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Abstract. Ensuring the reliability of multithreaded software systems is
difficult due to the interaction between threads. This paper describes the
design and implementation of a static checker for such systems. To avoid
considering all possible thread interleavings, the checker uses assume-
guarantee reasoning, and relies on the programmer to specify an en-
vironment assumption that constrains the interaction between threads.
Using this environment assumption, the checker reduces the verification
of the original multithreaded program to the verification of several se-
quential programs, one for each thread. These sequential programs are
subsequently analyzed using extended static checking techniques (based
on verification conditions and automatic theorem proving). Experience
indicates that the checker is capable of handling a range of synchroniza-
tion disciplines. In addition, the required environment assumptions are
simple and intuitive for common synchronization idioms.

1 Introduction

Ensuring the reliability of critical software systems is an important but extremely
difficult task. A number of useful tools and techniques have been developed
for reasoning about sequential systems. Unfortunately, these sequential analysis
tools are not applicable to many critical software systems because such systems
are often multithreaded. The presence of multiple threads significantly compli-
cates the analysis because of the potential for interference between threads; each
atomic step of a thread can influence the subsequent behavior of other threads.

For multithreaded programs, more complex analysis techniques are neces-
sary. The classical assertional approach [Ash75,OG76,Lam77,Lam88] requires
control predicates at each program point to specify the reachable program states,
but the annotation burden for using this approach is high. Some promising
tools [DHJ+01,Yah01] use model checking and abstract interpretation to in-
fer the reachable state set automatically, but the need to consider all possible
thread interleavings may hinder scaling to large programs.

A more modular and scalable approach is assume-guarantee reasoning, in
which each component is verified separately using a specification of the other
components [MC81,Jon83a]. Several researchers have presented assume-guarantee
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proof rules (see Section 2), and some verification tools that support assume-
guarantee reasoning on hardware have recently appeared [McM97,AHM+98].
However, tools for assume-guarantee reasoning on realistic software systems do
not exist.

In this paper, we describe the design and implementation of a static checker
for multithreaded programs, based on an assume-guarantee decomposition. This
checker is targeted to the verification of actual implementations of software sys-
tems, as opposed to logical models or abstractions of these systems. The checker
relies on the programmer to specify, for each thread, an environment assump-
tion that models the interference caused by other threads. This environment
assumption is an action, or two-store relation, that constrains the updates to
the shared store by interleaved atomic steps of other threads. The atomic steps
of each thread are also required to satisfy a corresponding guarantee condition
that implies the assumption of every other thread.

Using these assumptions and guarantees, our checker translates each thread
into a sequential program that models the behavior of that thread precisely and
uses the environment assumption to model the behavior of other threads. Thus,
our assume-guarantee decomposition reduces the verification of a program with n
threads to the verification of n sequential programs. This thread-modular decom-
position allows our tool to leverage extended static checking techniques [DLNS98]
(based on verification conditions and automatic theorem proving) to check the
resulting sequential programs.

We have implemented our checker for multithreaded programs written in
the Java programming language [AG96], and we have successfully applied this
checker to a number of programs. These programs use a variety of synchroniza-
tion mechanisms, ranging from simple mutual exclusion locks to more complex
idioms found in systems code, including a subtle synchronization idiom used in
the distributed file system Frangipani [TML97].

Experience with this implementation indicates that our analysis has the fol-
lowing useful features:

1. It naturally scales to programs with many threads since each thread is ana-
lyzed separately.

2. For programs using common synchronization idioms, such as mutexes or
reader-writer locks, the necessary annotations are simple and intuitive.

3. Control predicates can be expressed in our analysis by explicating the pro-
gram counter of each thread as an auxiliary variable. Therefore, theoretically
our method is as expressive as the Owicki-Gries method. However, for many
common cases, such as those appearing in Section 6, our method requires
significantly fewer annotations.

The remainder of the paper proceeds as follows. The following section de-
scribes related work on assume-guarantee reasoning and other tools for detect-
ing synchronization errors. Section 3 introduces Plato, an idealized language for
parallel programs that we use as the basis for our development. Section 4 pro-
vides a formal definition of thread-modular verification. Section 5 applies thread-
modular reasoning to the problem of invariant verification. Section 6 describes



our implementation and its application to a number of example programs. We
conclude in Section 7.

2 Background

One of the earliest assume-guarantee proof rules was developed by Misra and
Chandy [MC81] for message-passing systems, and later refined by others (see,
for example, [Jon89,MM93]). However, their message-passing formulation is not
directly applicable to shared-memory software.

Jones [Jon83a,Jon83b] gave a proof rule for multithreaded shared-memory
programs and used it to manually refine an assume-guarantee specification down
to a program. We extend his work to allow the proof obligations for each thread
to be checked mechanically by an automatic theorem prover. Stark [Sta85] also
presented a rule for shared-memory programs to deduce that a conjunction of
assume-guarantee specifications hold on a system provided each specification
holds individually, but his work did not allow the decomposition of the imple-
mentation.

Abadi and Lamport [AL95] view the composition of components as a con-
junction of temporal logic formulas [Lam94] describing them, and they present a
rule to decompose such systems. Since threads modifying shared variables cannot
be viewed as components in their framework, their work is not directly applica-
ble to our problem. Collette and Knapp [CK95] extended the rule of Abadi and
Lamport to the more operational setting of Unity [CM88] specifications.

Alur and Henzinger [AH96] and McMillan [McM97] present assume-guarantee
proof rules for hardware components. A number of other compositional proof
rules not based on assume-guarantee reasoning have also been proposed, such
as [BKP84,CM88,MP95].

Yahav [Yah01] describes a method to model check multithreaded programs
using a 3-valued logic [SRW99,LAS00] to abstract the store. This technique can
verify interesting properties of small programs. Păsăreanu et al. [PDH99] also
describe a model checking tool for compositional checking of finite-state mes-
sage passing systems. Abraham-Mumm and deBoer [AMdB00] sketch a logic for
verifying multi-threaded Java programs indirectly via a translation to commu-
nicating sequential programs.

A number of tools have been developed for identifying specific synchroniza-
tion errors in multithreaded programs. These approaches are less general than
thread-modular verification and use specific analysis techniques to locate spe-
cific errors, such as data races and deadlocks. For example, RCC/Java [FF00] is
an annotation-based checker for Java that uses a type system to identify data
races [FA99]. While this tool is successful at finding errors in large programs,
the inability to specify subtle synchronization patterns results in many false
alarms [FF01]. ESC/Java [LSS99], Warlock [Ste93], and the dynamic testing
tool Eraser [SBN+97] are other tools in this category, and are discussed in an
earlier paper [FF00].



3 The Parallel Language Plato

We present thread-modular verification in terms of the idealized language Plato
(parallel language of atomic operations). A Plato program P is a parallel com-
position S1 | · · · | Sn of several statements, or threads. The program executes
by interleaving atomic steps of its various threads. The threads interact through
a shared store σ, which maps program variables to values. The sets of variables
and values are left intentionally unspecified, as they are mostly orthogonal to
our development.

Statements in the Plato language include the empty statement skip, sequen-
tial composition S1; S2, the nondeterministic choice construct S1!S2, which ex-
ecutes either S1 or S2, and the iteration statement S∗, which executes S some
arbitrary number of times.

Plato syntax

S ∈ Stmt ::= skip no operation
| X ↓ Y atomic operation
| S!S nondeterministic choice
| S; S composition
| S∗ nondeterministic iteration

P ∈ Program ::= S1 | · · · | Sn

σ ∈ Store = Var → Value
X ,Y ∈ Action ⊆ Store × Store

Perhaps the most notable aspect of Plato is that it does not contain constructs
for conventional primitive operations such as assignment and lock acquire and
release operations. Instead, such primitive operations are combined into a general
mechanism called an atomic operation X ↓ Y , where X and Y are actions , or
two-store predicates. The action X is a constraint on the transition from the
pre-store σ to the post-store σ′, and Y is an assertion about this transition.

To execute the atomic operation X ↓ Y , an arbitrary post-store σ′ is chosen
that satisfies the constraint X(σ, σ′). There are two possible outcomes:

1. If the assertion Y (σ, σ′) holds, then the atomic operation terminates nor-
mally, and the execution of the program continues with the new store σ′.

2. If the assertion Y (σ, σ′) does not hold, then the execution goes wrong.

If no post-store σ′ satisfies the constraint X(σ, σ′), then the thread is blocked,
and the execution can proceed only on the other threads.

In an atomic operation, we write each action as a formula in which primed
variables refer to their value in the post-store σ′, and unprimed variables refer to
their value in the pre-store σ. In addition, for any action X and set of variables
V ⊆ Var , we use the notation 〈X〉V to mean the action that satisfies X and only
allows changes to variables in V between the pre-store and the post-store. We
abbreviate the common case 〈X〉∅ to 〈X〉 and also abbreviate 〈X〉{a} to 〈X〉a.

Atomic operations can express many conventional primitives, such as assign-
ment, assert, and assume statements (see below). Atomic operations can also
express other primitives, in particular lock acquire and release operations. We
assume that each lock is represented by a variable and that each thread has a



unique nonzero thread identifier. If a thread holds a lock, then the lock variable
contains the corresponding thread identifier; if the lock is not held, then the vari-
able contains zero. Under this representation, acquire and release operations for
lock mx and thread i are shown below. Finally, Plato can also express traditional
control constructs, such as if and while statements.

Expressing conventional constructs in Plato

x := e
def
= 〈x′ = e〉x ↓ true

assert e
def
= 〈true〉 ↓ e

assume e
def
= 〈e〉 ↓ true

acq(mx)
def
= 〈mx = 0 ∧ mx′ = i〉mx ↓ true

rel(mx)
def
= 〈mx′ = 0〉mx ↓ (mx = i)

if (e) { S }
def
= (assume e; S)!(assume ¬e)

while (e) { S }
def
= (assume e; S)∗; (assume ¬e)

3.1 Formal Semantics

The execution of a program is defined as an interleaving of the executions of
its individual, sequential threads. A sequential state Φ is either a pair of a store
and a statement, or the special state wrong (indicating that the execution went
wrong by failing an assertion). The semantics of individual threads is defined via
the transition relation Φ →s Φ, defined in the figure below.

A parallel state Θ is either a pair of a store and a program (representing
the threads being executed), or the special state wrong. The transition relation
Θ →p Θ on parallel states executes a single sequential step of an arbitrarily cho-
sen thread. If that sequential step terminates normally, then execution continues
with the resulting post-state. If the sequential step goes wrong, then so does the
entire execution.

Formal semantics of Plato

Φ ∈ SeqState ::= (σ, S) | wrong Θ ∈ ParState ::= (σ, P ) | wrong

[action ok]
X(σ, σ′) Y (σ, σ′)

(σ, X ↓ Y ) →s (σ′, skip)

[action wrong]
X(σ, σ′) ¬Y (σ, σ′)

(σ, X ↓ Y ) →s wrong

[choice]
i ∈ {1, 2}

(σ, S1!S2) →s (σ, Si)

[loop done]

(σ, S∗) →s (σ, skip)

[loop unroll]

(σ, S∗) →s (σ, S; S∗)

[assoc]

(σ, (S1; S2); S3) →s (σ, S1; (S2; S3))

[seq step]
(σ, S1) →s (σ′, S′

1)

(σ, S1; S2) →s (σ′, S′

1; S2)

[seq skip]

(σ, skip; S) →s (σ, S)

[seq wrong]
(σ, S1) →s wrong

(σ, S1; S2) →s wrong

[parallel]
(σ, Si) →s (σ′, S′

i)

(σ, S1 | · · · | Si | · · · | Sn)
→p (σ′, S1 | · · · | S′

i | · · · | Sn)

[parallel wrong]
(σ, Si) →s wrong

(σ, S1 | · · · | Si | · · · | Sn) →p wrong



4 Thread-Modular Verification

We reason about a parallel program P = S1 | · · · | Sn by reasoning about
each thread in P separately. For each thread i, we specify two actions — an
environment assumption Ai and a guarantee Gi. The assumption of a thread
is a specification of what transitions may be performed by other threads in
the program. The guarantee of a thread is required to hold on every action
performed by the thread itself. To ensure the correctness of the assumptions,
we require that the guarantee of each thread be stronger than the assumption
of every other thread. In addition, to accommodate effect-free transitions, we
require each assumption and guarantee to be reflexive. The precise statement of
these requirements is as follows:

1. Ai and Gi are reflexive for all i ∈ 1..n.
2. Gi ⊆ Aj for all i, j ∈ 1..n such that i '= j.

If these requirements are satisfied, then 〈A1, G1〉, . . . , 〈An, Gn〉 is an assume-
guarantee decomposition for P .

We next define the translation [[S]]AG of a statement S with respect to an
assumption A and a guarantee G. This translation verifies that each atomic
operation of S satisfies the guarantee G. In addition, the translation inserts the
iterated environment assumption A∗ as appropriate to model atomic steps of
other threads.

[[•]]•• : Stmt × Action × Action → Stmt

[[skip]]AG = A∗

[[X ↓ Y ]]AG = A∗; X ↓ (Y ∧ G); A∗

[[S1!S2]]AG = A∗; ([[S1]]AG![[S2]]AG)
[[S1; S2]]AG = [[S1]]AG; [[S2]]AG

[[S∗]]AG = A∗; (([[S]]AG; A∗)∗; A∗)

We use this translation and the assume-guarantee decomposition to abstract
each thread i of the parallel program P into the sequential program [[Si]]

Ai

Gi
, called

the i-abstraction of P . For any thread i, if Ai models the environment of thread
i and the sequential i-abstraction of P does not go wrong, then we conclude
that the corresponding thread Si in P does not go wrong and also satisfies the
guarantee Gi. Thus, if none of the i-abstractions go wrong, then none of the
threads in P go wrong. This property is formalized by the following theorem;
its correctness proof avoids circular reasoning by using induction over time. (An
extended report containing the proof of theorems in this paper is in available at
http://www.research.compaq.com/SRC/personal/freund/tmv-draft.ps.)

Theorem 1 (Thread-Modular Verification). Let P = S1 | · · · | Sn be a
parallel program with assume-guarantee decomposition 〈A1, G1〉, . . . , 〈An, Gn〉.
For all σ ∈ Store, if ∀i ∈ 1..n. (σ, [[Si]]

Ai

Gi
) '→∗

s wrong, then (σ, P ) '→∗
p wrong.



This theorem allows us to decompose the analysis of a parallel program
S1 | · · · | Sn into analyses of individual threads by providing an assume-guarantee
decomposition 〈A1, G1〉, . . . , 〈An, Gn〉. In practice, we only require the program-
mer to specify reflexive assumptions A1, . . . , An, and we derive the corresponding
reflexive guarantees by

Gi = (∀j ∈ 1..n. j '= i ⇒ Aj).

For all examples we have considered, the natural assumptions are transitive in
addition to being reflexive. This allows us to optimize the iterations A∗

i in each i-
abstraction to simply the action Ai. In addition, the n environment assumptions
A1, . . . , An for a program with n threads can typically be conveniently expressed
as a single action parameterized by thread identifier, as shown below.

4.1 Example

To illustrate Theorem 1, consider the following program SimpleLock. The pro-
gram manipulates two shared variables, an integer x and a lock mx. To synchro-
nize accesses to x, each thread acquires the lock mx before manipulating x. The
correctness condition we would like to verify is that Thread1 never goes wrong
by failing the assertion x > 1.

SimpleLock program, desugared Thread1, and [[Thread1]]
A1

G1

Thread1:
acq(mx);
x := x * x;
x := x + 2;
assert x > 1;

rel(mx);

Thread2:
acq(mx);
x := 0;
rel(mx);

Desugared Thread1 :
〈mx = 0 ∧ mx′ = 1〉mx;
〈x′ = x * x〉x;
〈x′ = x + 2〉x;
〈true〉 ↓ (x > 1);
〈mx′ = 0〉mx ↓ (mx = 1);

[[Thread1]]
A1

G1
:

A1;〈mx = 0 ∧ mx′ = 1〉mx ↓ G1;

A1;〈x′ = x * x〉x ↓ G1;
A1;〈x′ = x + 2〉x ↓ G1;
A1;〈true〉 ↓ (x > 1 ∧ G1);
A1;〈mx′ = 0〉mx ↓ (mx = 1 ∧ G1);
A1

The synchronization discipline in this program is that if a thread holds the
lock mx, then the other thread cannot modify either the variable x or the lock
variable mx. This discipline is formalized by the following environment assump-
tion for thread identifier i ∈ 1..2:

Ai = (mx = i ⇒ mx′ = i ∧ x′ = x)

The corresponding guarantees are G1 = A2 and G2 = A1. Since A1 is reflexive
and transitive, we can optimize both A∗

1 and A∗
1;A

∗
1 to A1 in the 1-abstraction

of SimpleLock, shown above.
Verifying the two i-abstractions of SimpleLock is straightforward, using ex-

isting analysis techniques for sequential programs. In particular, our checker uses
extended static checking to verify that the two sequential i-abstractions of Sim-
pleLock do not go wrong. Thus, the hypotheses of Theorem 1 are satisfied, and
we conclude that the parallel program SimpleLock does not fail its assertion.



5 Invariant Verification

In the previous section, we showed that the SimpleLock program does not fail
its assertion. In many cases, we would also like to show that a program preserves
certain data invariants. This section extends thread-modular verification to check
data invariants on a parallel program P = S1 | . . . | Sn. We use Init ⊆ Store
to describe the possible initial states of P , and we say that a set of states I is
an invariant of P with respect to Init if for each σ ∈ Init , if (σ, P ) →∗

p (σ′, P ′),
then σ′ ∈ I.

To show that I is an invariant of P , it suffices to show that I holds initially
(i.e., Init ⊆ I), and that I is preserved by each transition of P . We prove the
latter property using thread-modular verification, where the guarantee Gi of
each thread satisfies the property

Gi ⇒ (I ⇒ I ′).

In this formula, the predicate I denotes the action where I holds in the pre-state,
and the post-state is unconstrained; similarly, I ′ denotes the action where the
pre-state is unconstrained, and I holds in the post-state. Thus, I ⇒ I ′ is the
action stating that I is preserved.

The following theorem formalizes the application of thread-modular reason-
ing to invariant verification.

Theorem 2 (Invariant Verification). Let P = S1 | · · · | Sn be a parallel
program with assume-guarantee decomposition 〈A1, G1〉, . . . , 〈An, Gn〉, and let
Init and I be sets of stores. Suppose:

1. Init ⊆ I
2. ∀i ∈ 1..n. Gi ⇒ (I ⇒ I ′)
3. ∀i ∈ 1..n. ∀σ ∈ Init . (σ, [[Si]]

Ai

Gi
) '→∗

s wrong

Then I is an invariant of P with respect to Init .

In practice, we apply this theorem by requiring the programmer to supply
the invariant I and the parameterized environment assumption Ai. We derive
the corresponding parameterized guarantee:

Gi = (∀j ∈ 1..n. j '= i ⇒ Aj) ∧ (I ⇒ I ′)

The guarantee states that each atomic step of a thread satisfies the assumptions
of the other threads and also preserves the invariant. Since each step preserves
the invariant, we can strengthen the environment assumption to:

Bi = Ai ∧ (I ⇒ I ′)

The resulting assume-guarantee decomposition 〈B1, G1〉, . . . , 〈Bn, Gn〉 is then
used in the application of Theorem 2. The first condition of that theorem, that
Init ⊆ I, can be checked using a theorem prover [Nel81]. The second condition,



that ∀i ∈ 1..n. Gi ⇒ (I ⇒ I ′), follows directly from the definition of Gi. The
final condition (similar to the condition of Theorem 1), that each sequential
i-abstraction [[Si]]

Bi

Gi
does not go wrong from any initial store in Init , can be

checked using extended static checking. The following section describes our im-
plementation of an automatic checking tool for parallel programs that supports
thread modular and invariant verification.

6 Implementation and Applications

We have implemented an automatic checking tool for parallel, shared-memory
programs. This checker takes as input a Java program, together with annota-
tions describing appropriate environment assumptions, invariants, and asserted
correctness properties. The input program is first translated into an intermediate
representation language similar to Plato, and then the techniques of this paper
are applied to generate an i-abstraction, which is parameterized by the thread
identifier i.

This i-abstraction is then converted into a verification condition [Dij75,FS01].
When generating this verification condition, procedure calls are handled by inlin-
ing, and loops are translated either using a programmer-supplied loop invariant,
or in an unsound but useful manner by unrolling loops some finite number of
times [LSS99]. The automatic theorem prover Simplify [Nel81] is then invoked
to check the validity of this verification condition.

If the verification condition is valid, then the parameterized i-abstraction does
not go wrong, and hence the original Java program preserves the stated invariants
and assertions. Alternatively, if the verification condition is invalid, then the
theorem prover generates a counterexample, which is then post-processed into
an appropriate error message in terms of the original Java program. Typically,
the error message either identifies an atomic step that may violate one of the
stated invariants or environment assumptions, or identifies an assertion that may
go wrong. This assertion may either be explicit, as in the example programs, or
may be an implicit assertion, for example, that a dereferenced pointer is never
null.

The implementation of our checker leverages extensively off the Extended
Static Checker for Java, which is a powerful checking tool for sequential Java
programs. For more information regarding ESC/Java, we refer the interested
reader to related documents [DLNS98,LSS99,FLL+02].

In the next three subsections, we describe the application of our checker to
parallel programs using various kinds of synchronization. Due to space restric-
tions, these examples are necessarily small, but our checker has also been applied
to significantly larger programs. In each of the presented examples, we state the
necessary annotations: the assumptions Ai for each thread i and the invariant
I to be proved. Given these annotations, our tool can automatically verify each
of the example programs. For consistency with our earlier development, these
programs are presented using Plato syntax.



6.1 Dekker’s Mutual Exclusion Algorithm

Our first example is Dekker’s algorithm, a classic algorithm for mutual exclusion
that uses subtle synchronization.

Dekker’s mutual exclusion algorithm

Variables:
boolean a1;
boolean a2;

boolean cs1;
boolean cs2;

Initially:
¬cs1 ∧ ¬cs2

Thread1:
while (true) {
a1 := true;

cs1 := ¬a2;
if (cs1) {

// critical section

cs1 := false;
}
a1 := false;

}

Thread2:
while (true) {

a2 := true;

cs2 := ¬a1;
if (cs2) {
// critical section

cs2 := false;
}
a2 := false;

}

The algorithm uses two boolean variables a1 and a2. We introduce two vari-
ables cs1 and cs2, where csi is true if thread i is in its critical section. Each
Threadi expects that the other thread will not modify ai and csi. We formalize
this expectation as the assumption:

Ai = (ai = a′i ∧ csi = cs′i)

We would like to verify that the algorithm achieves mutual exclusion, which is
expressed as the invariant ¬(cs1 ∧ cs2). Unfortunately, this invariant cannot be
verified directly. The final step is to strengthen the invariant to

I = ¬(cs1 ∧ cs2) ∧ (cs1 ⇒ a1) ∧ (cs2 ⇒ a2).

Using the assumptions A1 and A2 and the strengthened invariant I, our checker
verifies that Dekker’s algorithm achieves mutual exclusion.

In this example, the environment assumptions are quite simple. The subtlety
of the algorithm is reflected in the invariant which had to be strengthened by
two conjuncts. In general, the complexity of the assertions needed by our checker
reflects the complexity of the synchronization patterns used in program being
checked.

6.2 Reader-Writer Locks

The next example applies thread-modular reasoning to a reader-writer lock,
which can be held in two different modes, read mode and write mode. Read
mode is non-exclusive, and multiple threads may hold the lock in that mode.
On the other hand, holding the lock in write mode means that no other threads
hold the lock in either mode. Acquire operations block when these guarantees
cannot be satisfied.

We implement a reader-writer lock using two variables: an integer w, which
identifies the thread holding the lock in write mode (or 0 if no such thread



exists), and an integer set r, which contains the identifiers of all threads holding
the lock in read mode. The following atomic operations express acquire and
release in read and write mode for thread i:

acq write(w, r)
def
= 〈w = 0 ∧ r = ∅ ∧ w′ = i〉w

acq read(w, r)
def
= 〈w = 0 ∧ r′ = r ∪ {i}〉r

rel write(w, r)
def
= 〈w′ = 0〉w ↓ (w = i)

rel read(w, r)
def
= 〈r′ = r \ {i}〉r ↓ (i ∈ r)

For a thread to acquire the lock in write mode, there must be no writer and
no readers. Similarly, to acquire the lock in read mode, there must be no writer,
but there may be other readers, and the result of the acquire operation is to put
the thread identifier into the set r. The release operations are straightforward.
All of these lock operations respect the following data invariant RWI and the
environment assumption RWAi:

RWI = (r = ∅ ∨ w = 0)
RWAi = (w = i ⇔ w′ = i) ∧ (i ∈ r ⇔ i ∈ r′)

We illustrate the analysis of reader-writer locks by verifying the following
program, in which the variable x is guarded by the reader-writer lock. Thread2

asserts that the value of x is stable while the lock is held in read mode, even
though Thread1 mutates x while the lock is held in write mode.

Reader-writer lock example

Variables:
int w, x, y;
int set r;

Initially:
w = 0 ∧ r = ∅;

Thread1:
acq write(w, r);
x := 3;

rel write(w, r);

Thread2:
acq read(w, r);
y := x;

assert y = x;
rel read(w, r);

The appropriate environment assumption for this program

Ai = RWAi ∧ (i ∈ r ⇒ x = x′) ∧ (i = 2 ⇒ y = y′)

states that (1) each thread i can assume the reader-writer assumption RWAi,
(2) if thread i holds the lock in read mode, then x cannot be changed by another
thread, and (3) the variable y is modified only by Thread2. This environment
assumption, together with the data invariant RWI , is sufficient to verify this
program using our checker.

Although the reader-writer lock is more complex than the mutual-exclusion
lock described earlier, the additional complexity of the reader-writer lock is lo-
calized to the annotations RWAi and RWI that specify the lock implementation.
Given these annotations, it is encouraging to note that the additional annota-
tions required to verify reader-writer lock clients are still straightforward.



6.3 Time-Varying Mutex Synchronization

We now present a more complex example to show the power of our checker. The
example is derived from a synchronization idiom found in the Frangipani file
system [TML97].

For each file, Frangipani keeps a data structure called an inode that contains
pointers to disk blocks that hold the file data. Each block has a busy bit indi-
cating whether the block has been allocated to an inode. Since the file system
is multithreaded, these data structures are guarded by mutexes. In particular,
distinct mutexes protect each inode and each busy bit. However, the mutex
protecting a disk block depends on the block’s allocation status. If a block is
unallocated (its busy bit is false), the mutex for its busy bit protects it. If the
block is allocated (its busy bit is true), the mutex for the owning inode protects
it. The following figure shows a highly simplified version of this situation.

Time-varying mutex program

Variables:
int block;
boolean busy;

boolean inode;
int m inode;
int m busy;

Initially:
inode = busy

Thread1:
acq(m inode);
if (¬inode) {
acq(m busy);
busy := true;
rel(m busy);

inode := true;
}
block := 1;

assert block = 1;
rel(m inode);

Thread2:
acq(m busy);
if (¬busy) {
block := 0;
assert block = 0;

}
rel(m busy);

The program contains a single disk block, represented by the integer variable
block, and uses a single bit busy to store the block’s allocation status. There is
a single inode whose contents have been abstracted to a bit indicating whether
the inode has allocated the block. The two mutexes m inode and m busy protect
the variables inode and busy, respectively.

The program contains two threads. Thread1 acquires the mutex m inode,
allocates the block if it is not allocated already, and sets block to 1. Since
Thread1 is holding the lock on the inode that has allocated the block, the thread
has exclusive access to the block contents. Thus, the subsequent assertion that
the block value remains 1 should never fail.

Thread2 acquires the mutex m busy. If busy is false, the thread sets block
to 0 and asserts that the value of block is 0. Since Thread2 holds the lock on
busy when the block is unallocated, the thread should have exclusive access to
block, and the assertion should never fail.

We now describe annotations necessary to prove that the assertions always
hold. First, the lock m inode protects inode, and the lock m busy protects busy:

Ji = (m inode = i ⇒ (m inode′ = i ∧ inode′ = inode)) ∧
(m busy = i ⇒ (m busy′ = i ∧ busy′ = busy))



In addition, if busy is true, then block is protected by m inode; otherwise, block
is protected by m busy:

Ki = (busy ∧ m inode = i ⇒ block = block′) ∧
(¬busy ∧ m busy = i ⇒ block = block′)

Finally, the busy bit must be set when the inode has allocated the block.
Moreover, the busy bit can be reset only by the thread that holds the lock on
the inode. We formalize these requirements as the invariant I and the assumption
Li respectively.

I = (m inode = 0 ∧ inode) ⇒ busy
Li = (m inode = i ∧ busy) ⇒ busy′

With these definitions, the complete environment assumption for each thread i
is:

Ai = Ji ∧ Ki ∧ Li

Given Ai and I, our checker is able to verify that the assertions in this program
never fail.

This example illustrates the expressiveness of our checker. By comparison,
previous tools for detecting synchronization errors [Ste93,SBN+97,FF00] have
been mostly limited to finding races in programs that only use simple mutexes
(and, in some cases, reader-writer locks). However, operating systems and other
large-scale systems tend to use a variety of additional synchronization mecha-
nisms, some of which we have described in the last few sections. Other synchro-
nization idioms include binary and counting semaphores, producer-consumer
synchronization, fork-join parallelism, and wait-free non-blocking algorithms.
Our experience to date indicates that our checker has the potential to han-
dle many of these synchronization disciplines. Of course, the more subtle syn-
chronization disciplines may require more complex annotations, and it may be
difficult to check the verification conditions resulting from particularly complex
programs or synchronization disciplines.

7 Conclusions

The ability to reason about the correctness of large, multithreaded programs is
essential to ensure the reliability of such systems. One natural strategy for de-
composing such verification problems is procedure-modular verification, which
has enjoyed widespread use in a variety of program analysis techniques for many
years. Instead of reasoning about a call-site by inlining the corresponding pro-
cedure body, procedure-modular verification uses some specification of that pro-
cedure, for example, a type signature or a precondition/postcondition pair.

A second, complementary decomposition strategy is assume-guarantee de-
composition [Jon83a], which avoids the need to consider all possible interleav-
ings of the various threads explicitly. Instead, each thread is analyzed separately,
with an environment assumption providing a specification of the behavior of the
other program threads.



This paper presents an automatic checker for multithreaded programs, based
on an assume-guarantee decomposition. The checker relies on the programmer
to provide annotations describing the environment assumption of each thread. A
potential concern with any annotation-based analysis technique is the overhead
of providing such annotations. Our experience applying our checker to a number
of example programs indicates that this annotation overhead is moderate. In
particular, for many common synchronization idioms, the necessary environment
assumptions are simple and intuitive. The environment assumption may also
function as useful documentation for multithreaded programs, providing benefits
similar to (formal or informal) procedure specifications.

We believe that verification of large, multithreaded programs requires the
combination of both thread-modular and procedure-modular reasoning. How-
ever, specifying a procedure in a multithreaded program is not straightforward.
In particular, because other threads can observe intermediate states of the pro-
cedure’s computation, a procedure cannot be considered to execute atomically
and cannot be specified as a simple precondition/postcondition pair. Combining
thread-modular and procedure-modular reasoning appropriately is an important
area for future work. Some preliminary steps in this direction are described in a
related technical report [FQS02].
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