
Type Inference For Atomicity

Cormac Flanagan Stephen N. Freund Marina Lifshin
Department of Computer Science Department of Computer Science
University of California, Santa Cruz Williams College

Santa Cruz, CA 95064 Williamstown, MA 01267

Abstract
Atomicity is a fundamental correctness property in multithreaded
programs. This paper presents an algorithm for verifying atomicity
via type inference. The underlying type system supports guarded,
write-guarded, and unguarded fields, as well as thread-local data,
parameterized classes and methods, and protected locks. We de-
scribe an implementation of this algorithm for Java and discuss its
performance and usability on benchmarks totaling sixty thousand
lines of code.

Categories and Subject Descriptors: D.2.4 [Software Engineer-
ing]: Software/Program Verification–reliability; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs.
General Terms: Languages, Verification, Reliability.
Keywords: Atomicity, type inference, reduction, concurrency.

This is an extended and revised version of our paper appearing in
the Proceedings of TLDI ‘05.

1 Introduction
Reasoning about the correctness of multithreaded code is extremely
difficult, due to the need to consider all possible interleavings of the
various threads. In particular, errors often occur in multithreaded
programs because certain interleavings cause unexpected interac-
tions between concurrent threads. Thus, methods for specifying
and controlling the interference between threads are crucial for the
development of reliable multithreaded software.

This paper focuses on the non-interference property of atomicity.
A method is atomic if, for every arbitrarily interleaved program
execution, there is an equivalent execution with the same overall
behavior where the atomic method is executed serially, that is, the
method’s execution is not interleaved with actions of other threads.
The key benefit of atomicity is that atomic methods are amenable
to sequential reasoning, which significantly facilitates standard vali-
dation techniques such as manual code inspection, dynamic testing,
and static analysis. In addition, atomicity violations often reveal
subtle errors in a program’s synchronization discipline.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
TLDI’05, January 10, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-999-3/05/0001 ...$5.00

Over the last few years, several techniques for verifying atomic-
ity have been developed, including via type systems [15, 16, 13],
dynamic analysis [11, 38], theorem proving [18], and model check-
ing [22]. The type-based approach seems particularly promising,
since it avoids both the test coverage limitations of dynamic analy-
ses and the scalability limitations of some other analyses. However,
it does require the programmer to provide type annotations specify-
ing, for example, the atomicity of every method and the protecting
lock of every field in the program, which significantly increases the
cost of using the system on large programs.

In this paper we present a type inference algorithm for atomicity.
Our inference algorithm proceeds in two phases. The first phase
reasons about potential race conditions, and infers the synchroniza-
tion discipline used by the program, including which locks (if any)
protect each field. This task is accomplished using the Rcc/Sat sub-
routine, which is described in an earlier paper [12]. (Essentially,
this part of the type inference problem is NP-complete, and Rcc/Sat
works via reduction to propositional satisfiability.)

The primary contribution of this paper is the second phase of our
type inference algorithm. This phase infers the most precise atom-
icity (or effect [28]) for each method, using a constraint-based anal-
ysis. This phase is quite subtle, since the type system supports
conditional atomicities that contain lock expressions, and thus we
have a form of dependent effects. For soundness, the values of ex-
pressions embedded inside these dependent atomicities must not
change during execution. Our constraint language includes special
constructs to describe well-formedness requirements on dependent
atomicities, and the solver refers to judgments in the type system
to enforce these requirements. Despite this complex interaction be-
tween the type system and constraint solver, the constraints can be
solved with an iterative fixed-point algorithm.

A second limitation of our original type system for atomicity [15] is
its limited expressiveness, particularly for large programs that reuse
classes in contexts with different synchronization disciplines. In
this paper, we overcome this limitation by basing our development
on a more expressive type system that supports thread-local objects
and parameterized classes and methods, adapting techniques from
our earlier RFJ2 type system for race freedom [12, 10]. In addition,
our type system also supports the notion of protected locks, which
our experiments with the Atomizer dynamic analysis tool [11] re-
vealed are often necessary for verifying atomicity in large pro-
grams.

We have implemented our type inference algorithm for the Java
programming language and evaluated its performance on a variety
of benchmarks totaling over 60,000 lines of code. This algorithm

works well; in particular, due to the increased expressiveness of
our type system, our algorithm can verify the atomicity of most
methods in these benchmarks. These experimental results validate
the hypothesis that atomicity is a widely-used programming disci-
pline in multithreaded programs1. In addition, these results indicate
that this type system for atomicity is sufficiently expressive to ac-
commodate many of the common synchronization patterns of larger
Java programs, and that our type inference algorithm is fast and
works well in practice. These experiments also revealed a number
of defects in these benchmarks, including, for example, three errors
in the class java.util.Vector.

The presentation of our results proceeds as follows. The following
section presents an idealized multithreaded subset of Java. Sec-
tion 3 describes the atomicities inferred by our type system and
Section 4 illustrates these atomicities on some examples. Section 5
describes our constraint-based type inference algorithm. Section 6
describes the implementation of our type inference algorithm, in-
cluding extensions for expressiveness and to support the Java lan-
guage. Section 7 evaluates our prototype implementation on our
benchmark suite. Section 8 discusses related work, and we con-
clude with Section 9.

2 The Source Language AJ2

Figure 1: AJ2 Syntax

P ::= defn∗ e (program)
defn ::= class cn〈ghost x∗〉 body (class declaration)
body ::= { field∗ meth∗ } (class body)
field ::= t fn g (field declaration)

g ::= final (field guards)
| guarded by l
| write guarded by l
| no guard

meth ::= s t mn〈ghost x∗〉(arg∗) { e } (method declaration)
arg ::= t x (argument declaration)
t,c ::= cn〈l∗〉 (class type)
l ::= e | none (lock expression)

e ::= x | n | null | new c(e∗) | e.fd | e.fd = e
| e.mn〈l∗〉(e∗) | let x = e in e | while e e
| if e e e | synchronized e e | e.fork

x,y ∈ Var cn ∈ ClassName
fn ∈ FieldName mn ∈ MethodName

We base our formal development on the language AJ2, a multi-
threaded subset of Java with a type system for atomicity. This
type system extends our previous atomicity type system [15] with
thread-local objects and parameterized classes and methods [10,
11]. For clarity, AJ2 also simplifies some aspects of our earlier
formal development by, for example, not supporting inheritance.
(Section 6 describes how our implementation handles inheritance
and other aspects of the full Java programming language.)

An AJ2 program (see Figure 1) is a sequence of class declarations
together with an initial expression. Each class declaration asso-
ciates a class name with a body that consists of a sequence of field

1Previous experiments with the Atomizer [11] provided prelim-
inary evidence supporting this hypothesis, but it was limited by the
test coverage concerns inherent in any dynamic analysis.

and method declarations. The self-reference variable “this” is im-
plicitly bound within the class body.

Each field declaration includes a guard g that specifies the synchro-
nization discipline for that field. The possible guards are:

• final: the field cannot be written after initialization;
• no guard: the field can be read or written at any time;
• guarded by l: the lock denoted by the lock expression l must
be held on all accesses (reads or writes) of that field; and

• write guarded by l: the lock denoted by the lock expression
l must be held on all writes of that field, but not for reads.

A lock expression is either an expression that denotes some lock in
the program, or the special lock none, which is described in Sec-
tion 3.2.

The language provides parameterized classes to allow the fields of
a class to be protected by some lock external to the class. A param-
eterized class declaration

class cn〈ghost x1 . . .xn〉 { . . . }

introduces a binding for the ghost variables x1 . . .xn, which can be
referred to from type annotations within the class body. The type
cn〈l1 . . . ln〉 refers to an instantiated version of cn, where each xi in
the body is replaced by the lock expression li.

The AJ2 language also supports parameterized methods. For exam-
ple, the declaration

s t m〈ghost x〉(cn〈x〉 y) { . . . }

defines a method m of return type t that is parameterized by a ghost
lock x, and which takes an argument of type cn〈x〉. A corresponding
invocation e.m〈z〉(e′)must supply a ghost argument z and an actual
parameter e′ of type cn〈z〉.

Each method declaration includes a specification s of the method’s
atomicity. The language of atomicities is described in the following
section. Here, we just note that the atomicity s may refer to all
program variables in scope, including this, the ghost parameters
of the containing class, and the ghost and normal parameters of the
method itself.

Expressions in the language include object allocation new c(e∗),
which initializes the new object’s fields with its argument values;
field read and update; method calls; variable binding and reference;
conditionals; loops; and synchronized blocks.

The expression e.fork starts a new thread (and always evaluates to
null). The expression e should evaluate to an object that includes a
method run that takes a single ghost parameter. The fork operation
spawns a new thread that, conceptually, creates and acquires a new
thread-local lock tll for instantiating the ghost parameter to run.
This lock is always held by the new thread, and may therefore be
used by run to guard thread-local data, and it may be passed as
a ghost parameter to other methods that access thread-local data.
Thus, AJ2 leverages parameterized methods to reason about thread-
local data. This approach replaces the escape analysis embedded in
our earlier type system [10].

3 Atomicities
We next briefly review Lipton’s theory of left and right-movers [26],
upon which our type system is based. An action b is a right-mover
if, for any execution where the action b performed by one thread is
immediately followed by an action c of a concurrent thread, the ac-
tions b and c can be swapped without changing the resulting state.
Conversely, an action c is a left-mover if whenever c immediately
follows an action b of a different thread, the actions b and c can
be swapped, again without changing the resulting state. We clas-
sify operations performed by a thread as (left or right) movers as
follows:

Operation Mover Status
lock acquire right-mover
lock release left-mover
access to data protected by a lock both-mover
access to unprotected data non-mover

Suppose an execution path through a method contains a sequence of
right-movers, followed by at most one non-mover action and then
a sequence of left-movers. Then this path can be reduced to an
equivalent serial execution, with the same resulting state, where the
path is executed without any interleaved actions by other threads.

Our type system verifies that every possible path through each
atomic method is reducible. It works by assigning to each subex-
pression an atomicity [15] characterizing the behavior of that ex-
pression. Atomicities include the basic atomicities of our earlier
work, an extended notion of conditional atomicities (to support
protected locks), and atomicity variables (introduced for type in-
ference). Figure 2 summarizes these forms, which are explained
below.

Figure 2: Atomicity Syntax

b ::= const | mover (basic atomicities)
| atomic | cmpd | error

a ::= b | p?a1 :a2 (atomicities)
p ::= l | isNone(l) (lock predicates)
s ::= a | ! (open atomicities)
! ∈ AtomVar (atomicity variables)

3.1 Basic Atomicities
An expression may be assigned one of the basic atomicities const,
mover, atomic, cmpd, or error according to the following condi-
tions:

• const: The expression does not depend on or change any mu-
table state. In particular, the repeated evaluation of a const
expression with a given environment yields the same result.
Such expressions include references to immutable variables2,
accesses to final fields of const expressions, and calls to
const methods with const arguments.

• mover: The evaluation of the expression both left and right
commutes with operations of other threads. For example, a
field access is a mover if no thread can concurrently access
the same field.

• atomic: The expression can be considered to execute without
interleaved actions of other threads.

2All variables are immutable in AJ2, but only final variables are
in Java.

• cmpd: The expression is not atomic.
• error: The expression violates the program’s locking disci-
pline by, for example, accessing a variable without first ac-
quiring the appropriate lock.

Suppose that the basic atomicities b1 and b2 reflect the behavior
of e1 and e2 respectively. Then the iterative closure b1∗ reflects the
behavior of executing e1 an arbitrary number of times and is defined
as follows:

const∗ = const
mover∗ = mover
atomic∗ = cmpd

cmpd∗ = cmpd
error∗ = error

Similarly, the sequential composition b1;b2 reflects the behavior of
executing e1;e2, and it is defined by the table.

·; · const mover atomic cmpd error
const const mover atomic cmpd error
mover mover mover atomic cmpd error
atomic atomic atomic cmpd cmpd error
cmpd cmpd cmpd cmpd cmpd error
error error error error error error

Basic atomicities are ordered by the subatomicity relation:

const ! mover ! atomic ! cmpd ! error

Let & denote the join operator based on this subatomicity ordering.
The atomicity b1&b2 reflects the non-deterministic choice between
executing either e1 or e2.

3.2 Conditional and Open Atomicities
In some cases, the atomicity of an expression may depend on a
certain lock predicate p. For this purpose, we introduce conditional
atomicities of the form

p ? a1 : a2
The lock predicate p may be simply an expression l that denotes a
lock in the program. In this case, this conditional atomicity is equiv-
alent to atomicity a1 if the lock l is currently held, and is equivalent
to a2 if the lock is not held. For soundness, the lock expression
l must always denote the same lock, and so we require that l has
atomicity const. For example, the expression this is const, as is
this.f, provided f is a final field.

Our experiments with the Atomizer dynamic analysis tool [11] re-
vealed that, due to the layers of abstraction used in large programs,
locks used in one data structure are often subsumed by additional
locks in a containing data structure. To precisely reason about such
redundant or protected locks, our system allows the type of a lock l
to specify that l is protected by another lock. In particular, if l has
type cn〈m, . . .〉, then m is the protecting lock for l. In this case, m
must be held whenever l is acquired, and acquires and releases of l
can be more precisely characterized as both-movers, since there are
no conflicts on accesses to l.

We express the situation where l is not a protected lock by say-
ing that its protecting lock m is none. We use the lock predicate
isNone(m) to check if l has a protected lock. For example, if the
atomicity of e is mover, then the atomicity of synchronized l e is:

isNone(m)?atomic :(m?mover :error)

That is, if l is an unprotected lock, then m= none and the synchro-
nized block is atomic. Alternatively, if l is protected then the pro-
tecting lock mmust be held and the synchronized block has atomic-
ity mover. If the protecting lock is not held, then the synchronized
block has atomicity error, since the synchronization discipline is
being violated.

Technically, a field could be declared as guarded by none, but
since the lock none is not an expression, this lock could never be
acquired and such a field could never be accessed.

An atomicity a is either a basic atomicity b or the conditional atom-
icity p?a1 :a2. We extend the iterative closure, sequential compo-
sition, and join operations to conditional atomicities as follows:

(p?a1 :a2)∗ = p?a1∗ :a2∗
(p?a1 :a2);a3 = p?a1;a3 :a2;a3
b;(p?a1 :a2) = p? (b;a1) :(b;a2)

(p?a1 :a2)&a3 = p? (a1&a3) :(a2&a3)
b& (p?a1 :a2) = p? (b&a1) : (b&a2)

We also extend the subatomicity ordering to conditional atomici-
ties, using the auxiliary relation 't

f , where t is a set of lock predi-
cates known to be true and f is a set of lock predicates known to be
false. We define a1 ' a2 to be a1 '

{isNone(none)}
/0 a2 and check

a1 't
f a2 recursively as follows:

b1 ' b2
b1 't

f b2

(p (∈ f ⇒ a1 '
t∪{p}
f a3)

(p (∈ t⇒ a2 't
f∪{p} a3)

(p?a1 :a2) 't
f a3

(p (∈ f ⇒ b't∪{p}
f a1)

(p (∈ t⇒ b't
f∪{p} a2)

b't
f (p?a1 :a2)

To support type inference, we introduce type variables !, which
may be mentioned in source programs. During type inference, each
atomicity variable is resolved to some atomicity. An open atomicity
s is either an atomicity or an atomicity variable.

4 Examples

4.1 List Example
To illustrate the properties our type system can verify, consider
the class List of Figure 3, which implements a linked list of
ListElems. This example uses integers and sequential composi-
tion, which we treat in the expected fashion. This example includes
annotations (guarded by clauses and class parameters) inferred by
Rcc/Sat. For example, the class ListElem is parameterized by a
lock, called x, that protects the num and next fields, as indicated by
the guarded by x annotations.

The atomicities inferred by our inference algorithm are underlined.
The atomicity (x?mover :error) inferred for ListElem.get is a
conditional atomicity. It states that, if the lock x is not held, then
a call to get has atomicity error, meaning that this call violates
the program’s synchronization discipline. In other words, the lock
x should be held before any call to get. In the case where x is held,
get is a mover, meaning that the execution of get commutes with
actions of concurrent threads.

The execution of List.get consists of (1) a right-mover (the
lock acquire), (2) a both-mover (the read of this.elems), (3) a
second both-mover (the call to ListElem.get), and (4) a left-
mover (the lock release). Hence List.get is at most atomic.
For the case where the lock this is already held, the re-entrant
locking operations are both-movers, and so List.get is then

Figure 3: Class List with Locking and Atomicity Annotations
class ListElem〈ghost x〉 {

int num guarded by x;
ListElem〈x〉 next guarded by x;

!1 : (x?mover:error)
int get() { return this.num; }

}

class List {
ListElem〈this〉 elems guarded by this;

!2 : (this?mover:atomic)
void add(int v) {

synchronized (this) {
this.elems = new ListElem〈this〉(v,this.elems);

}
}

!3 : (this?mover:cmpd)
void addTwo(int i,int j){this.add(i); this.add(j);}

!4 : (this?mover:atomic)
int get() {

synchronized (this) { return this.elems.get(); }
}

}

a mover. Our type inference system infers the precise atom-
icity (this?mover :atomic) for List.get (and similarly for
List.add).

The atomicity inferred for List.addTwo is (this?mover :cmpd),
indicating an atomicity violation. If the lock this is not held, the
atomicity cmpdmeans that interleaved actions of concurrent threads
may affect the behavior and correctness of addTwo, even though
there are no race-conditions. In particular, if a concurrent thread
also adds entries to the list, then addTwo will not achieve its in-
tended behavior of adding its arguments to the list consecutively.

4.2 Protected Locks
The need for protecting locks is illustrated by the class Set in
Figure 4, which is implemented using a synchronized version of
the class List. The method Set.add calls List.contains and
then List.add. In the absence of protecting locks, these two
List method invocations would each be assigned the atomicity
list?mover :atomic, and then Set.add would have the atom-
icity cmpd when it is called without holding list. This imprecise
atomicity incorrectly suggests that interleaved actions of concurrent
threads may affect the behavior of Set.add.

To infer a more precise atomicity for Set.add, our type inference
system treats the first parameter x to the class List as a protecting
lock for the List lock, and infers the atomicity

isNone(x)? (this?mover :atomic) :(x?mover :error)

for List.add and List.contains. If x is the dummy lock none,
then these two methods still have atomicity this?mover :atomic.
If x is a real protecting lock for the List lock, then x must be held
on each call to the two List methods, which are then movers.

The field Set.list is inferred to be of typeList〈this〉, indicat-

Figure 4: Annotations for List and Set
class Set {

List〈this〉 list;
...
(this?mover :atomic) void add(int v) {
synchronized(this) {

if (!list.contains(v)) list.add(v);
}

}
}

class List〈ghost x〉 {
isNone(x)? (this?mover :atomic) : (x?mover :error)
void add(int v) { synchronized(this) {...} }

isNone(x)? (this?mover :atomic) : (x?mover :error)
boolean contains(int v) { synchronized(this) {...} }

}

ing that the List lock is protected by the enclosing Set lock.3
Our analysis then infers the atomicity this?mover :atomic for
Set.add, which guarantees that actions of concurrent threads do
not interfere with the behavior of Set.add.

5 Type Checking and Type Inference
An AJ2 program is explicitly-typed if it contains no atomicity vari-
ables. The type inference problem is, given a program P with atom-
icity variables, to replace each atomicity variable with an atomicity
so that the resulting explicitly-typed program is well-typed.

We follow a constraint-based [2] approach to type inference. The
type rules perform a syntax-directed traversal of the program to
generate a collection of constraints over atomicity variables. A sub-
sequent constraint-solving phase then finds the most precise (min-
imal) solution to these constraints, or determines that no solution
exists, in which case type inference fails. The following subsec-
tions describe the constraint language, the type rules that generate
these constraints, and our constraint solving algorithm.

5.1 Atomicity Constraints
A constraint C is a subatomicity constraint between an atomicity
expression and an open atomicity. Atomicity expressions include
open atomicities as well as syntactic constructs for representing
various operations on atomicities, such as sequential composition,
join, iteration, and substitution. We use bold symbols such as “;;” to
distinguish a syntactic atomicity construct from the corresponding
semantic operation “;” on atomicities.

Figure 5: Atomicity Expressions

C ::= d'''s (atomicity constraints)
d ::= s | d;;d | d&&&d | d∗ | p???d :d (atomicity expressions)

| d·" | S(l, l′,d) | wfa(P,E,d)
" ::= [!x :=!l] (substitutions)

An atomicity expression is closed if it contains no atomicity vari-
ables. The meaning function [[·]] maps closed atomicity expres-
sions to atomicities by performing the semantic operation indicated

3The parameter this is inferred by the Rcc/Sat phase.

by each syntactic construct. The first five cases are straightfor-
ward, and we discuss the delayed substitution atomicity form d·",
the synchronization form S(l, l′,d), and the well-formed atomicity
form wfa(P,E,d) below, where they are used:

[[·]] : ClosedAtomExpr → Atomicity
[[a]] = a

[[d1;;d2]] = [[d1]]; [[d2]]
[[d1&&&d2]] = [[d1]]& [[d2]]

[[d∗]] = [[d]]∗
[[p???d1 :d2]] = p? [[d1]] : [[d2]]

[[d·"]] = "([[d]])
[[S(l, l ′,d)]] = S(l, l′, [[d]])

[[wfa(P,E,d)]] = WFA(P,E, [[d]])

An assignment A : AtomVar→ Atomicity maps atomicity variables
to atomicities. We order assignments according to the point-wise
extension of the subatomicity relation:

A1 ' A2 iff ∀!. A1(!) ' A2(!)
⊥ def= #!. const

An assignment A satisfies a constraint C (written A |=C) if, after
applying the assignment, the meaning of the left-hand side of the
constraint is a subatomicity of the right-hand side:

A |= d'''s iff [[A(d)]]' A(s)

If A |=C for all C in the set of constraints C̄, then A is a solution
for C̄, written A |= C̄. A set of constraints C̄ is valid, written |= C̄, if
every assignment is a solution for C̄. In particular, if A is a solution
for C̄, then A(C̄) is valid, and vice-versa.

5.2 AJ2 Type System
The core of the AJ2 type system is a set of rules for reasoning about
the judgment:

P;E . e : t ·d ·C̄

Here, the program P is included to provide access to class declara-
tions, and E is an environment providing types for the free program
and ghost variables of the expression e:

E ::= $ | E, t x | E,ghost x

The type t is the type inferred for e; d is the atomicity inferred for e;
and C̄ is the set of constraints generated from this expression. The
complete set of type judgments and rules is contained in Figure 6.
We briefly describe some of the more important rules.

[LOCK EXP] The judgment P;E .lock l : C̄ checks that l is a well-
formed lock expression in environment E. The lock expression
l can be either a ghost variable, the dummy lock none, or a pro-
gram expression e. In the latter case, e must denote a fixed lock
throughout the execution of the program to ensure soundness.
Thus, we require that e has atomicity const.
In addition, we require the size |e| of the lock expression to be
bounded by the constant MaxLockSize. This requirement ensures
that there is only a finite number of valid lock expressions at any
program point, which in turn bounds the size of conditional atom-
icities and ensures termination of our type inference algorithm.

[EXP VAR] A variable access has const atomicity, since all vari-
ables are immutable in AJ2.

[EXP IF] The atomicity of a conditional expression is the atomicity
of the test subexpression, sequentially composed with the join

Figure 6: AJ2 Type Rules

P;E . e : t ·d ·C̄

[EXP NULL]
P;E . c : C̄

P;E . null : c ·const ·C̄

[EXP VAR]
P . E : C̄

E = E1, t x,E2
P;E . x : t ·const ·C̄

[EXP SYNC]
P;E . l : cn〈l1..n〉 ·const ·C̄

P;E . e : t ·d ·C̄′

n= 0 ⇒ (d′ = S(l,none,d))
n> 0 ⇒ (d′ = S(l, l1,d))

P;E . synchronized l e : t ·d′ · (C̄∪C̄′)

[EXP WHILE]
P;E . ei : ti ·di ·C̄i for i = 1,2

d = d1;;((d2;;d1)∗)
P;E . while e1 e2 : t2 ·d · (C̄1 ∪C̄2)

[EXP REF]
P;E . e : cn〈l1..n〉 ·d′ ·C̄

class cn〈ghost x1..n〉 {. . . t fn g . . .} ∈ P
"= [this := e,xj := l j j∈1..n]

P;E . "(t) : C̄′

(g≡ guarded by l) ⇒ (d = "(l)???mover :error)
(g≡ write guarded by l) ⇒ (d = "(l)???mover :atomic)

(g≡ final) ⇒ (d = const)
(g≡ no guard) ⇒ (d = atomic)
P;E . e.fn : "(t) · (d′;;wfa(P,E,d)) · (C̄∪C̄′)

[EXP ASSIGN]
P;E . e1 : cn〈l1..n〉 ·d1 ·C̄1

class cn〈ghost x1..n〉{. . . t fn g . . .} ∈ P
"= [this := e1,x j := l j j∈1..n]

P;E . e2 : "(t) ·d2 ·C̄2
(g≡ guarded by l) ⇒ (d = "(l)???mover :error)

(g≡ write guarded by l) ⇒ (d = "(l)???atomic :error)
(g≡ final) ⇒ (d = error)

(g≡ no guard) ⇒ (d = atomic)
P;E . (e1.fn = e2) : "(t) · (d1;;d2;;wfa(P,E,d)) · (C̄1 ∪C̄2)

[EXP NEW]
y is fresh

"= [x j := l j j∈1..n,this := y]
P;E,cn〈l1..n〉 y . ei : "(ti) ·di ·C̄i ∀i ∈ 1..k
class cn〈ghost x1..n〉 { field1..k meth1..m } ∈ P

fieldi = ti fni gi ∀i ∈ 1..k
P;E . cn〈l1..n〉 : C̄′

C̄′′ = C̄1..k ∪C̄′

P;E . new cn〈l1..n〉(e1..k) : cn〈l1..n〉 · (d1;;· · ·;;dk) ·C̄′′

[EXP LET]
P;E . e1 : t1 ·d1 ·C̄1

P;E,t1 x . e2 : t2 ·d2 ·C̄2
"= [x := e1]

P;E . "(t2) : C̄3
C̄ = (C̄1 ∪C̄2 ∪C̄3)

d = (d1;;wfa(P,E,d2·"))
P;E . let x = e1 in e2 : "(t2) ·d ·C̄

[EXP INVOKE]
P;E . e : cn〈l1..n〉 ·d ·C̄

class cn〈ghost x1..n〉 {. . .meth . . .} ∈ P
meth = s t mn〈ghost y1..k〉(t j z j∈1..r

j) { e′ }
"= [this := e, xi := li i∈1..n,

yi := l′i i∈1..k, zi := ei i∈1..r]
P;E . e j : "(t j) ·dj ·C̄j ∀ j ∈ 1..r

P;E . "(t) : C̄′

P;E .lock l′i : C̄′
i ∀i ∈ 1..k

C̄′′ = (C̄∪C̄1..r ∪C̄′ ∪C̄′
1..k)

d′ = (d;d1; · · · ;dr ;wfa(P,E,s·")))
P;E . e.mn〈l′1..k〉(e1..r) : "(t) ·d′ ·C̄′′

[EXP IF]
P;E . e1 : t1 ·d1 ·C̄1

P;E . ei : t ·di ·C̄i for i= 2..3
d = d1;;(d2&&&d3)
C̄′ = (C̄1 ∪C̄2 ∪C̄3)

P;E . if e1 e2 e3 : t ·d ·C̄′

[EXP FORK]
P;E . e : cn〈l1..n〉 ·d ·C̄

class cn〈ghost x1..n〉 {. . .meth . . .} ∈ P
meth= a t′ run〈ghost tll〉() { e′ }

a= (tll?cmpd :error)
P;E . t : C̄′

P;E . e.fork : t · (d;;atomic) · (C̄∪C̄′)

P . defn : C̄

[CLASS]
gargi = ghost xi

E = garg1..n,cn〈x1..n〉 this
P;E . fieldi : C̄i ∀i ∈ 1.. j
P;E . methi : C̄′

i ∀i ∈ 1..k
C̄ = (C̄1.. j ∪C̄′

1..k)
P . class cn〈ghost x1..n〉 { field1.. j meth1..k} : C̄

P;E .lock e : C̄

[LOCK EXP]
P;E . e : t ·const ·C̄
|e| ≤MaxLockSize
P;E .lock e : C̄

[LOCK GHOST]
P . E : C̄

E = E1,ghost x,E2
P;E .lock x : C̄

[LOCK NONE]
P . E : C̄

P;E .lock none : C̄

P;E . t : C̄

[TYPE C]
class cn〈ghost x1..n〉 . . . ∈ P
P;E .lock li : C̄i ∀i ∈ 1..n

P;E . cn〈l1..n〉 : C̄1..n

P . E : C̄

[ENV EMPTY]

P . $: /0

[ENV X]
P;E . t : C̄ x (∈ Dom(E)

P . (E,t x) : C̄

[ENV GHOST]
P . E : C̄ x (∈ Dom(E)
P . (E,ghost x) : C̄

P;E . field : C̄

[FIELD]
P;E . t : C̄1

(g≡ guarded by l) ⇒ P;E .lock l : C̄2
(g≡ write guarded by l) ⇒ P;E .lock l : C̄2

(g≡ final) ⇒ C̄2 = /0
(g≡ no guard) ⇒ C̄2 = /0
P;E . t fn g : (C̄1 ∪C̄2)

P;E . meth : C̄

[METHOD]
meth = s t mn〈ghost x1..n〉(arg1..d) { e }

gargi = ghost xi ∀i ∈ 1..n
E ′ = E,garg1..n,arg1..d

P;E ′ . e : t ·d ·C̄
P;E . meth : (C̄∪{d'''s})

P . C̄

[PROG]
ClassOnce(P) FieldsOnce(P)

MethodsOnce(P)
P= defn1..n e

P . defni : C̄i ∀i ∈ 1..n
P;$. e : t ·d ·C̄

P . C̄1..n ∪C̄∪{d'''cmpd}

of the atomicities of the then and else branches. The generated
constraint set is the union of the constraints of the subexpressions.

[EXP SYNC] This rule for a synchronized expression
synchronized l e checks that l has type cn〈l1..n〉 and
atomicity const. The atomicity of the synchronized expression
is S(l, l1,d), where d is the atomicity of e and l1 is the protecting
lock (if any) for l. The meaning of this atomicity construct is
given by:

[[S(l, l1,d)]] = S(l, l1, [[d]])

The function S(l,m,a), defined below, determines the atomicity
of a synchronized statement synchronized l e where m is the
protecting lock for l and a is the atomicity of the body e:

S(l,m,const) = isNone(m) ? (l ? const : atomic)
: (m?const :error)

S(l,m,mover) = isNone(m) ? (l ? mover : atomic)
: (m?mover :error)

S(l,m,atomic) = isNone(m) ? atomic
: (m?atomic :error)

S(l,m,cmpd) = isNone(m)?cmpd :(m?cmpd :error)
S(l,m,error) = error
S(l,m,(l ?b1 :b2)) = S(l,m,b1)
S(l,m,(p?b1 :b2)) = p?S(l,m,b1) :S(l,m,b2) if l (≡ p

We describe several cases: (1) If the body is a mover and l is
an unprotected lock (m = none) that is already held, then the
synchronized statement is also a mover, since the acquire and
release operations are no-ops. (2) If the body is a mover and l
is not held but is protected by m, then m must be held and the
synchronized statement is also a mover; if m is not held then the
synchronized statement has atomicity error. (3) If the body is
a mover and l is unprotected and not held, then the synchronized
statement is atomic, since the execution consists of a right-mover
(the acquire), followed by a both-mover (the body), followed by a
left-mover (the release). (4) If the body has conditional atomicity
l ?b1 :b2, then we ignore b2 and recursively apply S to b1, since
we know that l is held within the synchronized body. (5) If the
body has some other conditional atomicity, then we recursively
apply S to both branches.

[EXP LET] This rule for let x = e1 in e2 infers atomicity expres-
sions d1 and d2 for e1 and e2, respectively. Since the atomicity
expression d2 may refer to the let-bound variable x, we apply the
substitution "= [x := e1] to yield a corresponding atomicity that
does not mention x. Several complications arise here.
First, since d2 may include an atomicity variable !, we cannot
apply the substitution " immediately because !may later resolve
to x. Instead, we use the delayed substitution form d2·" to delay
this substitution until after atomicity variables are resolved.
Second, e1 may not be const (in general, we cannot determine
which expressions are const until after type inference), in which
case d2·" may not be a valid atomicity. Therefore, we use the
well-formed atomicity form wfa(P,E,d2·") to yield a valid atom-
icity for e2 that is well-formed in environment E. The atomicity
expression wfa(P,E,d) denotes the smallest atomicity that is not
less than d and that is a well-formed atomicity in the environ-
ment E. Its meaning is defined in terms of the following function
WFA(P,E,a).

[[wfa(P,E,d)]] =WFA(P,E, [[d]])

The function WFA(P,E,a) returns the smallest atomicity a′ such

that a' a′ and the lock expressions in a′ are well-typed in E.

WFA(P,E,b) = b

WFA(P,E, p?a1 :a2) =
{

p?a′1 :a
′
2 if P;E .lock l : C̄ and |= C̄

a′1&a′2 otherwise
where a′1 =WFA(P,E,a1)
and a′2 =WFA(P,E,a2)
and p≡ l or p≡ isNone(l)

As described above, the judgment P;E .lock l : C̄ checks that l is
a well-formed lock expression in environment E.

[EXP REF] The rule for a field access e.fn first checks that e is of
some type cn〈l1..n〉, and that cn is a class parameterized by n
ghost variables, say x1..n, that declares a field fn of some type t.
The type t may refer to the variables this and x1..n in scope at
the field declaration. Since these variables are not in scope at the
field access, the type rule introduces a substitution " that replaces
them with the corresponding expressions e and l1..n, and ensures
that "(t) is a well-formed type.
The [EXP REF] rule performs a case analysis on the field’s guard.
If the field is final, then the read operation has atomicity const,
since there can be no concurrent writes. If the field has no guard,
then the read operation is atomic, since it may not commute with
concurrent writes. If the field is guarded by l, then the lock "(l)
must be held and the read operation is a mover. If the field is
write guarded by l, then if the lock "(l) is held, there can be
no concurrent writes, and so the read operation is again a mover.
If the lock is not held, the operation is atomic.

[PROG] This rule defines the top-level judgment P . C̄, where C̄ is
the generated set of constraints for the program P. This rule uses
a number of predicates defined informally as follows. (See [17]
for their precise definition.)

• ClassOnce(P): no class is declared twice in P.
• FieldsOnce(P): no field name is declared twice in a class.
• MethodsOnce(P): no method name is declared twice in a
class.

If the top-level judgment P . C̄ holds and a solution A for the con-
straints C̄ exists, the following theorem states that the explicitly-
typed program A(P) is well-typed.

THEOREM 1 (CORRECT ASSIGNMENT). If P . C̄ and A |= C̄
then A(P) . A(C̄) and |= A(C̄).

Proof A(P) . A(C̄) follows by induction over the derivation of
P . C̄. That |= A(C̄) holds follows from A |= C̄, given the definition
of the relation · |= ·. "

For the example program List of Figure 3, our system introduces
the atomicity variables !1, . . . ,!4 for method atomicities, and then
generates the atomicity constraints in Figure 7 for the program. The
following section describes how to solve such a collection of con-
straints.

5.3 Solving Constraint Systems
To solve a generated constraint system C̄, we start with the minimal
assignment A=⊥, and iteratively increase this assignment until we
reach a solution or obtain a contradiction. The relation A→C̄ A′ per-
forms one step of this iterative computation, and it is applicable if
there exists some constraint containing a variable on the right-hand
side that is not satisfied by the current assignment. The relation

Figure 7: Constraints for the List Program
const;;wfa(P,E1,x???mover :error) ''' !1
S(this,none,(const;;const;;const;;

wfa(P,E2,this???mover :error);;
wfa(P,E2,this???mover :error))) ''' !2

(const;;const;;wfa(P,E3,!2·[this := this]));;
(const;;const;;wfa(P,E3,!2·[this := this])) ''' !3
S(this,none,(const;;wfa(P,E4,this???mover :error);;

wfa(P,E4,!1·[this := this.elems,x := this]))) ''' !4
where

E1 = ghost x, ListElem〈x〉 this
E2 = List this, int v
E3 = List this, int i, int j
E4 = List this

produces a larger assignment A′ in which that variable is increased
so that the constraint is now satisfied:

A→C̄ A′ iff ∃ (d'''!) ∈ C̄ and [[A(d)]] (' A(!)
and A′ = A[! := A(!)& [[A(d)]]]

The relation A→C̄ ERR detects if some constraint in C̄ cannot be
satisfied by the current assignment A or any larger assignment:

A→C̄ ERR iff ∃ (d'''a) ∈ C̄ and [[A(d)]] (' a

Our constraint solving algorithm is an iterative least fix-point com-
putation based on these two relations.

Figure 8: Constraint Solving Algorithm
A := ⊥;
while ∃A′ such that A→C̄ A′ do
A := A′;

if A→C̄ ERR then return “no solution”;
else return A;

For the atomicity constraints of Figure 7, this constraint solving
algorithm yields the minimal solution:

!1 = (x?mover :error) !2 = (this?mover :atomic)
!3 = (this?mover :cmpd) !4 = (this?mover :atomic)

5.4 Correctness of the Algorithm
We next show that the above algorithm is correct and always ter-
minates. We first characterize the two relations A →C̄ A′ and
A →C̄ ERR and show that if neither of these relations is applica-
ble to an assignment A, then that assignment satisfies C̄.

LEMMA 2 (STEP). Suppose A→C̄ A′. Then A ' A′. If in addi-
tion there exists A′′ such that A' A′′ and A′′ |= C̄, then we also have
that A′ ' A′′.

LEMMA 3 (CONTRADICTION). Suppose A→C̄ ERR. Then there
is no A′′ such that A' A′′ and A′′ |= C̄.

LEMMA 4 (SOLUTION). Suppose A (→C̄ ERR and for all A′,
A (→C̄ A′. Then A |= C̄.

It is straightforward to show, based on these lemmas, that the above
algorithm only produces correct results. In particular, the result-
ing assignment, if one is found, is a solution to the constraints, and
hence by Theorem 1, the explicitly-typed program A(P) is well-

typed. Similarly, if the constraints are unsatisfiable, then the origi-
nal program is untypable.4

Proving termination is more difficult, because delayed substitutions
could lead to arbitrarily large lock expressions and infinite ascend-
ing chains of atomicities and assignments. We bound the size of
lock expressions to exclude this possibility. A lock expression l is
bounded if |l| < MaxLockSize. Similarly, an atomicity is bounded
if it only contains bounded lock expressions, and an assignment is
bounded if it only yields bounded atomicities.

LEMMA 5. There are no infinite ascending chains of bounded
atomicities or bounded assignments.

An atomicity expression or constraint is bounded if it is only condi-
tional on bounded lock expressions, and every delayed substitution
occurs inside the construct wfa(P,E, ·).

LEMMA 6. If d is a closed, bounded atomicity expression then [[d]]
is also bounded.

Proof The only difficulty is that [[d]] may apply delayed substitu-
tions in d, which could result in non-bounded lock expressions, but
the enclosing construct wfa(P,E, ·)will filter out these non-bounded
lock expressions. "

LEMMA 7. If A and d are bounded then A(d) is bounded.

THEOREM 8 (TERMINATION). The constraint solving algo-
rithm terminates on bounded constraint systems.

Proof Since C̄ is bounded, every generated assignment is also
bounded. Since the generated assignments are increasing, the al-
gorithm must terminate, as otherwise it would generate an infinite
ascending chain of bounded assignments. "

6 Implementation
We have implemented our type inference algorithm, including ex-
tensions necessary to support the full Java programming language.
This section describes some interesting details of our implementa-
tion, inheritance and other Java features, and how we handle a syn-
chronization idiom found in a number of common library classes.

Our implementation, called Bohr, takes as input a Java source pro-
gram. The source may optionally contain annotations in stylized
comments starting with “#”, as in “/*# mover */”. Bohr runs in
two phases. The first phase uses the Rcc/Sat tool to infer appropri-
ate guards for each field, appropriate formal and actual ghost pa-
rameters for class and method declarations and uses, and protecting
locks. For more details on Rcc/Sat, we refer the interested reader to
our earlier paper [12].

The key novelty of our present work is the second phase of Bohr.
This phase first adds an atomicity annotation !, where ! is fresh,
to each method without an explicit atomicity. It then checks the
program according to our type inference algorithm. If a solution to
the generated constraints is found, Bohr outputs a fully annotated
version of the source code. Otherwise, the checker prints warning
messages for each atomicity violation identified. The tool also sim-
plifies any isNone constraints that are guaranteed to be false.

4This completeness argument covers the second phase of type
inference. Our earlier paper [12] characterizes the completeness of
Rcc/Sat.

6.1 Avoiding Exponential Explosion
Our initial implementation of the type inference algorithm often
produced atomicities with millions of terms. To illustrate why, note
that the sequential composition of two conditional atomicities

(p?a1 :a2) ; (p?a3 :a4)

yields the atomicity

p ? (p?(a1;a3) :(a1;a4)) : (p? (a2;a3) :(a2;a4))

containing many duplicate subterms. More generally, the sequential
composition of n conditional atomicities yields an atomicity whose
size is exponential in n. These large atomicities typically contain re-
dundant information and can be simplified. For example, the above
result can be simplified to:

p? (a1;a3) : (a2;a4)

The following rules define a relation a→t
f a

′ that simplifies a to a′
by removing redundant information, under the assumption that the
lock predicates in t are true, and the lock predicates in f are false.
We always apply the first applicable rule.

Figure 9: Atomicity Simplification Rules

b→t
f b

p ∈ t a1 →t
f a

p?a1 :a2 →t
f a

p ∈ f a2 →t
f a

p?a1 :a2 →t
f a

a1 →
t∪{p}
f a′ a2 →t

f∪{p} a
′

p?a1 :a2 →t
f a

′
a1 →

t∪{p}
f a′1 a2 →t

f∪{p} a
′
2

p?a1 :a2 →t
f p?a

′
1 :a′2

One strategy for applying these rules is, after computing a= [[d]], to
immediately simplify a via a→{isNone(none)}

/0 a′. However, the
intermediate atomicity a may still be prohibitively large. Instead,
we use an optimized routine that directly computes the simplified
atomicity a′ from d in a single pass, applying the simplification
rules on-the-fly wherever possible to avoid large intermediate atom-
icities. The running time of this optimized algorithm is linear in the
size of the resulting atomicity a′. Although a′ may still, in theory,
be exponential in the size of the program, our algorithm works well
in practice since a′ is typically small. An interesting area for fu-
ture work is to explore the use of binary decision diagrams [6] to
efficiently represent and manipulate conditional atomicities.

6.2 Inheritance and Subtyping
The most significant extension to our type system for supporting
the full Java language is dealing with inheritance and subtyping.
Consider a class C with a subclass D:

class C〈ghost x〉 { s1 t1 f() { ... } }
class D〈ghost y〉 extends C〈z〉 { s2 t2 f() { ... } }

A type D〈l〉 is an immediate subtype of C〈m〉 if m≡ z[y := l]. (The
straightforward extension to multiple ghost arguments is omitted
for clarity.) The subtyping relation is the reflexive-transitive closure
of this rule.

Note that the class C declares a method f() that is overridden in
D. We require t2 = "(t1), that is, that the return type of the over-
riding and overridden methods must match exactly, after applying
the type parameter substitution " = [x := z] induced by the inheri-
tance hierarchy. A similar requirement applies for argument types.

For increased expressiveness, we permit the atomicity of a method
to change covariantly, intuitively requiring only that: s2 ''' "(s1).
Suppose that s1 is an atomicity variable ! and this constraint is
not satisfied by the current assignment A. To determine how to in-
crease A(!) to satisfy this constraint, we replace the substitution
" on the right-hand side with a corresponding inverse substitution
on the left-hand side. For this purpose, we introduce the inverse
substitution function on atomicities:

"−1(b) = b
"−1(p?a1 :a2) = p1 ?a′1 :(p2 ?a

′
1 · · · :(pn ?a′1 :a′2) · · ·)

where a′i = "−1(ai) for i= 1,2
and {p1, . . . , pn} = {p′ | "(p′) = p}

Each p1, . . . , pn maps to a′1 to reflect that all of these predicates
become p after applying ".

We introduce a new atomicity expression construct invsub(",d)
with the following meaning:

[[invsub(",d)]] = "−1([[d]])

and we express the above requirement s2 ''' "(s1) as the constraint:

wfa(P,E, invsub(",s2)) ''' s1

where the environment E of the class C ensures that the resulting
atomicity for s1 is well-formed in C.

In AJ2, a lock x of type C〈l1, . . . , ln〉 is considered to be protected
by l1. The situation in Java is somewhat different, since each class
or interface is a subclass of Object. We declare Object to take
a single ghost parameter, and thus every lock x must have the type
Object〈l〉 for some l, and we use this lock l as the protecting lock
for x. We allow an interface declaration to extend Object〈l〉, in-
dicating that l is the protecting lock for objects of that interface. If
an interface type I〈l1, . . . , ln〉 does not extend another interface or
Object, it is assumed to be an immediate subtype of Object〈l1〉.
For soundness, our type checker issues a type error if, via a combi-
nation of class and (possibly multiple) interface inheritance, a lock
can be assigned two distinct types Object〈l〉 and Object〈l′〉.

6.3 Other Java Features
Inner classes, static members, thread-local data, escapes from the
type system, and other Java-specific features are handled as they
are in Rcc/Sat [12]. We summarize their treatment below.
Inner classes. Non-static inner classes may access the type
parameters from the enclosing class and may declare their own
parameters. Thus, the complete type for such a class is
Outer〈l1..n〉.Inner〈m1..k〉.
Static fields, methods, and inner classes. Static members may not
refer to the enclosing class’ type parameters since static members
are not associated with a specific instantiation of the class.
Thread objects. To allow Thread objects to store thread-local
data in their fields, Bohr adds an implicit final field tll to each
Thread class. This field is analogous to (and replaces) the ghost
parameter on the run method in AJ2. It may guard other fields and
is assumed to be held when run is invoked.
Escape mechanisms. We provide escapes from the AJ2 type sys-
tem through a “no warn” annotation that suppresses the generation
of constraints for a line of code. Also, since ghost parameters are
erased at run time, the ghost parameters in typecasts of the form
(C〈a〉)x are not checked dynamically.

6.4 Internal Synchronization
A common pattern in the Java collections library is the use of syn-
chronized wrapper classes. This pattern is illustrated in Figure 10,
where different Counter implementations use different synchro-
nization disciplines for the method inc.

Figure 10: Synchronized Wrapper Class
interface Counter〈ghost lock1〉 extends Object〈none〉 {
isAlways(lock1)?atomic : (lock1?mover :error)
int inc();

}

class UnsyncCounter〈ghost lock2〉
implements Counter〈lock2〉 {

int num guarded by lock2;

(lock2?mover :error)
int inc() { return num++; }

}

class SyncCounter implements Counter〈always〉 {
Counter〈this〉 c guarded by this;

(this?mover :atomic)
int inc() {

synchronized(this) { return c.inc(); }
}

}

let SyncCounter sc =
new SyncCounter(new UnsyncCounter〈sc〉()) in {

// share sc between threads
sc.inc();

}

The UnsyncCounter implementation requires clients
to acquire a protecting lock lock2 before calling the
method UnsyncCounter.inc, which has atomicity
lock2?mover :error. The parameter lock2 may be instan-
tiated with the thread-local lock to create counters for use in a
single thread, or with a lock protecting accesses from different
threads when a counter is shared. The SyncCounter class is a
wrapper class that internally synchronizes the inc operation to
avoid the need for external locking. No locks need to be held
before calling the method SyncCounter.inc, which is atomic.

A major difficulty in checking this code is that the Counter inter-
face must be a supertype of both the externally and internally syn-
chronized subclasses. To simultaneously support both synchroniza-
tion disciplines, we introduce a special lock “always”. This lock
is implicitly simultaneously held by all threads, but cannot guard
fields. We assign the method Counter.inc the atomicity:

isAlways(lock1)?atomic :(lock1?mover :error)

The lock predicate isAlways(lock1) is true if Counter is param-
eterized by the special lock always; if so, then inc is internally
synchronized and is atomic; if not, then inc has the standard con-
ditional atomicity (lock1?mover :error).

The program in Figure 10 declares a SyncCounter sc that is a
wrapper around an UnsyncCounter, where the UnsyncCounter
is protected by the lock sc. Our implementation puts the declared
variable sc in scope (as a ghost variable) in the initialization ex-
pression for sc, in order to support a natural initialization syntax
for such synchronized wrappers.

7 Evaluation
We have applied Bohr to a number of benchmarks, including both
standard library classes and complete programs. Table 1 summa-
rizes the results. Column 3 shows the running time of our im-
plementation (excluding the time required for the Rcc/Sat subrou-
tine, whose performance is documented in an earlier paper [12]).
These experiments were performed on a Linux computer with a
3.06 GHz Pentium 4 Xeon processor and 2GB of memory. We
set MaxLockSize to permit no more than four field accesses in lock
expressions. Larger values of MaxLockSize slowed down perfor-
mance with no increase in precision, and smaller values degraded
precision. Overall, the performance numbers are quite promising.

Column 4 shows the number of subatomicity constraints generated
for each benchmark. Column 5 shows the number of type anno-
tations that we manually added to some benchmarks. These type
annotations enable Rcc/Sat to more precisely infer locking infor-
mation, to ignore infeasible races, and to infer annotations most
suitable for Bohr when Rcc/Sat may choose among multiple cor-
rect annotations. We added annotations only in situations where
immediately identifiable local properties ensured correctness.

Columns 6 through 11 evaluate the precision of our type inference
algorithm. Columns 6 and 9 show the number of methods and syn-
chronized blocks in each benchmark, while columns 7 and 10 show
the number (and percentage) that our type inference algorithm ver-
ified as being atomic. Columns 8 and 11 show the number (and
percentage) that were not. We exclude the methods main and run
because they are typically not atomic.

7.1 Standard Library Classes
The first group of benchmarks in Table 1 contains classes from the
Sun Java 1.4.2 library and Doug Lea’s concurrency package [25]
that are intended to be atomic (i.e., all methods are atomic, regard-
less of the calling context). Since our implementation infers atom-
icities for all methods in the target class’s supertypes, the “Size”
column includes the size of the class and all supertypes.

Bohr was able to verify the atomicity of the vast majority of
methods in these classes. For example, it verifies that 68 of
the 69 methods in java.lang.String are atomic. (The method
String.hashCode is not atomic, but this only results in redundant
hash re-computations.) Our system verified that 47 out of 48 meth-
ods in java.lang.StringBuffer are atomic, and it detected one
previously reported defect in StringBuffer.append [15].

We detected three errors in Vector. One of these errors is de-
scribed in the excerpt in Figure 11 (this error was independently de-
tected by Wang and Stoller [38]). The Vector constructor should
copy the contents of its argument c into the newly-created array
elementData. However, since the lock c is not held between
the calls to c.size and c.toArray, another thread could con-
currently modify c. This would cause elementCount to be in-
consistent with elementData and results in an improperly ini-
tialized Vector. Bohr detected similar defects in Vector’s and
SynchronizedList’s removeAll and retainAll.

The warnings from PrintWriter are due to the potential for the
writer’s underlying stream to be shared among multiple threads,
causing output from different threads to be improperly interleaved,
as reported in [15]. The warnings for the remaining classes involve
subtle synchronization patterns that are not verifiable with our cur-
rent analysis, but which do not immediately appear to be incorrect.

Size Time Manual Methods (excluding run and main) Synchronized Blocks
Name (LOC) (s) |C̄| Rcc/Sat Total Atomic Non-Atomic Total Atomic Non-Atomic

Annot. # # (%) # (%) # # (%) # (%)
java.lang.String 2,307 0.45 139 0 69 68 (99%) 1 (1%) 2 2 (100%) 0 (0%)
java.util.StringBuffer 1,276 0.53 91 2 48 47 (98%) 1 (2%) 33 32 (97%) 1 (3%)
java.util.Vector 3,546 0.87 197 16 50 47 (94%) 3 (6%) 36 34 (94%) 2 (6%)
java.util.zip.Inflater 319 0.14 44 0 18 18 (100%) 0 (0%) 12 12 (100%) 0 (0%)
java.util.zip.Deflater 384 0.15 48 1 20 20 (100%) 0 (0%) 12 12 (100%) 0 (0%)
java.util.zip.ZipFile 498 0.89 61 2 14 13 (93%) 1 (7%) 3 3 (100%) 0 (0%)
java.util.Observable 198 0.97 68 0 10 10 (100%) 0 (0%) 8 8 (100%) 0 (0%)
java.util.SynchronizedList 3,837 3.02 254 20 28 26 (93%) 2 (7%) 23 21 (91%) 2 (9%)
java.net.URL 1,201 0.74 64 11 33 30 (91%) 3 (9%) 5 4 (80%) 1 (20%)
java.io.PrintWriter 712 0.33 90 3 34 23 (68%) 11 (32%) 14 9 (64%) 5 (36%)
concurrent.SynchronizedBoolean 450 0.19 41 2 18 14 (78%) 4 (22%) 10 8 (80%) 2 (20%)
concurrent.SynchronizedDouble 444 0.18 41 2 18 14 (78%) 4 (22%) 11 9 (82%) 2 (18%)
elevator [37] 529 0.6 22 4 20 15 (75%) 5 (25%) 8 8 (100%) 0 (0%)
tsp [37] 723 1.43 21 5 19 10 (53%) 9 (47%) 6 6 (100%) 0 (0%)
sor [37] 687 0.83 24 1 19 19 (100%) 0 (0%) 4 4 (100%) 0 (0%)
raytracer [24] 1,982 1.73 132 5 117 110 (94%) 7 (6%) 15 14 (93%) 1 (7%)
moldyn [24] 1,408 4.89 78 3 68 61 (90%) 7 (10%) 14 14 (100%) 0 (0%)
montecarlo [24] 3,674 1.48 223 1 213 200 (94%) 13 (6%) 14 14 (100%) 0 (0%)
mtrt [33] 11,315 7.8 468 11 447 429 (96%) 18 (4%) 7 7 (100%) 0 (0%)
jbb [33] 30,519 11.2 1170 45 1073 876 (82%) 197 (18%) 241 190 (79%) 51 (21%)

Table 1. Performance and results of Bohr applied to benchmark programs and library classes.

Figure 11: Atomicities for Vector and Collection
interface Collection〈ghost x〉 {
isAlways(x)?atomic : (x?mover :error)
int size();

(isAlways(x)?atomic :(x?mover :error)
Object[] toArray(Object a[]);

}
class Vector {
Object elementData[] guarded by this;
int elementCount guarded by this;

isAlways(y)?cmpd : (y?mover :error)
Vector〈ghost y〉(Collection〈y〉 c) {

elementCount = c.size();
elementData = new Object[...];
c.toArray(elementData);

}
}

7.2 Complete Programs
The second benchmark group contains complete programs that
were used to evaluate the Atomizer [11]. We expected that Bohr
would issue significantly more warnings than the Atomizer, due to
(1) the greater coverage and soundness of the static approach, and
(2) the inherent approximations of any static analysis. However,
the Bohr warnings are only slightly higher than the Atomizer in
most cases, suggesting that Bohr’s precision on large programs may
be comparable to our dynamic checker, but with stronger safety
guarantees. The Bohr warnings also differed to some degree from
the Atomizer’s, because the Rcc/Sat subroutine performs an escape
analysis not present in the Atomizer.

For jbb, Bohr reported significantly more warnings than the At-
omizer. We do not yet understand jbb’s synchronization discipline
sufficiently well to confidently classify these warnings as either real
errors or false alarms. However, many of them appear to be spuri-
ous warnings triggered by unusual allocation and initialization pat-
terns that cannot be handled precisely by Rcc/Sat. The synchronized
blocks heuristic revealed a previously-known defect in the computa-
tion of a checksum in raytracer [29, 11]. Overall, our experimen-
tal results show that the vast majority of methods in multithreaded
applications are atomic.

8 Related Work
Since an atomicity annotation describes aspects of the behavior or
effect of an expression, we are essentially performing a form of
effect reconstruction [36, 35]. However, our atomicities are quite
different from traditional effects; in particular, our atomicities may
include program variables and expressions, and thus we have de-
pendent effects. Similarly, our parameterized classes are actually
dependent types. Cardelli [7] was among the first to explore type
checking for dependent types. Our lightweight dependent types and
effects are comparatively limited in expressive power, but the result-
ing type checking and type inference problems are decidable.

A number of tools, including other type systems [4, 20, 1], have
been developed for detecting race conditions, both statically and dy-
namically. We refer the interested reader to our previous work [12]
for an in depth discussion of race detection tools.

In independent work, Sasturkar, Agarwal, and Stoller [32] also
present a type inference algorithm for atomicity. Their type sys-
tem also extends [15] with parameterized classes [10]. Unlike our
system, their system includes a notion of object ownership [3], but
does not, for example, support protected locks. In contrast to our
work, they use a dynamic analysis to infer race condition informa-
tion and ghost parameters.

Lipton [26] first proposed reduction as a way to reason about dead-
locks without considering all possible interleavings. Partial-order
reduction techniques are based on similar ideas [19]. Bruening [5]
and Stoller [34] have used Lipton’s theory of reduction to improve
the efficiency of model checking. Flanagan and Qadeer have pur-
sued a similar approach [14], and Qadeer et al [31] have used re-
duction to infer procedure summaries in concurrent programs. We
have explored adding abstraction based on purity to a type system
for atomicity [13]. Introducing this notion into our type inference
algorithm may reduce spurious warnings in some cases.

The use of model checking for verifying atomicity is being explored
by Hatcliff et al [22]. This model checking approach is more ex-
pressive than our type-based analysis, but it is vulnerable to state-
space explosion. Their results suggest that verifying atomicity via
model-checking is feasible for unit-testing. Several tools have ex-
plored verifying atomicity dynamically [11, 38], but these tools are
sensitive to test case coverage.

Atomicity is a semantic correctness condition for multithreaded
software. It is related to strict serializability [30], a correctness con-
dition for database transactions, and linearizability [23], a correct-
ness condition for concurrent objects. It is possible that techniques
for verifying atomicity can be leveraged to develop checking tools
for related correctness conditions. Other languages, such as Ar-
gus [27] and Avalon [9], have included language support for imple-
menting atomic objects. Recent approaches to supporting atomicity
include lightweight transactions [21, 39] and automatic generation
of synchronization code from high-level specifications [8].

9 Conclusions
Atomicity significantly facilitates the validation of multithreaded
programs, since each atomic method can be considered to exe-
cute sequentially. However, verifying atomicity properties in large
programs is non-trivial. Previous approaches were limited by
test case coverage [11], were limited to systems with small states
spaces [22], or required substantial assistance from the program-
mer [15, 18]. We believe our type inference algorithm provides a
convenient and effective means to verify many atomicity properties
in large programs. For example, it can verify that over 80% of the
methods in our largest benchmark are atomic.

Acknowledgments. This work was supported by the National Sci-
ence Foundation under Grants CCR-0341179 and CCR-0341387.
We thank Scott Stoller for comments on a draft of this paper.

10 References
[1] R. Agarwal and S. D. Stoller. Type inference for parameterized race-free Java. In

Proc. Conference on Verification, Model Checking, and Abstract Interpretation,
pages 149–160, 2004.

[2] A. Aiken. Introduction to set constraint-based program analysis. Science of
Computer Programming, 35(2):79–111, 1999.

[3] C. Boyapati, R. Lee, andM. Rinard. Ownership types for safe programming: pre-
venting data races and deadlocks. In Proc. ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications, pages 211–230, 2002.

[4] C. Boyapati and M. Rinard. A parameterized type system for race-free Java
programs. In Proc. ACMConference on Object-Oriented Programming, Systems,
Languages and Applications, pages 56–69, 2001.

[5] D. Bruening. Systematic testing of multithreaded Java programs. Master’s thesis,
Massachusetts Institute of Technology, 1999.

[6] R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput., C-35(8):677–691, Aug. 1986.

[7] L. Cardelli. Typechecking dependent types and subtypes. In Lecture notes in
computer science on Foundations of logic and functional programming, pages
45–57, 1988.

[8] X. Deng, M. Dwyer, J. Hatcliff, and M. Mizuno. Invariant-based specification,
synthesis, and verification of synchronization in concurrent programs. In Inter-
national Conference on Software Engineering, pages 442–452, 2002.

[9] J. L. Eppinger, L. B. Mummert, and A. Z. Spector. Camelot and Avalon: A
Distributed Transaction Facility. Morgan Kaufmann, 1991.

[10] C. Flanagan and S. N. Freund. Type-based race detection for Java. In Proc. ACM
Conference on Programming Language Design and Implementation, pages 219–
232, 2000.

[11] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity checker for multi-
threaded programs. In Proc. ACM Symposium on the Principles of Programming
Languages, pages 256–267, 2004.

[12] C. Flanagan and S. N. Freund. Type inference against races. In Static Analysis
Symposium, pages 116–132, 2004.

[13] C. Flanagan, S. N. Freund, and S. Qadeer. Exploiting purity for atomicity. In
Proc. International Symposium on Software Testing and Analysis, pages 221–
231, 2004.

[14] C. Flanagan and S. Qadeer. Transactions for software model checking. In
Proc. Workshop on Software Model Checking, 2003.

[15] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In Proc. ACM
Conference on Programming Language Design and Implementation, pages 338–
349, 2003.

[16] C. Flanagan and S. Qadeer. Types for atomicity. In Proc. ACM Workshop on
Types in Language Design and Implementation, pages 1–12, 2003.

[17] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In Proc. ACM
Symposium on the Principles of Programming Languages, pages 171–183, 1998.

[18] S. N. Freund and S. Qadeer. Checking concise specifications for multithreaded
software. In Journal of Object Technology, volume 3(6), pages 81–101, 2004.

[19] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Lecture Notes in Computer Sci-
ence 1032. Springer-Verlag, 1996.

[20] D. Grossman. Type-safe multithreading in Cyclone. In Proc. ACM Workshop on
Types in Language Design and Implementation, pages 13–25, 2003.

[21] T. L. Harris and K. Fraser. Language support for lightweight transactions. In
Proc. ACM Conference on Object-Oriented Programming, Systems, Languages
and Applications, pages 388–402, 2003.

[22] J. Hatcliff, Robby, and M. B. Dwyer. Verifying atomicity specifications for con-
current object-oriented software using model-checking. In Proc. International
Conference on Verification, Model Checking and Abstract Interpretation, 2004.

[23] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems,
12(3):463–492, 1990.

[24] Java Grande Forum. Java Grande benchmark suite. Available from
http://www.javagrande.org/, 2003.

[25] D. Lea. util.concurrent package, release 1.3.4, 2004. Available at
http://gee.cs.oswego.edu/dl/.

[26] R. J. Lipton. Reduction: A method of proving properties of parallel programs.
Communications of the ACM, 18(12):717–721, 1975.

[27] B. Liskov, D. Curtis, P. Johnson, and R. Scheifler. Implementation of Argus. In
Proc. Symposium on Operating Systems Principles, pages 111–122, 1987.

[28] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Proc. ACM
Conference on Lisp and Functional Programming, pages 47–57, 1988.

[29] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. In ACM
Symposium on Principles and Practice of Parallel Programming, pages 167–
178, 2003.

[30] C. Papadimitriou. The theory of database concurrency control. Computer Sci-
ence Press, 1986.

[31] S. Qadeer, S. K. Rajamani, and J. Rehof. Summarizing procedures in concur-
rent programs. In Proc. ACM Symposium on the Principles of Programming
Languages, pages 245–255, 2004.

[32] A. Sasturkar, R. Agarwal, and S. D. Stoller. Extended parameterized Atomic
Java, 2004. Submitted for publication.

[33] Standard Performance Evaluation Corporation. SPEC Benchmarks. Available
from http://www.spec.org/, 2004.

[34] S. D. Stoller. Model-checking multi-threaded distributed Java programs. In
Workshop on Model Checking and Software Verification, pages 224–244, 2000.

[35] J.-P. Talpin and P. Jouvelot. Polymorphic type, region and effect inference. Jour-
nal of Functional Programming, 2(3):245–271, 1992.

[36] M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value lambda-
calculus using a stack of regions. In Proc. ACM Symposium on the Principles of
Programming Languages, pages 188–201, 1994.

[37] C. von Praun and T. Gross. Static conflict analysis for multi-threaded object-
oriented programs. In Proc. ACMConference on Programming Language Design
and Implementation, pages 115–128, 2003.

[38] L. Wang and S. D. Stoller. Runtime analysis of atomicity for multi-threaded
programs. Technical Report DAR 04-14, Computer Science Department, SUNY
Stony Brook, July 2004. A preliminary version appeared in Proc. Workshop on
Runtime Verification, 2003.

[39] A. Welc, S. Jagannathan, and A. L. Hosking. Transactional monitors for concur-
rent objects. In Proc. European Conference on Object-Oriented Programming,
2004.

