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Abstract. Ensuring the reliability of multithreaded software systems is difficult due to the potential for
subtle interactions between threads. Unfortunately, checking tools for such systems do not scale to programs
with a large number of threads and procedures. To improve this shortcoming, we present a verification
technique that uses concise specifications to analyze large multithreaded programs modularly. We achieve
thread-modular analysis by annotating each shared variable by an access predicate that summarizes the con-
dition under which a thread may access that variable. We achieve procedure-modular analysis by annotating
each procedure by its specification, which is related to its implementation by an abstraction relation that
combines the notions of simulation and reduction. We have implemented our analysis in Calvin-R, a static
checker for multithreaded Java programs. To validate our methodology, we have used Calvin-R to check
a number of important properties for a file system. Our experience shows that requirements for complex
multithreaded systems can be stated concisely and verified in our framework.
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1 Introduction

Software verification is an important and difficult problem. Over the past few decades, a variety
of techniques based on dataflow analysis, theorem proving, and model checking have emerged for
the analysis of sequential software. However, these techniques have not yet enabled verification
of large, multithreaded software systems. Since concurrency is an insidious source of programming
errors, multithreaded programs would benefit significantly from automated error-detection tools. The
need for such tools will continue to grow as multithreaded software becomes even more widespread,
expanding from the domain of low-level systems software (operating systems and databases) to most
programs written in high-level languages like Java [2] and C# [12]. In this paper, we present a new
modular verification technique for multithreaded Java programs.

Modularity is the key to scaling program analyses to large software systems. For sequential pro-
grams, modular analysis is achieved through pre- and post-conditions for procedures. However, due
to interaction among the threads, pre- and post-conditions are insufficient for modular verification
of multithreaded programs. Jones [22] proposed the first proof rule for modular verification of mul-
tithreaded programs. The proof rule of Jones required, in addition to pre- and post-conditions, a
rely-guarantee specification for each procedure to capture the interaction among the threads. Both
the rely and the guarantee specifications are actions (binary relations on the shared store). While
the guarantee specification is a requirement on the updates performed by the thread executing the
procedure, the rely specification is a requirement on the updates performed by the other threads.

In previous work [16], we extended Jones’ method by generalizing the guarantee of a procedure
from a single action to a program constructed from actions. This guarantee program has the property
that every sequence of atomic updates to shared variables in the implementation is matched by a
sequence of atomic updates in the specification. The implementation and guarantee of a procedure
must be related via simulation. Simulation provides data abstraction for multithreaded programs by



supporting abstract descriptions of the sequence of actions performed during the execution of a pro-
cedure. In particular, simulation allows steps that modify only local variables to be abstracted away.
This generalization is crucial for allowing modular specification and verification of a multithreaded
library independently from the clients of the library.

Unfortunately, simulation requires every step in a procedure’s implementation that updates a
shared variable to be matched by a step in its specification. Consider, for example, a multithreaded
program in which the shared variable count is protected by the mutex m. The following procedure
increments count by one.

void increment() { acquire(m); int j = count; j++; count = j; release(m); }

A specification that simulates the implementation must have at least three steps corresponding to
acquiring m, updating count, and releasing m. Consequently, such a specification is no more concise
or intuitive than the implementation. Although the programmer’s intuition is that the execution of
increment by a thread appears to happen in “one step” (rather than three), simulation does not
allow such a specification to be proved.

We introduce a new and more expressive criterion for relating the implementation of a procedure
to its specification in this paper. The new relation augments simulation with the notion of reduction,
which was first introduced by Lipton [24]. The notion of reduction is based on commuting operations
performed by different threads when they do not interfere with each other. An operation that
commutes to the right of a succeeding operation by a different thread is a right mover, and an
operation that commutes to the left of a preceding operation by a different thread is a left mover.
For example, the operation acquire(m) is a right mover, and the operation release(m) is a left
mover. Moreover, since all threads access x only while holding the mutex m, the read (and write)
operation to count is both a right and a left mover since no other thread can concurrently access
count. Any execution sequence in which a thread performs a sequence of right movers followed
by a single atomic operation followed by a sequence of left movers can be viewed as occurring “in
one step”. The execution of increment by a thread has this property. To check that increment

atomically increments x by one, we first apply reduction and then check simulation only on the
reduced sequence. Thus, reduction allows control abstraction for multithreaded programs akin to
pre- and post-conditions for sequential programs.

Our experience with multithreaded software checking indicates that the most intuitive and concise
specifications for procedures in multithreaded programs are obtained by combining simulation and
reduction. In fact, the specification of a procedure in our framework is often no more complex than
its specification would be under the assumption that the program is single-threaded. We also show
in Section 2.2 that the ability to use both simulation and reduction yields verifiable specifications
that can not be expressed with just reduction or just simulation. We are not aware of any other
automated checking tool that uses a combination of simulation and reduction to check abstraction.

In order to apply reduction to code sequences that access shared variables, the locking discipline
for these shared variables must be specified by the programmer. Although mutexes are the most
common synchronization discipline, there are a variety of other mechanisms used in practice [28,
14]. To capture these idioms, we introduce access predicates, a novel and general mechanism for
specifying a wide variety of synchronization mechanisms including mutexes, readers-writer locks,
data-dependent locking, etc. The access predicate expresses the condition under which a thread may
access that variable. Our verification technique checks the code of each thread assuming that the
environment (containing other threads) behaves according to the access predicates.



We have implemented our analysis in the Calvin-R checker, an extension of the Calvin checker
for multithreaded Java programs [14, 16]. Our tool modularly checks that each method in a pro-
gram satisfies the access predicates and is abstracted by its specification. For each check, Calvin-R
constructs a sequential program capturing the necessary correctness requirements and verifies that
it does not go wrong using existing verification techniques for sequential programs. Specifically, we
employ verification conditions [10, 17] and the Simplify automatic theorem prover [26].

To validate our approach, we have used Calvin-R to check many properties of Daisy, a simple
NFS file server we designed as our first case study. Daisy uses synchronization mechanisms similar in
complexity to those found in other file systems. We have verified that all procedures in Daisy satisfy
the access predicates, showing that the code adheres to the specified synchronization discipline.
In addition, we specified and checked functional requirements on a number of the most complex
procedures in Daisy. Our notion of abstraction invariably led to intuitive and concise specifications,
and we uncovered several unknown bugs, primarily in the code for handling errors.

We present an overview of our verification technique in Section 2 through several examples. Due
to space limitations, we omit the full formal presentation of our modular analysis and soundness
proof. The full details may be found in our companion technical report [18]. We present a discussion
of the related work in Section 3 and conclude in Section 4.

2 Verification Technique

To demonstrate our specification and verification system, we present two example programs— a class
that implements a counter, and a class that implements block allocation in a simple file system. In
both cases, we state concise specifications for the code and describe how our analysis checks them.

2.1 Counter

The following class implements a counter:

Figure 1: Counter

class Counter {
int m /*@ accessible if m == 0 || m == tid */;

int count /*@ accessible if m == 0 || m == tid */;

/*@ performs action (count) { \old(m) == 0 && count == \old(count) + 1 } */
void increment() {

acquire(m); int j = count; j++; count = j; release(m);

}
}

The increment method adds one to count. Concurrent calls to increment are serialized using
the mutex lock m, which is acquired at the beginning and released at the end of increment. We
model the mutex as an integer variable whose value is the identifier of the thread holding the mutex,
or 0 if it is not held. The atomic operation acquire(m) blocks until m is 0 and then sets m to the
identifier of the currently executing thread (tid), and the atomic operation release(m) sets m back
to 0.

The performs annotation specifies method behavior. According to its specification, the increment
method behaves as if at some point during its execution, it performs a single atomic action that
(1) modifies only the variable count, which is indicated with the modifies clause (count); and



(2) blocks until the value of m is 0 and then increments count by 1. The values \old(m) and
\old(count) refer to the variable values in the pre-state of this action.

The accessible if annotations indicate to our checker the access predicates for the variables.
The access predicates for m and count, denoted Am and Acount, express the requirement that a
thread t may access m and count only if m = 0 or m = t. It is worth noting that the access predicates
for the shared variables do not preclude data races. As we have pointed out earlier [15], absence
of data races is neither necessary nor sufficient for atomicity. Hence, our analysis allows general
accessible if predicates for shared variables.

The method increment can be called (possibly concurrently) by any number of threads. To
ensure the specification of increment is valid for any calling thread, Calvin-R checks the method
for an arbitrary thread t with the assumption that other threads operating concurrently with thread
t access m and count according to the access predicates. For each execution trace of the method in
such an environment, the tool checks both that thread t satisfies the access predicates and that the
execution is abstracted by an execution of the specification of increment in the same environment.
The first check can be easily performed using the technique of thread-modular verification [22, 14,
16].

To check abstraction, Calvin-R reduces the given execution to another execution that ends in
the same final store and in which the operations performed by thread t (in increment) happen
atomically without any interleaved actions by the environment. After reduction, the tool checks
that the single atomic action in the specification of increment simulates the composition of the
consecutively occurring actions of thread t.

To reduce an execution trace, the tool shows that the operations by thread t in the execution
form a sequence of zero or more right-commuting operations (right movers) followed by a single
operation followed by a sequence of zero or more left-commuting operations (left movers).

An operation of t is a right mover if, immediately after its execution, no other thread can access a
variable accessed by the operation. Since the environment operations behave according to the access
predicates, we can derive the condition to verify that an operation is right-mover from the access
predicates. For example, if the operation by thread t accesses variable m, the condition Em(t) must
be shown in the post-store:

Em(t) = ∀j ∈ Tid . j 6= t ⇒ ¬Am(j)

= ∀j ∈ Tid . j 6= t ⇒ ¬(m = 0 ∨ m = j)

= (m = t)

Thus, to prove that an operation by thread t accessing m is a right mover, we must show that thread
t holds m in the post-store of the operation. Intuitively, the predicate Em(t) is the condition under
which thread t has exclusive access to m.1 The condition for an operation accessing count is identical.
We may commute a right mover with that operation following it because we are guaranteed that
the two operations access disjoint sets of variables.

Similarly, an operation is a left mover if we can prove that m is held by thread t in the pre-store.
For increment, we can show that acquire(m) and all subsequent operations until release(m) are
right movers and release(m) is a left mover. Therefore, the code in increment is reducible to a
single action.

1 Alternatively, we could have specified the exclusive access predicate and derived the access predicate from

it.



Figure 2(a) shows an execution of increment with arbitrary actions of other threads and in-
terleaved between the steps of t. Actions from other threads are labeled X, and for simplicity we
insert only a single such action between consecutive actions of t. Execution (b) shows the reduced
execution.

Figure 2: Checking abstraction for increment

count=j

X X \old(m)==0 && count==\old(count)+1

X

(a)

(b)

X X X rel(m)acq(m) X j=count j++ count=j

(c)

XX X

XX

acq(m) rel(m)j=count j++

The simulation check is straight-forward once the execution has been reduced, as shown in (c).
Note that the specification of increment shown above is comparable in complexity to the post-

condition specification for seq increment, a version of increment designed for sequential programs:

/*@ modifies count; ensures count == \old(count) + 1 */

void seq_increment() { int t = count; t++; count = t; }

2.2 Block allocation in Daisy

To further illustrate the importance of using both reduction and simulation for proving succinct
procedure specifications, we present in Figure 3 the code for block allocation from the Daisy file
system. Daisy is a simple NFS file system we designed as our first case study for Calvin-R. The file
system synchronization mechanisms are similar in complexity to those found in other file systems.
However, the data structures and algorithms in Daisy are relatively simple, allowing us to implement
it in approximately 1200 lines of Java code.

The alloc function searches for a free file system block by finding a false bit in the bits array.
The flag bits[j] indicates whether the j-th disk block is currently in use. When alloc identifies a
free block, it allocates the block by setting the appropriate bit to true and returns the index of the
block with the lock corresponding to it still held. (The caller will release the lock after it has finished
initializing the data structures for the new block.) If alloc fails to find a free block, it returns -1.
The free function takes a block index i as an argument and requires that the the mutex l[i] be
held on entry to the function. It frees block i by setting bits[i] to false and returns after releasing
l[i].

The mutex l[j] guards the bit bits[j]. The accessible if annotation on bits is parameter-
ized by j to indicate this relationship for all j. A program acquires and releases lock l[j] by calling
acquire(l[j]) and release(l[j]), respectively. Locking at such a fine granularity is a standard



Figure 3: Allocator

class Allocator {
static int l[NBLOCKS] /*@ accessible_if[j] l[j] == 0 || l[j] == tid */;
static boolean bits[NBLOCKS] /*@ accessible_if[j] l[j] == 0 || l[j] == tid */;

/*@ performs action "NoBlocks": () { \result == -1 }

[] action "Allocated": (bits[\result], l[\result]) {
\old(l[\result]) == 0 && l[\result] == tid

!\old(bits[\result]) && bits[\result]
}

*/

public static int alloc() {
for (int i = 0; i < NBLOCKS; i++) {

acquire(l[i]);
if (!bits[i]) {

bits[i] = true;

//@ witness "Allocated";
return i;

}
release(l[i]);

}
//@ witness "NoBlocks";
return -1;

}

/*@ requires l[i] == tid
performs action "Free": (bits[i], l[i]) { l[i] == 0 && !bits[i] }

*/

public static void free(int i) {
bits[i] = false;

release(l[i]);
//@ witness "Free";

}
}

technique for improving throughput in commercial file systems. However, it is also a major source
of errors and demands substantial debugging effort. We are not aware of any other static tool for
checking synchronization at such fine granularity.

The performs annotation for alloc is intuitive and mirrors the two possible outcomes of execut-
ing alloc. The specification is a choice between two atomic actions. In the first action, no free block
is found and -1 is returned. The special variable \result refers to the value returned by a function.
In the second action, the return value is the index of an unused block. This action blocks until the
mutex protecting the allocation bit of the block is zero, and it then updates the bit from false to
true. The witness annotations in the code indicate program points where simulation steps in the
specification may occur. We use the explicit witness to guide the simulation check by indicating the
“commit points” in the implementation of the atomic actions in the specification.2 The specification
for the free function is similar.

As in the increment example, Calvin-R checks that the implementation of alloc is abstracted
by its specification for an arbitrary thread t in an environment that respects the access predicates.
However, the checking of alloc is significantly more complicated than that of increment. The alloc
function has an unbounded number of execution sequences, each consisting of 0 or more acquire-

test-release subsequences, followed by either a return of -1 or an acquire-test-set and a return of

2 In general, finding the correspondence between implementation steps and specification steps is a hard

problem.



a non-negative index. Such executions are not reducible to a single atomic action. Therefore, our
checker decomposes the sequence of actions performed by thread t into subsequences that are each
reducible to a single action, as shown in Figure 4(a) and (b) for one possible execution.

Calvin-R deduces that each of the acquire-test-release subsequences is reducible to a single atomic
action, and further checks that each of these actions is simulated by skip, an action that leaves every
variable unchanged. If there is no final acquire-test-set sequence, then Calvin-R further deduces that
the last implementation action returns -1 and is therefore simulated by the action "NoBlocks" of
the specification. If there is a final acquire-test-set sequence followed by the return of a non-negative
index, Calvin-R reduces it to a single atomic action and checks that it is simulated by the action
"Allocated" of the specification. In both cases, by first using reduction and then simulation, Calvin-
R abstracts the execution to a (possibly empty) sequence of skip action followed by an action from
the specification.3 Figure 4 illustrates one possible execution of alloc. Execution (b) shows the
reduced execution of (a), and (c) and (d) demonstrate the simulation. We divide the simulation into
two steps to show that simulation involves composing a sequence of actions into a single action, as
well as generalizing an action.

Although alloc uses fine-grained synchronization, our method allows us to prove a concise and
intuitive specification that is similar in complexity to the specification of alloc assuming single-
threaded execution.

3 Related work

Lipton [24] first proposed reduction as a way to reason about concurrent programs without consid-
ering all possible interleavings. He focused primarily on checking deadlock freedom. Doeppner [11],
Back [3], and Lamport and Schneider [23] extended this work to allow proofs of general safety
properties. Misra [25] has proposed a reduction theorem for programs built with monitors [21] com-
municating via procedure calls. Cohen and Lamport [8] have extended reduction to allow proofs
of liveness properties. All of these papers have focused on the theory of reduction. However, they
do not describe a methodology for verifying programs. We go beyond their work by developing a
specification and verification methodology for a widely used programming language.

Partial-order methods [20, 27] have been used to limit state-space explosion while model checking
concurrent programs. These methods identify sequences of interleaved steps for which the property
being checked is insensitive to the exact ordering. A single representative interleaving of the oper-
ations is then explored. These methods have mostly been applied to systems built from processes
communicating through message passing. Verisoft [19] is an example of such a tool. While these
methods are typically unable to reorder accesses to shared variables, Calvin-R uses access predicates
to determine when it is safe to reorder accesses to shared variables as well.

Using ideas from reduction and partial-order methods, Bruening [5] has built an assertion checker
based on state-space exploration for multithreaded Java programs. His tool requires another checker
to ensure the absence of races. This assumption allows synchronized code blocks to be treated
as atomic. Stoller [31] provides a generalization of Verisoft and Bruening’s method to allow model
checking of programs with either message-passing or shared-memory communication. Both of these
approaches are restricted to mutex-based synchronization and operate on the concrete program
without any abstraction. In our work, access predicates provide a more general mechanism for

3 The performs specification implicitly allows arbitrary number of skip actions at any control point.



Figure 4: Checking abstraction for alloc
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specifying synchronization. More recently, Stoller and Cohen have adopted access predicates in
order to capture a richer set of synchronization idioms and to perform reduction during model
checking [32].

Flanagan and Qadeer use reduction in a type system to identify procedures in multithreaded
programs that may be considered to execute atomically [15]. Their syntactic type-based analysis is
more scalable because it requires fewer and less complex program annotations, but it is limited to
checking this single atomicity property. In contrast, our paper presents a modular semantic analysis
based on verification conditions and theorem proving that can check many complex properties of
multithreaded programs.

A number of static tools have been designed to detect data races. These include several type
systems [13, 4], Warlock [30], and a race detector for SPMD programs [1]. Dynamic race detection
tools [29, 6] require very few annotations, if any, but may fail to detect some errors due to insufficient
coverage. Several tools combining dynamic and static analyses have recently been proposed [33, 7].
Access predicates provide a simple, general method for specifying and verifying a wider variety of
synchronization mechanisms than allowed by these tools.

Several tools [9, 34] verify safety properties using a combination of data abstraction and model
checking. These tools consider all possible thread interleavings while performing state exploration.
The approach in this paper can be used to abstract a program, thereby reducing the possible in-
terleavings. Invariant checking can then be performed on the abstract program thus improving the
efficiency of these techniques.

4 Conclusions

Enforcing program specifications statically can greatly improve software quality. However, the in-
ability to express complex properties in a simple, intuitive way is a major impediment to adopting
many specification-based program checking tools, especially those targeting multithreaded code.

We outline in this paper a checking methodology that simplifies the task of specifying and
verifying multithreaded programs. We allow thread synchronization mechanisms to be concisely
expressed as access predicates, and we also allow concise, yet expressive specifications for procedures.
The specification of a procedure is related to its implementation by a powerful abstraction relation
that allows both data and control abstraction by combining the theories of simulation and reduction.
Our access predicates and procedure specifications enable program analysis that is both thread-
modular and procedure-modular. We have implemented our analysis in the Calvin-R checker for
multithreaded Java programs and checked important properties of multithreaded systems with this
tool.

The next step is to validate this methodology further by showing that it can scale to larger pro-
grams. Some issues to address are how to best map errors in the generated sequential program back
to errors in the original, multithreaded program; how to reduce annotation overhead by automati-
cally inferring some annotations, such as simple access predicates for variables guarded by mutual
exclusion locks; and how to ensure that our translation does not produce sequential programs too
complex for the underlying theorem prover to handle.
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