages are combined, as they are in
current implementations, a bad program could be ac-
cepted due to an error in the process of computing type
information. However, separating the two tasks pre-
vents the type checker from accepting a bad program
due to such an error.

The judgment which allows us to conclude that a
program P is well typed by F and S is

(wt prog)

F 1 = FTop

S1 = ε
∀i ∈ Dom(P). F , S, i * P

F , S * P

where FTop is a function mapping all variables in Var
to Top. The first two lines of (wt prog) constrain the
initial conditions for the program’s execution to match
the type of the values given to the initial state in the
operational semantics. The third line requires that each
instruction in the program is well typed according to the
local judgments presented in Figure 3.

The (new) rule in Figure 3 requires that the type
of the object allocated by the new instruction is left on
top of the stack. Note that this rule is only applicable
if the uninitialized object type about to be placed on
top of the type stack does not appear anywhere in F i

or Si. This restriction is crucial to ensure that we do
not create a situation in which a running program may

have two different values mapping to the same statically
computed uninitialized object type.

The rule for (use) requires an initialized object type
on top of the stack. The (init) rule implements the
static analysis method described in Section 2. The rule
specifies that all occurrences of the type on the top of
the stack are replaced by an initialized type. This will
change the types of all references to the object that is
being initialized since all those references will be in the
same static equivalence class, and, therefore, have the
same type.

Figure 4 shows a JVMLi program and the type infor-
mation demonstrating that it is a well-typed program
according to the rules in this section.

5 Soundness

This section outlines the soundness proof for JVMLi.
The main soundness theorem states that no well-typed
program will cause a run-time type error. Before stat-
ing the main soundness theorem, a one-step soundness
theorem is presented. One-step soundness implies that
any valid transition from a well-formed state leads to
another well-formed state.

Theorem 1 (One-step Soundness) Given P , F ,
and S such that F , S * P :

∀pc, f, s, pc′, f ′, s′.
P * 〈pc, f, s〉 → 〈pc′, f ′, s′〉
∧ s : Spc

∧ ∀y ∈ Var. f [y] : Fpc [y]
∧ ConsistentInit(F pc , Spc , f, s)

⇒ s′ : Spc′

∧ ∀y ∈ Var. f ′[y] : F pc′ [y]
∧ ConsistentInit(F pc′ , Spc′ , f ′, s′)
∧ pc′ ∈ Dom(P)

This theorem lists the four factors which dictate
whether or not a state is well formed. The values on
the operand stack must have the types expected by the
static type rules, and the local variable contents must
match the types in F . In addition, the program counter
must always be in the domain of the program. This
can be assumed on the left-hand side of the implication
since the operational semantics guarantee that transi-
tions can only be made if P [pc] is defined. If the pro-
gram counter were not in the domain of the program,
no step could be made.

The final requirement for a state to be well formed is
that it has the ConsistentInit property. Informally, this
property means that the machine cannot access two dif-
ferent uninitialized objects created on the same line of
code. As mentioned in Section 2, this invariant is criti-
cal for the soundness of this static analysis. The Consis-

8

i P [i] Fi[0] Si

1: new C Top ε
2: new C Top Ĉ1 · ε
3: store 0 Top Ĉ2 · Ĉ1 · ε
4: load 0 Ĉ2 Ĉ1 · ε
5: load 0 Ĉ2 Ĉ2 · Ĉ1 · ε
6: init C Ĉ2 Ĉ2 · Ĉ2 · Ĉ1 · ε
7: use C C C · Ĉ1 · ε
8: halt C Ĉ1 · ε

Figure 4: A JVMLi program and its static type information.

(cons init)
∀τ̂ ∈ T̂ . ∃b̂ : τ̂ . Corresponds(F i, Si, f, s, b̂, τ̂)

ConsistentInit(F i, Si, f, s)

(corr)

∀x ∈ Dom(F i). F i[x] = τ̂ =⇒ f [x] = b̂
StackCorresponds(Si, s, b̂, τ̂)
Corresponds(F i, Si, f, s, b̂, τ̂)

(sc 0)
StackCorresponds(ε, ε, b̂, τ̂)

(sc 1)
StackCorresponds(Si, s, b̂, τ̂)

StackCorresponds(τ̂ · Si, b̂ · s, b̂, τ̂)

(sc 2)

τ += τ̂
StackCorresponds(Si, s, b̂, τ̂)

StackCorresponds(τ · Si, v · s, b̂, τ̂)

Figure 5: The ConsistentInit judgement.

9

tentInit property requires a unique correspondence be-
tween uninitialized object types and run-time values.

Figure 5 presents the formal definition of Consistent-
Init. In that figure, F i is a map from local variables to
types, Si is a stack type. The judgment (cons init) is
satisfied only if every uninitialized object type τ̂ has
some value b̂ that Corresponds to it. The first line of
rule (corr) guarantees that every occurrence of τ̂ in the
static types of the local variables is matched by b̂ in the
run-time state. The second line of that rule uses an aux-
iliary judgment to assert the same property about the
stack type and operand stack inductively. Given this
invariant, we are able to assume that when an init in-
struction is executed, all stack slots and local variables
affected by the type substitution in rule (init) applied
to that instruction contain the object that is being ini-
tialized.

The proof of Theorem 1 is by case analysis on all
possible instructions at P [pc]. The proof of this theorem
and those that follow appear in the extended version of
this paper.

A complementary theorem is that a step can always
be made from a well-formed state, unless the program
has reached a halt instruction. This progress theorem
can be stated as:

Theorem 2 (Progress) Given P , F , and S such that
F , S * P :

∀pc, f, s.
s : Spc

∧ ∀y ∈ Var. f [y] : Fpc [y]
∧ ConsistentInit(F pc , Spc , f, s)
∧ pc ∈ Dom(P)
∧ P [pc] += halt

⇒ ∃pc′, f ′, s′. P * 〈pc, f, s〉 → 〈pc′, f ′, s′〉

Theorem 1 and Theorem 2 can be used to prove in-
ductively that a program beginning in a valid initial
state will always be in a well-formed state, regardless of
how many steps are made. In addition, a program will
never get stuck unless it reaches a halt in instruction.
When it does reach a halt instruction, the stack will
have the correct type, which is important since the re-
turn value for a program, or method in the full JVML,
is returned as the top value on the stack. The following
theorem captures this soundness property:

Theorem 3 (Soundness) Given P , F , and S such
that F , S * P :

∀pc, f0, f, s.
P * 〈1, f0, ε〉 →∗ 〈pc, f, s〉
∧ ¬∃pc′, f ′, s′. P * 〈pc, f, s〉 → 〈pc′, f ′, s′〉

⇒ P [pc] = halt
∧ s : Spc

If a program executing in our machine model attempts
to perform an operation leading to a type error, such as
using an uninitialized object, it would get stuck since
those operations are not defined by our operational se-
mantics. By proving that well-typed programs only get
stuck when a halt instruction is reached, we know that
well-typed programs will not attempt to perform any
illegal operations. Thus, this theorem implies that our
static analysis is correct by showing that no erroneous
programs are accepted. Therefore, no accepted program
uses an uninitialized object.

One technical point of interest is the asymmetry of
the checks in rule (corr). That rule requires that all
locations sharing type τ̂ contain the same value b̂, but
it does not require that all occurrences of b̂ map to the
type τ̂ in the static type information. We do not need to
check the other direction because the rule is used only in
the hypothesis of rule (cons init), where the condition
on the existential quantification of b̂ requires that b̂ : τ̂ .
Therefore, b̂ ∈ Aτ̂ , and the only types which we may
assign to b̂ are τ̂ and Top.

This allows us to assume that, as long as the stack
and local variables are well typed when rule (cons init)
is used, any occurrences of b̂ are matched by either τ̂ or
Top. Thus, with the exception of occurrences of Top,
the correspondence between b̂ and τ̂ holds in both di-
rections. The situation for Top introduces a special
case in the proofs but does not affect soundness, and
the asymmetric checks are sufficient to prove the sound-
ness of the system. If we were to change our model so
that object values could potentially have more than one
uninitialized object type, i.e. all uninitialized object ref-
erences are drawn from a single set, then we would need
to check both directions for the correspondence and ex-
plicitly deal with the special case for Top in the (corr)
judgment.

6 Extensions

Several extensions to the JVMLi framework described
in the previous sections have been studied. First, there
are additional static checks which must be performed on
constructors in order to guarantee that they do prop-
erly initialize objects. Section 6.1 presents JVMLc, an
extension of JVMLi modeling constructors. Another
extension, JVMLs, combining object initialization and
subroutines, is described in Section 6.2. Section 6.3
shows how any of these languages may be easily ex-
tended with other basic operations and primitive types.
The combination of these features yields a sound type
system covering the most complex pieces of the JVML
language.

10

6.1 JVMLc

The typing rules in Section 4 are adequate to check
code which creates, initializes, and uses objects, assum-
ing that calls to init σ do in fact properly initialize
objects. However, since initialization is performed by
user-defined constructors, the verifier must check that
these constructors do correctly initialize objects when
called. This section studies verification of JVML con-
structors using JVMLc, an extension of JVMLi.

The rules for checking constructors are defined
in [LY96] and can be summarized by three basic points:

• When a constructor is invoked, local variable 0
contains a reference to the object that is being
initialized.

• A constructor must apply either a different con-
structor of the same class or a constructor from
the parent class to the object that is being initial-
ized before the constructor exits. For simplicity,
we may refer to either of these actions as invoking
the super class constructor.

• The only deviation from this requirement is for
constructors of class Object. Since, by the Java
language definition, Object is the only class with-
out a superclass, constructors for Object need not
call any other constructor. This one special case
has not been modeled by our rules, but would be
trivial to add.

Note that these rules do not imply that constructors will
always return. For example, they do not prevent non-
termination due to an infinite loop within a constructor.
A more interesting case is when two constructors from
the same class call each other recursively and, therefore,
never fully construct an object passed to them. While
programs potentially exhibiting this behavior could be
detected by intra-procedural analysis, this type of anal-
ysis falls outside of the bounds of the current verifier.

JVMLc programs are sequences of instructions con-
taining any instructions from JVMLi plus one new in-
struction, super σ. This instruction represents calling
a constructor of the parent class of class σ (or a different
constructor of the class σ).

For simplicity, the rest of this section assumes that
we are describing a constructor for object type ϕ, for
some ϕ in T . To model the initial state of a constructor
invocation for class ϕ, a JVMLc program is assumed
to begin in a state in which local variable 0 contains
an uninitialized reference. This corresponds to the ar-
gument of the constructor. Prior to halting, the pro-
gram must call super ϕ on that object reference. As
mentioned above, this represents calling the super class
constructor.

We will use ϕ̂0 as the type of the object stored in
local variable 0 at the start of execution. The value in
local variable 0 must be drawn from the set Aϕ̂0 . We
now assume Addr includes 0, although 0 will not be in
the domain of any program. Also, machine state in the
operational semantics is augmented with a fourth ele-
ment, z, which indicates whether or not a super class
constructor has been called on the object that is be-
ing initialized. The rules for all instructions other than
super do not affect z, and are derived directly from the
rules in Figure 2. For example, the rule for inc is:

P [pc] = inc
P *c 〈pc, f, n · s, z〉 → 〈pc + 1, f, (n + 1) · s, z〉

As demonstrated in Theorem 4 below, the initial state
for execution of a constructor for ϕ is 〈1, f0[0 '→
âϕ], ε, false〉 where âϕ ∈ Aϕ̂0 .

For super, the operational semantics rule is:

P [pc] = super σ
â ∈ Aσ̂0

a ∈ Aσ,Unused(a, f, s)
P *c 〈pc, f, â · s, z〉 → 〈pc + 1, [a/â]f, [a/â]s, true〉

The typing rule for super is very similar to the rule
for init, and is shown below with the judgment for
determining whether a program is a valid constructor
for objects of type ϕ. All the other typing rules are the
same as those appearing in Figure 3.

(super)

P [i] = super σ
F i+1 = [σ/σ̂0]F i

Si = σ̂0 · α
Si+1 = [σ/σ̂0]α
i + 1 ∈ Dom(P)

F , S, i * P

(wt cst)

F 1 = FTop[0 '→ ϕ̂0]
S1 = ε

Z1 = false
ϕ ∈ T

∀i ∈ Dom(P). F , S, i * P
∀i ∈ Dom(P). Z, i * P constructs ϕ

F , S * P constructs ϕ

The (wt cst) rule is analogous to (wt prog) from Sec-
tion 4. However, this rule places an additional restric-
tion on the structure of well-typed programs. The judg-
ment

Z, i * P constructs ϕ

is a local judgment which gives Zi the value true or
false depending on whether or not all possible execu-
tion sequences reaching instruction i would have called
super ϕ or not. The local judgments are defined in Fig-
ure 6. As seen by those rules, one can only conclude that

11

P [i] ∈ {inc, pop, push 0, load x, store x, new σ, init σ, use σ}
Zi+1 = Zi

Z, i * P constructs ϕ

P [i] = if L
Zi+1 = ZL = Zi

Z, i * P constructs ϕ

P [i] = super ϕ
Zi+1 = true

Z, i * P constructs ϕ

P [i] = halt
Zi = true

Z, i * P constructs ϕ

Figure 6: Rules checking that a super class constructor will always be called prior to reaching a halt instruction.

a program is a valid constructor for ϕ if every path to
each halt instruction has called super ϕ. These judg-
ments also reject any programs which call super for a
class other than ϕ. The existence of unreachable code
may cause more than one value of Z to conform to the
rules in Figure 6. To make Z unique for any given pro-
gram, we assume that, for program P , there is a unique
canonical form ZP . Thus, ZP,i will be a unique value
for instruction i.

The main soundness theorem for constructors in-
cludes a guarantee that constructors do call super on
the uninitialized object:

Theorem 4 (Constructor Soundness) Given P ,
F , S, ϕ, and âϕ such that F , S * P constructs ϕ and
âϕ : ϕ̂0 :

∀pc, f0, f, s, z.
P *c 〈1, f0[0 '→ âϕ], ε, false〉 →∗ 〈pc, f, s, z〉
∧ ¬∃pc′, f ′, s′, z′.

P *c 〈pc, f, s, z〉 → 〈pc′, f ′, s′, z′〉
⇒ P [pc] = halt
∧ z = true

The main difference in the proof of Theorem 4, in com-
parison with Theorem 3, is that the corresponding one-
step soundness theorem requires an additional invari-
ant. The invariant states that when program P is in
state 〈pc, f, s, z〉, z = ZP,pc . The proof of this theo-
rem appears in the extended version of this paper.

This analysis for constructors is combined with the
analysis of normal methods in a more complete JVML
model currently being developed.

6.2 JVMLs

The JVML bytecodes for subroutines have also been
added to JVMLi and are presented in another extended
language, JVMLs. While this section will not go into
all the details of subroutines, detailed discussions of
bytecode subroutines can be found in several other
works [SA98, LY96]. Subroutines are used to compile
the finally clauses of exception handlers in the Java
language. Subroutines share the same activation record
as the method which uses them, and they can be called
from different locations in the same method, enabling
all locations where finally code must be executed to
jump to a single subroutine containing that code. The
flexibility of this mechanism makes bytecode verifica-
tion difficult for two main reasons:

• Subroutines are polymorphic over local variables
which they do not use.

• Subroutines may call other subroutines, as long
as a call stack discipline is preserved. In other
words, the most recently called subroutine must be
the first one to return. This is a slight simplifica-
tion of the rules for subroutines defined in [LY96],
which do allow a subroutine to return more than
one level up in the implicit subroutine call stack
in certain cases, but does match the definitions
presented in [SA98].

JVMLs programs contain the same set of instructions
as JVMLi programs and, also, the following:

jsr L: jumps to instruction L, and pushes the return
address onto the stack. The return address is the
instruction immediately after the jsr instruction.

12

P [pc] = jsr L
P * 〈pc, f, s〉 → 〈L, f, (pc + 1) · s〉

P [pc] = ret x
P * 〈pc, f, s〉 → 〈f [x], f, s〉

Figure 7: Operational semantics for jsr and ret.

(jsr)

P [i] = jsr L
Dom(F i+1) = Dom(F i)
Dom(FL) ⊆ Dom(F i)

∀y ∈ Dom(F i). F i[y] +∈ T̂
∀y ∈ Dom(Si). Si[y] +∈ T̂

∀y ∈ Dom(F i)\Dom(FL). F i+1[y] = F i[y]
∀y ∈ Dom(FL). FL[y] = F i[y]

SL = (ret-from L) · Si

(ret-from L) +∈ Si

∀y ∈ Dom(FL). FL[y] += (ret-from L)
i + 1 ∈ Dom(P)

L ∈ Dom(P)
F , S, i * P

(ret)

P [i] = ret x
RP,i = {L}

x ∈ Dom(F i)
F i[x] = (ret-from L)
∀y ∈ Dom(F i). F i[y] +∈ T̂
∀y ∈ Dom(Si). Si[y] +∈ T̂

∀j. P [j] = jsr L ⇒
(
∀y ∈ Dom(F i). F j+1[y] = F i[y]
∧ Sj+1 = Si

)

F , S, i * P

Figure 8: Type rules for jsr and ret.

13

ret x: jumps to the instruction address stored in local
variable x.

The operational semantics and typing rules for these
instructions are shown in Figure 7 and Figure 8.
These rules are based on the rules used by Stata and
Abadi [SA98]. The type (ret-from L) is introduced to
indicate the type of an address to which subroutine L
may return. The meaning of RP,i = {L} in (ret) is de-
fined in their paper and basically means that instruction
i is an instruction belonging to the subroutine starting
at address L. All other rules are the same as those for
JVMLi.

The main issue concerning initialization which must
be addressed in the typing rules for jsr and ret is
the preservation of the ConsistentInit invariant. A type
loophole could be created by allowing a subroutine and
the caller of that subroutine to exchange references to
uninitialized objects in certain situations. An example
of this behavior is described in Section 7.

When subroutines are used to compile finally
blocks by a Java compiler, uninitialized object refer-
ences will never be passed into or out of a subroutine.
The Java language prevents a program from splitting al-
location and initialization of an object between code in-
side and outside of a finally clause since both are part
of the same Java operation, as described in Section 2.
Either both steps occur outside of the subroutine, or
both steps occur inside the subroutine. We restrict pro-
grams not to have uninitialized objects accessible when
calling or returning from a subroutine. For (ret), the
following two lines are added. These prevent the sub-
routine from allocating a new object without initializing
it:

∀y ∈ Dom(F i). F i[y] +∈ T̂
∀y ∈ Dom(Si). Si[y] +∈ T̂

Similar lines are added to (jsr). The discussion of the
interaction between subroutines and uninitialized ob-
jects in the Java Virtual Machine specification is vague
and inconsistent with current implementations, but the
rules we have developed seem to fit the general strategy
described in the specification.

This is certainly not the only way to prevent sub-
routines and object initialization from causing prob-
lems. For example, slightly less restrictive rules could
be added to (jsr):

∀y ∈ Dom(FL). FL[y] +∈ T̂
∀y ∈ Dom(Si). Si[y] +∈ T̂

These conditions still allow uninitialized objects to be
present when a subroutine is called, but those objects
cannot be touched since they are stored in local vari-
ables which are not accessed in the body of the subrou-
tine. This would allow the typing rules to accept more

programs, but these programs could not have been cre-
ated by a compiler from any valid Java program.

The main soundness theorem, Theorem 3, has been
proved for JVMLs, and for JVMLc with subroutines,
by combining the proof of JVMLi soundness with the
work of Stata and Abadi. These proofs appear in the
extended version of this paper.

6.3 Other Basic Types and Instructions

Many JVML instructions are variants of operations for
different basic types. For example, there are four add
instructions corresponding to addition on values of type
Int, Float, Long, and Double. Likewise, many
other simple operations have several different forms.
These instructions and other basic types can be added
to JVMLi, or any of the extended languages, easily.
These instructions do not complicate any of the sound-
ness proofs since they only operate on basic types and
do not interfere with object initialization or subroutine
analysis.

The only tricky case is that Long and Double val-
ues take up two local variables or two stack slots since
they are stored as two-word values. Although this re-
quires an additional check in the rules for load and
store to prevent the program from accessing a par-
tially over-written two-word value, this does not pose
any serious difficulty.

Of the 200 bytecode instructions in JVML, all but
approximately 40 fall into this category and may be
added to JVMLi without trouble, although a full pre-
sentation of the operational and type rules for these in-
structions is beyond the scope of this paper. With these
additions, and the methods described in the previous
subsections, the JVMLi framework can be extended to
cover the whole bytecode language, except for a full ob-
ject system, exceptions, arrays, and concurrency. Con-
sidering objects and classes requires the addition of an
object heap and a method call stack, as well as a typing
environment containing class declarations. We are cur-
rently developing an extended system covering all these
topics except concurrency.

7 The Sun Verifier

This section describes the relationship between the rules
we have developed for object initialization and subrou-
tines and the rules implicitly used to verify programs
in Sun’s implementation. We first describe a mistake
we have found in Sun’s rules and then compare their
corrected rules with our rules for JVMLs.

14

1: jsr 10 // jump to subroutine
2: store 1 // store uninitialized object
3: jsr 10 // jump to subroutine
4: store 2 // store another uninitialized object
5: load 2 // load one of them
6: init P // initialize it
7: load 1 // load the other
8: use P // use uninitialized object!!!
9: halt

10: store 0 // store return address
11: new P // allocate new object
12: ret 0 // return from subroutine

Figure 9: A program that uses an uninitialized object but is accepted by Sun’s verifier.

7.1 The Sun JDK 1.1.4 Verifier

As a direct result of the insight gained by carrying out
the soundness proof for JVMLs, a previously unpub-
lished bug was discovered in Sun’s JDK 1.1.4 imple-
mentation of the bytecode verifier. A simple program
exhibiting the incorrect behavior is shown in Figure 9.
Line 8 of the program uses an uninitialized object, but
this code is accepted by this specific implementation of
the verifier. Basically, the program is able to allocate
two different uninitialized objects on the same line of
code without initializing either one, violating the Con-
sistentInit invariant. The program accomplishes this by
allocating space for the first new object inside the sub-
routine and then storing the reference to that object in
a local variable over which the subroutine is polymor-
phic before calling it again. After initializing only one
of the objects, it can use either one.

The bug can be attributed to the verifier not placing
any restrictions on the presence of uninitialized objects
at calls to jsr L or ret x. The checks made by Sun’s
verifier are analogous to the (jsr) and (ret) rule in Fig-
ure 8 as they originally appeared in [SA98], without the
additions described in the previous section. Removing
these lines allows subroutines to return uninitialized ob-
jects to the caller and to store uninitialized values across
subroutine calls, which clearly leads to problems.

Although this bug does not immediately create any
security loopholes in the Sun Java Virtual Machine, it
does demonstrate the need for a more formal specifi-
cation of the verifier. It also shows that even a fairly
abstract model of the bytecode language is extremely
useful at examining the complex relationships between
different parts of the language, such as initialization and
subroutines.

7.2 The Corrected Sun Verifier

After describing this bug to the Sun development team,
they have taken steps to repair their verifier implemen-
tation. While they did not use the exact rules we have
presented in this paper, they have changed their im-
plementation to close the potential type loophole. This
section briefly describes the difference between their ap-
proach and ours. The Sun implementation may be sum-
marized as follows [Lia97]:

• Uninitialized objects may appear anywhere in the
local variables or on the operand stack at jsr L or
ret x instructions, but they can not be used after
the instruction has executed. In other words, their
static type is made Top in the post-instruction
state. This difference does not affect the ability
of either Sun’s rules or our rules to accept code
created for valid Java language programs.

• The static types assigned to uninitialized objects
passed into constructors are treated differently
from other uninitialized object types in the Sun
verifier. Values with these types may still be used
after being present at a call to or an exit from a
subroutine. Also, the superclass constructor may
be called anywhere, including inside a subroutine.

Treating the uninitialized object types for constructor
arguments differently than other uninitialized types al-
lows the verifier to accept programs where a subroutine
must be called prior to invoking the super class con-
structor. This is demonstrated by Figure 10. That fig-
ure shows a constructor for class C, as well as a rough
translation of it into JVMLc with subroutines (we ig-
nore the code required for the exception handler).

The bytecode translation of the constructor will be
rejected by our analysis because control jumps to a sub-
routine when a local variable contains the uninitialized
object passed into the constructor. It is accepted by the

15

class C extends Object {
C() {
int i;
try {
i = 0;

} finally {
}
super();

}
. . .

}

1: push 0 // put 0 on stack
2: store 1 // store it in ‘‘i’’
3: jsr 7 // jump to subroutine
4: load 0 // load constructor arg.
5: super C // call superclass cnstr.
6: halt

7: store 2 // store return address
8: ret 2 // return from subroutine

Figure 10: A constructor which will always call a subroutine before invoking the super class constructor, and its
translation into JVMLc with subroutines (ignoring the exception handler). Note that this is not a valid Java program.

Sun verifier due to their special treatment of the type
of the uninitialized object passed into the constructor.
However, the Java language specification requires that
the superclass constructor be called prior to the start
of any code protected by an exception handler. There-
fore, the Java program in Figure 10 is not valid. The
added flexibility of their method is not required to ver-
ify valid Java programs, but it does make the analysis
much more difficult. In fact, several published attacks,
including the one described in Section 1, may be at-
tributed to errors in this part of the verifier. Other
verifiers, such as the Microsoft verifier, currently reject
the bytecode translation of this class.

In summary, the differences in the two verification
techniques would only become apparent in handwritten
bytecodes using uninitialized object types in unusual
ways, and both systems are sufficient to type check
translations of valid Java programs. Since our method,
while slightly more restrictive, makes both verification
and our soundness proofs much simpler, we believe that
our method is reasonable.

8 Related Work

There are several other projects currently examining
bytecode verification and the creation of correct byte-
code verifiers. This section describes some of these
projects, as well as related work in contexts other than
Java. There have also been many studies of the Java
language type system [Sym97, DE97, NvO98], but we
will mostly focus on bytecode level projects. Although
the other studies are certainly useful, and closely re-
lated to this work in some respects, they do not address
the unique way in which the bytecode language is used
and the special structures in JVML.

In addition to the framework developed by Stata and
Abadi [SA98] and used in this paper, there are other
strategies being developed to describe the JVML type

system and bytecode verification formally. The most
closely related work is [Qia98], which presents a static
type system for a larger fragment of JVML than is pre-
sented here. While that system uses the same general
approach as we do, we have attempted to present a
simpler type system by abstracting away some of the
unnecessary details left in Qian’s framework, such as
different forms of name resolution in the constant pool
and varying instruction lengths. Also, our model of sub-
routines, based on the work of Stata and Abadi, is very
different. The rules for object initialization used in the
original version of Qian’s paper were similar to Sun’s
faulty rules, and they incorrectly accepted the program
in Figure 9. After announcing our discovery of Sun’s
bug, a revised version of Qian’s paper containing rules
more similar to our rules was released.

Hagiya and Tozawa present a type system for the
fragment of JVML concerning subroutines [HT98]. We
are currently examining ways in which ideas from that
type system may used to eliminate some of the simpli-
fications to the subroutine mechanism in the work of
Stata and Abadi.

Another approach using concurrent constraint pro-
gramming is also being developed [Sar97]. This ap-
proach is based on transforming a JVML program into
a concurrent constraint program. While this approach
must also deal with the difficulties in analyzing sub-
routines and object initialization statically, it remains
to be seen whether it will yield a better framework for
studying JVML, and whether the results can be easily
translated into a verifier specification.

Other avenues toward a formal description of the
verifier, including model checking [PV98] and data flow
analysis techniques [Gol98], are also currently being
pursued.

A completely different approach has been taken by
Cohen, who is developing a formal execution model
for JVML which does not require bytecode verifica-
tion [Coh97]. Instead, safety checks are built into the

16

interpreter. Although these run-time checks make the
performance of his defensive JVM too slow to use in
practice, this method is useful for studying JVML exe-
cution and understanding the checks required to safely
execute a program.

The Kimera project has developed a more experi-
mental method to determine the correctness of exist-
ing bytecode verifiers [SMB97]. After implementing a
verifier from scratch, programs with randomly inserted
errors were fed into that verifier, as well as several com-
mercially produced verifiers. Any differences among im-
plementations meant a potential flaw. While this ap-
proach is fairly good at tracking down certain classes
of implementation mistakes and is effective from a soft-
ware engineering perspective, it does not lead to the
same concise, formal model like some of the other ap-
proaches, including the approach presented in this pa-
per. It also may not find JVML specification errors or
more complex bugs, such as the one described in Sec-
tion 7.

Other recent work has studied type systems for low-
level languages other than JVML. These studies include
the TIL intermediate languages for ML [TMC+96],
and the more recent work on typed assembly lan-
guage [MCGW98]. The studies touch on some of the
same issues as this study, and the type system for typed
assembly language does contain a distinction between
types for initialized and uninitialized values. However,
these languages do not contain some of the constructs
found in JVML, and they do not require aspects of
the static analysis required for JVML, such as the alias
analysis required for object initialization.

9 Conclusions and Future Work

Given the need to guarantee type safety for mobile
Java code, developing correct type checking and anal-
ysis techniques for JVML is crucial. However, there is
no existing specification which fully captures how Java
bytecodes must be type checked. We have built on the
previous work of Stata and Abadi to develop such a
specification by formulating a sound type system for a
fairly complex subset of JVML which covers both sub-
routines and object initialization. This is one step to-
wards developing a sound type system for the whole
bytecode language. Once this type system for JVML is
complete, we can describe a formal specification of the
verifier and better understand what safety and security
guarantees can be made by it.

Although our model is still rather abstract, it has
already proved effective as a foundation for examining
both JVML and existing bytecode verifiers. Even with-
out a complete object model or notion of an object heap,
we have been able to study initialization and the inter-

action between it and subroutines. In fact, a previously
unpublished bug in Sun’s verifier implementation was
found as a result of the analysis performed while study-
ing the soundness proofs for this paper.

The work described in this paper opens several
promising directions. One major task, which we are
currently undertaking, is to extend the specification
and correctness proof to the entire JVML, includ-
ing the method call stack and a full object system.
The methods described in Section 6 allow most vari-
ants of simple instructions to be added in a stan-
dard, straightforward way, and we are also examining
methods to factor JVML into a complete, yet mini-
mal, set of instructions. In addition, the Java object
system has been studied and discussed in other con-
texts [AG96, Sym97, DE97, Qia98], and these previous
results can be used as a basis for objects in our JVML
model. We are in the process of finishing a soundness
proof for a language encompassing the JVML elements
presented in this paper plus objects, interfaces, classes,
arrays, and exceptions. Other issues that have not been
addressed to date are concurrency and dynamic load-
ing, both of which are key concepts in the Java Virtual
Machine.

We also believe it will be feasible to generate an im-
plementation of a bytecode verifier from a specification
proven to be correct. This specification could be ex-
pressed in the kind of typing rules we use here, or some
variant of this notation.

Finally, we expect that in the long run, it will be use-
ful to incorporate additional properties into the static
analysis of Java programs. If Java is to become a popu-
lar and satisfactory general-purpose programming lan-
guage, then for efficiency reasons alone, it will be nec-
essary to replace some of the current run-time tests by
conservative static analysis, perhaps reverting to run-
time tests when static analysis fails. For example, we
may be able to eliminate some run-time checks for ar-
ray bounds and pointer casts. Other safety properties,
such as the use of certain locking conventions in a con-
current JVML model, could also be added to our static
analysis.

Acknowledgments: Thanks to Mart́ın Abadi and
Raymie Stata (DEC SRC) for their assistance on this
project. We thank Li Gong for his encouragement, and
Frank Yellin and Sheng Liang of JavaSoft for several
useful discussions.

References
[AG96] Ken Arnold and James Gosling. The Java Program-

ming Language. Addison-Wesley, 1996.

[Coh97] Rich Cohen. Defensive Java Virtual Machine
Version 0.5 alpha Release. Available from

17

http://www.cli.com/software/djvm/index.html,
November 1997.

[DE97] S. Drossopoulou and S. Eisenbach. Java is type safe
— probably. In European Conference On Object Ori-
ented Programming, pages 389–418, 1997.

[DFW96] Drew Dean, Edward W. Felten, and Dan S. Wallach.
Java security: from HotJava to netscape and beyond.
In Proceedings of the IEEE Computer Society Sym-
posium on Research in Security and Privacy, pages
190–200, 1996.

[Gol98] Allen Goldberg. A specification of java load-
ing and bytecode verification. In Proceedings
of the Fifth ACM Conference on Computer and
Communications Security, 1998. Available from
http://www.kestrel.edu/˜goldberg.

[HT98] Masami Hagiya and Akihiko Tozawa.
On a new method for dataflow anal-
ysis of Java Virtual Machine subrou-
tines. Available from http://nicosia.is.s.u-
tokyo.ac.jp/members/hagiya.html. A prelimi-
nary version appeared in SIG-Notes, PRO-17-3,
Information Processing Society of Japan, 1998.

[Lia97] Sheng Liang. personal communication, November
1997.

[LY96] Tim Lindholm and Frank Yellin. The Java Virtual
Machine Specification. Addison-Wesley, 1996.

[MCGW98] Greg Morrisett, Karl Crary, Neal Glew, and David
Walker. From system F to typed assembly language.
In Proc. 25th ACM Symposium on Principles of Pro-
gramming Languages, January 1998.

[NvO98] Tobias Nipkow and David von Oheimb. Javalight is
Type-Safe - Definitely. In Proc. 25th ACM Sympo-
sium on Principles of Programming Languages, Jan-
uary 1998.

[PV98] Joachim Posegga and Harald Vogt. Byte code veri-
fication for java smart cards based on model check-
ing. In 5th European Symposium on Research in
Computer Security (ESORICS), Louvain-la-Neuve,
Belgium, 1998. Springer LNCS.

[Qia98] Zhenyu Qian. A formal specification of Java Virtual
Machine instructions for objects, methods and sub-
routines. In Jim Alves-Foss, editor, Formal Syntax
and Semantics of Java. Springer-Verlag, 1998.

[SA98] Raymie Stata and Mart́ın Abadi. A type system for
Java bytecode subroutines. In Proc. 25th ACM Sym-
posium on Principles of Programming Languages,
January 1998.

[Sar97] Vijay Saraswat. The Java bytecode verifica-
tion problem. Available from http://www.re-
search.att.com/˜vj, November 1997.

[SMB97] Emin Gün Sirer, Sean McDirmid, and Brian Ber-
shad. Kimera: A Java system architecture. Avail-
able from http://kimera.cs.washington.edu, Novem-
ber 1997.

[Sym97] Don Syme. Proving Java type soundness. Techni-
cal Report 427, University of Cambridge Computer
Laboratory Technical Report, 1997.

[TMC+96] D. Tarditi, G. Morrisett, P. Cheng, C. Stone,
R. Harper, and P. Lee. TIL: A type-directed op-
timizing compiler for ML. ACM SIGPLAN Notices,
31(5):181–192, May 1996.

Sun, Sun Microsystems, and Java are trademarks or registered trade-
marks of Sun Microsystems, Inc. in the United States and other
countries.

18

