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Abstract. Many important software systems are written in the C pro-
gramming language. Unfortunately, the C language does not provide
strong safety guarantees, and many common programming mistakes in-
troduce type errors that are not caught by the compiler. These errors
only manifest themselves at run time through unexpected program be-
havior, and it is often hard to isolate and identify their causes. This paper
presents the Hobbes run-time type checker for compiled C programs. Our
tool interprets compiled binaries, tracks type information for all memory
and register locations, and reports warnings when a variety of type errors
occur. Because the Hobbes type checker does not rely on source code, it
is effective in many situations where similar tools are not, such as when
full source code is not available or when C source is linked with program
fragments written in assembly or other languages.

1 Introduction

Many software systems are written in the C programming language because it is
expressive and provides precise, low-level control over the machine architecture.
However, this strength is also a weakness. The expressive power of C is obtained
through unsafe language features, including pointer arithmetic, explicit memory
management, unchecked type casts, and so on. These features give the program-
mer a great deal of control but also make it difficult to ensure software reliability
and to maintain large programs.

Given the importance of many systems in this category, it is essential to
identify defects caused by improper use of unsafe language features. In this
paper, we present Hobbes, a new run-time analysis tool that identifies a large
class of errors in compiled C programs. In particular, our tool identifies memory

access errors and type errors. A memory access error occurs when a program
accesses an invalid memory location. Two examples of such errors are (1) reading
from or writing to an unallocated location, and (2) reading from an allocated but
uninitialized location. A type error occurs when an operation is performed on
operands whose types are incompatible with the operation. Adding a pointer to
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a real number, calling a function with the wrong number or type of arguments,
and dereferencing an integer as a pointer are all type errors.

To catch errors, our tool maintains a shadow memory containing the allo-
cation status and type of each location accessible to the target program, which
it updates and checks as the target is running. Purify demonstrated the ef-
fectiveness of a shadow memory-based approach for identifying memory access
errors [3]. Purify modifies the target program to maintain allocation and ini-
tialization status for each memory location, and it instruments each memory
operation to check that the status information for the address being accessed is
in an appropriate state. The Hobbes type checker goes beyond Purify by tracking
not only memory status information, but also the type stored at each location.
The type information enables our tool to check the types of the operands for
each operation performed as the program executes.

The Hobbes prototype checks for errors in Linux binaries on the Intel x86
architecture. Hobbes consists of two major components: an instrumentable x86
interpreter and a run-time type checker. To check a program for type errors, the
type checker maintains the shadow memory and checks each interpreted instruc-
tion for errors. Memory access and type errors are reported to the programmer,
along with the call stack and the relevant data values and types.

The type checker extracts type information from the symbol tables and debug
tables embedded in the binary program. It uses this information to determine
the types of storage locations allocated to global variables, local variables, and
parameters of functions. When debugging information is incomplete or not avail-
able, the type checker assumes more conservative types for memory locations.
Even when given only partial type information for the target program, Hobbes
can still identify a useful set of errors.

The Hobbes architecture provides the following benefits:

1. Hobbes uses only the binary representation of programs and does not rely
on the source code for the target program or included libraries.

2. Hobbes is applicable to programs written in a mixture of any languages that
compile into the standard binary format.

3. Hobbes does not modify the data representations or layout of the program.

We are not aware of other tools that provide all three of these benefits.
Loginov et al. present a system similar to ours that employs source-to-source
translation to insert code to maintain and check shadow memory [7]. Relying
on source code translation limits their handling of libraries and mixed-language
programs, and their tool does not preserve the instruction stream of the original
program. Several other tools have been proposed to check for memory access
errors and some type errors by extending the representation of pointers to include
additional information (see, for example, [15, 1]). However, we wished to avoid
changing the data layout of the program since such changes are not always
feasible in large systems.

Our experience indicates that the Hobbes type checker is an effective tool
for finding type errors in programs. When applied to a set of programs from
an undergraduate compilers class, it found a number of both memory errors



and type errors, and it scaled reasonably well when checking larger programs. In
particular, the false alarm rate was not a significant impediment to using the tool.
There is a substantial performance penalty for using the Hobbes type checker
prototype, but we are confident that improvements we describe will significantly
improve the performance of the system.

Section 2 motivates this work by demonstrating how run-time type checking
can catch a number of common errors in C programs. Sections 3 and 4 describe
the general Hobbes architecture and the type checker, respectively. We summa-
rize our experiments to validate the type checker and measure performance in
Section 5, and Section 6 compares the Hobbes type checker to related work. We
conclude in Section 7 and outline directions for future work.

2 Motivating Examples

In this section, we present some errors that the Hobbes type checker catches, but
which are not caught by the C compiler’s static type checking or the allocation
checking performed by tools like Purify. Figure 1 contains programs exhibiting
these errors. In each case, we outline how the errors are caught.

In Example 1, the programmer writes a pointer into a union but then reads
the union value as an integer. On the store to x.p, the type checker sets the
shadow memory for that location to pointer. The type pointer is inferred
because a lea (load effective address) instruction is used to compute &i. A mul-
tiply instruction can not be applied to an operand of type pointer, so when the
multiply of x.k occurs, the type checker detects the type mismatch and gener-
ates a warning message. This example is interesting because it shows that useful
type checking can be done without any help from the compiler or debugging
information.

Example 2 shows an array bounds error that is not normally detected by Pu-
rify or similar systems. The programmer writes to y.a[10], which is beyond the
end of the array, but still part of an allocated structure. The assignment over-
writes the field y.h, which follows the array in memory. If debugging information
is included in the program binary, the type checker knows that y.h should have
type int. It reports an error when the program writes a value of type pointer

instead. If no debugging information is available, the write is permitted, but the
type checker detects an error when the value of type pointer in y.h is later
used in a multiplication.

Example 3 shows a common pitfall in the use of the standard C library sorting
function, qsort(). The comparison function required by qsort() is called with
pointers to the elements to be compared, rather than the elements themselves.
The naive programmer who wrote Example 3 omitted this extra level of indi-
rection. A cast is almost always required when using qsort(), and the one used
here, though not unusual, masks the error. Given the debugging information for
the program, the type checker expects values of type int for each parameter
of cmpint(). When values of type pointer are passed instead, it generates a
warning.



Example 1:

union {

int k;

int *p;

} x;

void ex1() {

int i, j;

x.p = &i;

j = 17 * x.k;

}

Example 2:

struct {

int *a[10];

int h;

} y;

void ex2() {

int i, j;

for (i = 0; i <= 10; i++)

y.a[i] = &j;

y.h *= 10;

}

Example 3:

int cmpint (int a, int b) { return ((b < a) - (a < b)); }

void ex3()

int i;

int array[N];

...

qsort (array, N, sizeof (array[0]),

(int (*) (const void *, const void *)) cmpint);

}

Fig. 1. C programs with type errors.

3 The Hobbes System Architecture

Hobbes consists of two distinct pieces: an x86 interpreter that runs the target
program and the type checker analysis tool—a module that is called by the inter-
preter when events of interest occur in the target. The operating system kernel,
in this case Linux, is unmodified. In this section, we describe the interpreter. In
the next section, we describe the type checker.

The Hobbes platform is a general framework in which to build analysis tools
like the Hobbes type checker. The interpreter plays the same role as a binary
editor like Atom [14], or the instrumentable dynamic compiler that underlies
Valgrind [12]. An analysis tool first registers interest in events that may occur
while the target is running. For example, a tool may indicate that it wants
notification each time the target accesses memory or executes a specific opcode.
The interpreter then runs the target, which is unaware that instrumentation is
taking place, and calls analysis routines provided by the tool when interesting
events occur. Arguments to the analysis routines convey relevant information
about the event, indicating any memory addresses, values, and registers involved.
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Fig. 2. The Hobbes system architecture.

A major goal of Hobbes is to provide a program environment for the target
that is as close as possible to its normal execution environment. This goal in-
fluenced our design in two ways. First, we placed the components of Hobbes in
normally unused parts of the address space to avoid having to relocate the target.
Second, Hobbes uses two distinct name spaces, as illustrated in Figure 2. The
target name space contains the target program, the type checker tool (which is a
shared library) and other libraries required by the target. The interpreter name
space contains the interpreter and the (potentially different) set of libraries that
are linked with it. This separation prevents problems arising from name clashes
or version mismatches between the libraries used in the interpreter and those
used in the target, as well as potential interference problems caused by the in-
terpreter and target sharing library data structures. Analysis tools reside in the
target name space to give them access to the target dynamic loader, which is
used to resolve target addresses to names.

The interpreter name space is created by the Linux kernel. To create the
target name space, the Hobbes interpreter simulates the actions that the kernel
would have taken to run the target, including running a new copy of the dynamic
loader (ld-linux.so). This second loader loads the target, its shared libraries,
and the analysis tools.

The Hobbes interpreter is written entirely in x86 assembly language. The
main loop in the interpreter fetches instructions from the target instruction
stream and performs computed jumps into tables whose entries are code frag-
ments. The code fragment for each instruction:

1. decodes the operand specifiers and loads the addresses of the operands into
specific registers,

2. performs the operation defined by the instruction opcode on those registers,
and

3. moves the result, if the instruction has one, to its ultimate destination.

Except in rare circumstances, the core of the implementation for each opcode is
performed by the corresponding x86 instruction. This method allows side-effects,



such as the setting of condition codes, to be captured faithfully, and it improves
the chances of correctly emulating the execution of unusual code sequences or
instructions that behave differently on different x86 implementations.

The shared libraries for tools register analysis routines with the interpreter
when the libraries are initialized as part of the loading process. If a tool has
registered an analysis routine for a particular instruction opcode, a call to the
analysis routine is inserted into the appropriate table entry between the first
and second step above. The analysis routines are executed directly, not inter-
preted. The interpreter does not interpret operating system kernel code. When
the interpreter encounters a system call, it executes a kernel trap in the normal
way, after loading the registers with the arguments needed for the call. Some
calls, notably those dealing with signals, are handled specially so as to maintain
control of the target program.

Other analysis frameworks, such as Atom and Valgrind, employ binary code
modification techniques to avoid the overhead of interpreting machine code. Al-
though we could have adopted these techniques to obtain better performance,
we chose to implement the interpreter for several reasons. First, interpretation
preserves the layout and location of the target code and data segments, which
reduces the likelihood of introducing unintended errors into the target during
instrumentation. Also, no publicly available binary editor or dynamic compiler
existed for x86 Linux when we started (Valgrind had not yet been released),
and writing the interpreter was the simplest and fastest way to build a working
prototype. In addition, the Hobbes type checker imposes a large overhead on
execution beyond the interpreter’s overhead, making the argument for more effi-
cient instrumentation techniques less compelling. The large overhead is partially
due to the type checker instrumenting virtually every instruction in order to
track values as they pass through registers. In contrast, Purify only instruments
memory accesses.

4 The Hobbes Type Checker

During startup, the Hobbes type checker shared library initializes its internal
data structures and shadow memory and registers analysis routines with the
interpreter. When an instruction of the target program is interpreted, the type
checker tests the types of the operands and updates the type information in the
shadow memory according to the instruction semantics. Any inconsistencies are
reported to the user. In this section, we describe the shadow memory layout and
data structures used by the type checker, demonstrate the steps to type check
instructions and function calls, and describe features that reduce occurrences of
false alarms. A false alarm occurs when the type checker incorrectly reports that
a type error has occurred.

Shadow Memory and Type Representation. The x86 architecture provides
a 4 GB address space, which the type checker divides into three sections. It
uses addresses 0x00000000 – 0x5fffffff for the target program memory and



addresses 0x60000000 – 0xbfffffff for the shadow memory. The Linux kernel
utilizes parts of the remaining 1 GB, and we do not use it in Hobbes. Each
byte in the target program is matched by a byte in the shadow memory, which
encodes its type. To map from a data address to its shadow address, the type
checker simply adds 0x60000000 to the data address. The interpreter places the
virtual registers in the target address section so that the interpreter can shadow
them like all other locations accessible to the target.

The type checker tracks primitive C types. It currently represents structures,
unions, and arrays as sequences of these primitive types and does not distinguish
between different pointer types. Each primitive type is encoded in the shadow
memory with a bit pattern equal to the size of the type in length. For example,
the four-byte integer encoding covers four bytes of shadow memory. Each byte
in the shadow memory contains four fields:

c i v t

The continuation bit c is zero if the byte is the first byte of a type encoding,
and one otherwise. When c is set, the other seven bits are unused. The initialized

bit i indicates whether the corresponding data object has been initialized. The
invariant bit v indicates whether the type of the corresponding data object may
change during execution (i.e., whether the type encoding may be overwritten
with a different type encoding). The type checker marks global data and stack
locations for parameters and local variables as invariant when the debugging
information supports doing so. The base type t encodes the type of the data. The
type checker currently supports the primitive types int8 (char), uint8 (unsigned
char), unk8 (one byte of unknown type), int16, uint16, unk16, int32, uint32,
unk32, float, double, and pointer. The unallocated base type indicates one
byte of unallocated memory, and the code base type indicates one byte of code.

We present several type encodings to illustrate the layout of these structures:

initialized, unsigned
char
0 1 0 uint8

uninitialized pointer
0 0 0 pointer

1

1

1

initialized, invariant
short
0 1 1 int16

1

Currently, there is unused space in the encodings for multi-byte types. However,
these encodings enable a fast mapping function from each data value to its
shadow memory and are easy to decode. In addition, we plan to use the remaining
space to encode aggregate type and pointer information in the future.

Type Checker Initialization. The type checker performs the following ini-
tialization steps before the target program begins execution.

1. The type checker reads all available debugging information in the target
and shared library object code. This information includes type declarations,
function prototypes, global and local variable declarations, and the mapping
from names to addresses.



2. For each type, the type checker creates a template block of shadow memory
that encodes it, as outlined above. Hobbes creates the template block for
aggregate types by concatenating the template blocks for each element. If
part of a type is unknown or ambiguous, such as when a union may contain
two different primitive types, the corresponding part of the template block
contains the unknown type encoding of the appropriate size.

3. For each function, the type checker creates two template blocks, one for its
parameters and one for its local variables. These blocks contain the shadow
memory encodings for the function’s activation record. Local variable lo-
cations that may contain different types at different points in the function
are assigned the unknown type. All encodings in these blocks are invariant,
except those for unknown types, which are not marked as invariant.

4. The type checker initializes the shadow memory for global variables with the
template blocks created in step 2. All global variables are invariant, except
those which have unknown type.

5. The type checker registers analysis routines for opcodes and system calls
with the interpreter.

The type checker precomputes the type representations and template blocks
to avoid translating types into their encodings at run time. The types for loca-
tions originally marked as unknown are refined during execution as the type
checker observes which operations are performed on the data. As described
above, unknown types are introduced for locations where values of different
types stored may be stored. They are also used when the target or libraries con-
tain incomplete type information, which may occur if they are compiled without
generating debugging information, if they are linked with hand-written assembly
code, and so on.

The type checker also overrides malloc, free, and other memory manage-
ment routines with versions that update and test the shadow memory in the ob-
vious ways. When the interpreted program makes a system call, the interpreter
copies the arguments from the virtual registers into the processor’s registers
and then performs the standard kernal trap. The typechecker installs built-in
instrumentation callbacks to check the validity of the argument types prior to
the system call and to set the type of the return value afterwards. The most
common 30 system calls have been instrumented to date.

Instruction Analysis Routines. Each instruction analysis routine type checks
all occurrences of a specific instruction opcode in the target execution stream.
The interpreter provides the routines with the locations of the source and desti-
nation operands. Each routine

1. checks that the source operands are allocated and initialized, and that the
destination is allocated;

2. checks that load and store instructions and indirect addressing modes only
dereference data of type pointer;

3. checks the types of the source operands and computes the result type; and



4. updates the shadow memory to reflect the destination’s new type, if appli-
cable.

We elaborate on the third and fourth steps for a representative instruction. The
type checker begins step 3 by extracting the type information for the sources
from the shadow memory. A table is then indexed to determine the result type.
To illustrate this process, we consider the instruction addl SRC, DST. This
instruction adds SRC to DST, storing the result in DST. Both operands are four
byte values, as indicated by the suffix l in the instruction name. For example, in
addl %eax, 4(%ebp), the SRC operand is in register %eax and the DST operand
is located at the address stored in register %ebp, plus 4.

The following table computes the result type for the operation, based on the
types of SRC and DST. For simplicity, we include only a few of the possible
operand types.

addl SRC, DST
DST

SRC int8 int32 pointer unk32

int8 error error error error

int32 error int32 pointer unk32

pointer error pointer error unk32

unk32 error int32 pointer unk32

The type checker generates a warning whenever a table lookup returns error.
In this example, the operands may be two integers or an integer and a pointer,
but not two pointers. If DST is unknown, the result stays unknown. If SRC is
unknown, the result type will be the type of DST. These heuristics for unknown
types are not sound, but they reduce the false alarm rate when precise type
information is not available for the operands. To aid in debugging, the type
checker reports the stack trace and relevant memory and register values’ types
for each warning. If debugging information is available, the stack trace includes
the source’s file name and line number.

We show type compatibility tables for the four byte mov instruction and the
lea instruction below. The lea sets DST to be the address of the SRC. These
two instructions are insensitive to the original type of DST.

movl SRC, DST
SRC DST

int8 error

int32 int32

pointer pointer

unk32 unk32

leal SRC, DST
SRC DST

int8 pointer

int32 pointer

pointer pointer

unk32 pointer

Before returning control to the interpreter, the type checker writes the result
type into the shadow memory for DST. If the new result type is different from
the current type of DST and DST is invariant, the checker generates a warning.
Otherwise, the initialized form of the result type is written into the shadow



memory. Since this type may have a different size than what was there previously,
the type checker assigns an unknown type to any partially overwritten type
encodings immediately before and after the shadow memory for DST.

The Function Call Analysis Routine. When the interpreter invokes the
analysis routine for the call instruction, the type checker first maps the target
address of the call to the corresponding function and fetches its precomputed
parameter and local variable template blocks. The type checker then compares
the types of the arguments on the stack against the types in the parameter
template block, reporting any mismatches. It also copies the type information
for the local variable template block into the shadow memory at the appropriate
offset from the frame pointer for the new function’s activation record. Local
variables begin as uninitialized. Full function checking can not be done if the
function has a variable number of arguments or uses a non-standard activation
record, which may occur when a compiler employs certain optimizations, such
as tail-call elimination.

Reducing False Alarms. The initial version of our type checker reported false
alarms on some common compiler idioms for the x86 architecture. For example,
the gcc compiler may emit an xor instruction to clear a register containing
a pointer. The compiler also uses the lea instruction to perform addition in
certain cases. To avoid generating false alarms in situations like these, we relaxed
the typing restrictions in the instruction type tables. In the case of xor, which
originally used the same table as add above, we permitted two pointer operands,
as long as they are the same storage location. For the lea instruction, we deviated
from the table presented above by setting the result type to int32 if the result
value is between negative one million and one million. Numbers in this range are
much more likely to be integers than addresses.

Another common source of false alarms is low-level library routines in libc.
Handwritten assembly language implementing some of the string functions is
particularly problematic because it performs integer operations on sequences of
four bytes. We did not wish to relax the type rules to the point where these
operations are accepted because it would weaken the checking too much. In-
stead, we provide a way for the programmer to supply the type checker with a
list of function names and specific lines of code for which no warnings should
be reported. By default, warnings are turned off for the most problematic 15
functions in libc, including memcpy, strlen, and tzset. Even though warnings
are not reported for these functions, they still update the shadow memory in the
expected way.

5 Evaluation

Error Detection. We begin by describing our experiences applying the Hobbes
type checker to the student projects from an undergraduate compilers class at
Williams College. The assignments implement a compiler for a subset of the C
language. Each assignment contains 3000–6000 lines of C code, plus a 3000 line
parsing library, and they use the libc string, file, and memory routines.



Program LOC Unallocated Uninitialized Type Error False Alarms

p1 5,600 1 2 2 1
p2 4,033 1 2 1 1
p3 3,571 2 3 0 1
p4 4,260 1 1 1 1
p5 4,671 2 2 1 1

Table 1. Errors found by the Hobbes type checker in a set of compiler assignments
from an undergraduate class at Williams College.

Table 1 summarizes the results of running each assignment on 15 sample
inputs. The table shows the number of accesses to unallocated or uninitialized
memory, type errors, and false alarms reported by our tool. An error reported
multiple times on different inputs is only counted once in the table. In addition,
Hobbes suppresses duplicate warning messages and cascading warnings caused
by an error reported earlier in a run. For example, if a program reads an unini-
tialized value, later warnings on that memory location or the value that was read
are not reported.

The type checker reported memory errors in all five programs. The causes of
these errors include calling free on the address of a global variable, accessing
memory after it was deallocated, and incorrectly assuming that a routine in the
parsing library initialized fields of a structure returned to the client.

The type checker also caught a number of type errors in the programs. In
p1, two type errors were found. First, due to incorrect pointer arithmetic, the
program overwrote an integer stored in memory with a pointer value. When that
memory location was later read and multiplied by an integer, the type checker
reported a type mismatch on the operands of the multiply instruction. Purify
would not have caught this error since the bad pointer arithmetic would always
yield a location allocated to the program. In addition, a function in p1 passed
a pointer as an argument to a function declared to take an int as a parameter.
Inside the body of the function, the integer was cast back to a pointer and
dereferenced. The type checker reported the mismatch between parameter and
argument type. This code does not work properly on systems where an int is too
small to hold a pointer, but the compiler did not warn of the problem because
the programmer had not written a prototype for the function being called. A
similar mistake was found in p5. The remaining two type errors, in p2 and p4,
were caused by improper uses of unions similar to Example 1 in Section 2.

The type checker erroneously reported one additional type error in each of the
five programs. Each program implemented a hashtable with pointer values for
keys. In each program, the function to compute hash codes generated a warning
because it performed arithmetic on a pointer.

Clearly, false alarms posed no serious impediment to using the Hobbes type
checker on the compiler assignments. To further explore the impact of false
alarms on the utility of the Hobbes type checker, we also checked a number of
larger, robust UNIX utilities. In general, the false alarm rate was acceptable. For
example, running ls with a number of different command line options netted a
total of 8 spurious warnings, all of which were caused by the use of system calls



Program Base Interpreter Instrumented MemCheck TypeCheck
Time Time Ratio Time Ratio Time Ratio Time Ratio

164.gzip 3.0 147.9 49 219.6 73 268.0 89 470.0 157
175.vpr 3.1 279.6 90 334.1 108 385.1 124 532.5 172
176.gcc 2.3 93.5 41 136.6 59 164.5 72 286.0 124
181.mcf 0.4 8.6 22 12.0 30 15.0 38 21.0 53
186.crafty 5.5 336.8 61 473.9 86 592.8 108 1030.3 187
197.parser 5.4 178.2 33 257.3 48 311.4 58 486.1 90
252.eon 3.9 297.5 76 366.5 94 483.1 124 681.9 175
254.gap 1.4 52.9 38 76.5 55 97.8 70 160.6 115
255.vortex 9.5 472.4 50 687.9 72 889.5 94 1396.6 147
256.bzip2 13.9 587.6 42 791.3 57 930.4 67 1953.0 141
300.twolf 0.4 15.75 39 21.7 59 25.7 64 44.2 111

median 42 59 72 141

Table 2. Performance measurements for the SPECint 2000 benchmark. All times are
in seconds and are the average of three stable runs. The Ratio columns indicate per-
formance slowdowns relative to the Base Time.

not yet handled by Hobbes1. Several runs of grep generated spurious warnings,
but only about uses of memory management routines in the obstack library,
which implements a dynamic memory manager to be used in place of malloc
and free. Since the obstack routines affect the allocation status of memory, they
require special handling to be treated correctly by Hobbes and other run-time
analysis tools [4]. Even in programs with much higher false alarm rates, their
causes could usually be tracked to only a few problematic code sequences. Hobbes
reported approximately 60 and 300 spurious warnings for runs of vi and bash,
respectively. A large fraction of these false alarms are attributed to unhandled
system calls, hash functions, and a small number of other code sequences.

We also verified that Hobbes could catch many classes of errors by running
it on a test suite of programs with deliberate errors, all of which Hobbes found.

Hobbes catches a number of errors earlier when code is compiled without
optimizations. Without optimizations, all local variables (and many intermediate
values) reside on the stack, where they are marked invariant. Thus, errors can be
caught as soon as an invalid value is written to a variable. In contrast, optimized
code uses registers, which are not marked invariant, more heavily.

Performance. We applied the Hobbes checker to the SPECint 2000 bench-
marks to evaluate the performance of our tool. Table 2 shows execution times
and slowdowns for the interpreter and the interpreter instrumented with three
different tools: a tool with empty analysis routines, a memory checker similar to
Purify, and the type checker. All measurements are the average of three stable
runs on a dual-processor 1 GHz Pentium III machine with 1 GB of main memory
running the Redhat Linux 2.4.9-smp kernel. We omit the 253.perlbmk bench-
mark because it creates new processes to do most of the computation and does

1 Note that without the suppression techniques for code in libc described in the
previous chapter, this number would be higher.



not accurately reflect the impact of using the interpreter. The interpreter incurs
a slowdown of 42 times over the base time. Most of this time is spent decoding
the x86 instruction stream. Installing empty analysis routines for all opcodes in-
creases the slowdown from 42 to 59. The interpreter spends the additional time
storing registers and setting up activation records for the analysis routines.

MemCheck, a memory checker using a Purify-style checking algorithm, main-
tains allocated and initialized bits for each byte of memory. Unlike Purify’s ap-
proach, MemCheck also shadows the registers with similar information to catch
uses of uninitialized data. The memory checker increases the slowdown from 59
to 72. A slowdown of 13 relative to the base time is consistent with our own
experience using a tool for Alpha executables based on binary modification and
with reported measurements of Purify [3, 10].

The Hobbes type checker runs roughly 140 times slower than normal execu-
tion, versus a slowdown of 59 for the empty analysis routines. The type checker
has not been optimized for speed, and there are several significant ways to im-
prove the performance of our prototype. Each instrumentation function typically
checks memory safety first and then type safety. While this separation of tasks
keeps the implementation straightforward, the two steps duplicate a nontrivial
amount of work. We believe that restructuring the code to eliminate this over-
lap and further optimizing shadow memory operations will substantially improve
performance. Additional improvements are also obtainable by switching from an
interpreter to a binary translator and performing static analysis to reduce the
number of instructions that must be instrumented. Finally, Hobbes is primarily
a tool for testing a system, when performance is less important than correctness.

6 Related Work

Many projects have focused on identifying errors in C programs. We first describe
other dynamic tools, and then a few static tools that target low-level code.

Purify [3], described in Section 1, was the first widely used memory access
checker. Hobbes tracks a superset of the information tracked in Purify’s shadow
memory and is capable of identifying the same class of memory access errors.
Memory errors that result from earlier type errors will be caught sooner in our
system since Hobbes identifies them at the time of the type error. Valgrind is a
more recent implementation of a Purify-like checker for Linux binaries [12].

Other memory access checkers change the representation of pointers in the
target program to include capabilities [15, 6, 1, 4]. For example, Austin et al. [1]
extends the standard pointer representation to include a base and bounds for the
block being referenced. Compiler-inserted code checks this extra information at
each memory access. Such capability-based approaches can catch errors that Pu-
rify (and Hobbes) miss, such as when illegal pointer arithmetic yields a reference
to some valid piece of memory. However, they are not compatible with standard
compiled C code. Jones and Kelly [4] store pointer base and bounds information
separately, thereby achieving a higher degree of backward compatibility.



Patil and Fisher [11] demonstrated that it is sometimes possible to perform
program checking in parallel with the target program execution. They present a
memory access checker that incurs a slowdown as low as 10% by using a second
processor to check the correctness of pointer operations.

C-Cured [10] employs a type inference scheme to statically determine which
pointers in the target are used safely and which may be used improperly. Run-
time checks are then inserted to check operations involving potentially unsafe
pointers. C-Cured uses an extended pointer representation for these checks. This
combination of static and dynamic analysis prevents memory access errors and
slows down most programs by less than a factor of two, but reliance on non-
standard pointer representations limits its effectiveness in some situations.

Loginov et al. [7] present a run-time type checker that uses a shadow memory
similar to ours. However, they use source-to-source translation to embed the
checking and maintenance code into the target. Thus, they cannot effectively
check or track types through functions in compiled libraries, and they handle
only programs written entirely in C. These problems also exist in several other
run-time type checkers, such as Saber C [5]. Their tool is faster than Hobbes
because it instruments only source-level expressions, and not every assembly-
language instruction. On standard benchmarks, their tool caused roughly a 50-
fold slowdown. We believe that switching to binary translation for Hobbes would
eliminate most of this performance difference. A reasonable balance between
precision and performance could also be obtained by inserting source code checks
wherever possible and binary code checks when source code is not available or
external libraries are used.

Several recent studies present static analysis techniques for C and assembly
programs that would be very useful to incorporate into Hobbes. For example,
Chandra and Reps devised physical type checking to check casts between differ-
ent structures [2]. They characterize safe casts and define structural subtyping
for C by considering the physical layout of structures. Their checking tool can
successfully identify potentially unsafe casts in large programs [13]. Xu et al. [16]
focus on the related problem of inferring a valid typing for a compiled program
to ensure type safety before executing it. They employ abstract interpretation
to construct a static approximation of the types of registers and memory at each
program point. In addition, Mycroft presents a way to reconstruct C structure
declarations from their use in assembly code using type inference [9]. These last
two techniques would be particularly useful for reconstructing type information
in situations where it is not readily available to Hobbes. Morrisett et al. [8]
present a type system for x86 assembly language, but it is very different than
the one underlying the Hobbes type checker because it was designed to support
compilation from a type-safe high-level language, and not from C.

7 Conclusions and Future Work

Program analysis tools to identify defects in code written in unsafe languages
are necessary to improve the reliability of many software systems. The Hobbes



type checker can identify a large class of type errors in such systems. While our
initial experiments demonstrate the effectiveness of the Hobbes methodology, we
would like to improve two key aspects of our system.

Performance. Although the Hobbes interpreter provides a reasonable first
prototype, implementing the type checker with a binary translation tool would
significantly improve performance. Additional performance gains can also be
obtained by eliminating the need to instrument every instruction. For example,
static analysis could identify code fragments that are guaranteed to be type safe
or that do not modify the program type state.

Precision. We would like to incorporate type inference techniques similar to
those of Mycroft [9] and Xu et al. [16] to improve precision when full debugging
information is unavailable. In addition, we believe that distinguishing different
pointer types and identifying boundaries between structure fields and array ele-
ments would allow the Hobbes type checker to find some classes of errors sooner
than it currently does. We have designed extended type encodings for this infor-
mation, but we have not yet evaluated how best to use it.
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