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Abstract
Precise dynamic data race detectors provide strong correct-
ness guarantees but have high overheads because they gener-
ally keep analysis state in a separate shadow location for each
heap memory location, and they check (and potentially up-
date) the corresponding shadow location on each heap access.
The BIGFOOT dynamic data race detector uses a combination
of static and dynamic analysis techniques to coalesce checks
and compress shadow locations. With BIGFOOT, multiple
accesses to an object or array often induce a single coalesced
check that manipulates a single compressed shadow location,
resulting in a performance improvement over FASTTRACK
of 61%.

CCS Concepts •Theory of computation → Program
analysis; •Software and its engineering → Concurrent
programming languages; Software defect analysis

Keywords Data race conditions, concurrency, static analy-
sis, dynamic analysis

1. Introduction
Data race conditions are a notorious problem in multithreaded
software, often resulting in erroneous outputs and viola-
tions of expected correctness properties such as sequential
consistency and atomicity. Much prior work has focused
on static [1, 2, 4, 10, 18, 21, 31, 37, 53] and dynamic
[15, 38, 40, 44, 45, 51, 59, 59] data race detection.

Static analyses are able to reason about all executions of a
program, but they generate false alarms or miss actual data
races due to their necessarily conservative approximations of
program behavior. In contrast, precise dynamic analyses offer
a stronger guarantee of reporting a race condition if and only
if a race occurs in the observed trace. The main limitation of
precise dynamic detection is performance. The most efficient
precise detectors, such as DJIT+ [40] and FASTTRACK [23]
have overheads close to an order of magnitude or more, which
is too high for many applications.

In general, precise dynamic race detectors work by keep-
ing, for each shared memory location in the target program,

a corresponding shadow location that records information
about the access history for that memory location. For ex-
ample, in DJIT+ each shadow location records the time of
the last read and write to that location by each thread [40].
FASTTRACK refines this representation to store only the most
recent read and write among all threads when possible [23].

The primary sources of overhead in dynamic race detectors
are: the space overhead of maintaining a shadow location for
each memory location in the target, and the time overhead
of updating shadow locations for each memory access of the
target. Dynamic analyses may sacrifice precision for reduced
overhead, but only at the cost of introducing undesirable false
alarms or missed races. In this paper, we present an optimized
precise dynamic data race detection algorithm, BIGFOOT,
that mitigates these overheads as follows:

1. Rather than keeping a distinct shadow location for each
field in an object, or each entry in an array, BIGFOOT
employs compressed representations using fewer shadow
locations per object/array.

2. Rather than checking and updating shadow location meta-
data at each memory access of the target program, BIG-
FOOT uses a sophisticated static analysis to optimize check
placement in the target code. In particular, it statically
eliminates redundant checks where possible and statically
combines multiple checks into a single coalesced check
covering multiple fields or array indices.

Figure 1 compares BIGFOOT’s static check placement
algorithm to the standard approach of performing a check at
each access. In the move method, a typical race detector
would instrument each of the six accesses with a check
verifying that the access is race free. In contrast, BIGFOOT
determines that the read check in each read-modify-write
sequence is redundant with the check on the subsequent write,
in the sense that the read will be involved in a data-race only
if the write is also in a race. Thus, the read checks are not
necessary to validate whether a trace is race free.

Furthermore, BIGFOOT combines the three write checks
into a single coalesced check CheckWrite(this.x/y/z)
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Standard Race Checks BIGFOOT Race Checks
class Point {

int x, y, z;

void move(int dx, int dy, int dz) {
int tmp;
CheckRead(this.x); tmp = this .x;
CheckWrite(this.x); this .x = tmp + dx;

CheckRead(this.y); tmp = this .y;
CheckWrite(this.y); this .y = tmp + dy;

CheckRead(this.z); tmp = this .z;
CheckWrite(this.z); this .z = tmp + dz;

}
}

void movePts(Point[] a, int lo, int hi) {
for(int i = lo; i < hi; i++) {

CheckRead(a[i]);
a[i] .move(1, 1, 1);

}
}

class Point {
int x, y, z;

void move(int dx, int dy, int dz) {
int tmp;
tmp = this .x;
this .x = tmp + dx;

tmp = this .y;
this .y = tmp + dy;

tmp = this .z;
this .z = tmp + dz;

CheckWrite(this.x/y/z);
}

}

void movePts(Point[] a, int lo, int hi) {
for(int i = lo; i < hi; i++) {

a[i] .move(1, 1, 1);
}
CheckRead(a[lo..hi]);

}

Figure 1. Check placement for precise data race detection.

covering all three fields. Coalescing field checks in this
manner is particularly helpful because it enables static shadow
location compression for objects. In particular, suppose that
all checks on Point objects are coalesced checks of the form
CheckWrite(p.x/y/z) or CheckRead(p.x/y/z). BIGFOOT
can then safely combine the shadow locations for the three
fields into a single shadow location, and the coalesced checks
then perform a single check-and-update operation on that
shadow location, in contrast to the six checks on three shadow
locations required by the traditional approach.

BIGFOOT optimizes array checks similarly, as shown in
the method movePts in Figure 1. That code iterates over all
array indices in a from lo to hi and moves each correspond-
ing Point. In contrast to a standard dynamic race detector,
which separately checks each array read, BIGFOOT coalesces
these checks into the single check CheckRead(a[lo..hi])
after the loop. Here, lo..hi denotes the closed-open interval
lo, lo + 1, . . . , hi− 2, hi− 1.

To efficiently handle such coalesced checks, BIGFOOT
again employs a compressed representation for array shadow
locations. In contrast to objects however, this compressed
representation is chosen and adaptively refined at run time.
Specifically, an array like a is initially represented as a
“coarse-grained” single shadow location covering all array el-
ements. A call such as movePts(a,0,a.length) generates
a coalesced check CheckRead(a[0..a.length]) covering
all array elements, which is processed at run time by check-
ing and updating that array’s single shadow location. If a
subsequent call movePts(a, 0, a.length/2) generates a

check CheckRead(a[0..a.length/2]) covering just half
the array elements, the BIGFOOT run time would refine the
shadow state for a to be two shadow locations, each cover-
ing half of a. That check is then handled by appropriately
updating the first of these two shadow locations.

BIGFOOT’s adaptive mechanism for arrays, modeled after
SLIMSTATE [55], enables compressed array representations
under a variety of common access patterns including block-
based and strided accesses. If those patterns are not followed,
BIGFOOT reverts to the “fine-grained” representation of a
shadow location for each array element.

Imprecisions in BIGFOOT’s static analysis may lead to
sub-optimal check placement, as in the following example:

for(int i = 0; i < a .length; i++) {
if(predicate()) {

a[i] .move(1, 1, 1);
CheckRead(a[i]);

}
}

BIGFOOT’s method-local analysis will not statically coalesce
the array checks because it cannot statically determine which
elements are accessed. At run time, suppose a has a single
shadow location when this code runs. If predicate() al-
ways returns true, then all indices in a are accessed, and we’d
like to preserve the coarse-grained representation to save both
space and time. To do so, BIGFOOT’s run time defers checks
on arrays, and instead dynamically records a per-thread foot-
print of which indices have “pending” checks. BIGFOOT
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Race Check Motion and Coalescing Red. Check Metadata Compression Run-Time
Detector objects arrays Elimination objects arrays Overhead

FASTTRACK [23] no no no no no 7.3x
REDCARD [25] no no static static proxy static proxy, global 6.0x
SLIMSTATE [55] no dynamic no no dynamic 6.0x
SLIMCARD no dynamic static static proxy dynamic 5.1x
BIGFOOT static static+dynamic static, better static proxy dynamic 2.5x

Figure 2. Comparison to prior precise dynamic race detectors, and SLIMCARD (which combines REDCARD and SLIMSTATE).

“commits” the footprint for a thread and checks the corre-
sponding shadow locations for races when the thread next
performs a synchronization operation. This dynamic foot-
printing technique allows BIGFOOT to keep a single shadow
location for the array a, even in the presence of a scenario
like the above that is not amenable to static coalescing.

Figure 2 compares BIGFOOT to several prior precise race
detection algorithms: FASTTRACK, REDCARD (which stat-
ically eliminates some redundant checks and compresses
shadow state), SLIMSTATE (which dynamically compresses
array shadow state), and SLIMCARD (which combines the
REDCARD and SLIMSTATE analyses, as described in Sec-
tion 6). All were implemented in the ROADRUNNER frame-
work for Java [24]. The key innovations of BIGFOOT, namely
static check motion and coalescing, provide substantial per-
formance improvements, particularly when combined with
existing static and dynamic shadow compression techniques.

Detection Precision A data race detector is trace-precise
if it correctly determines whether a given trace has a race
condition or not. A trace-precise race detector is additionally
address-precise if it can also determine all addresses that
have race conditions. Using this terminology, FASTTRACK
and SLIMSTATE are address-precise. Our BIGFOOT core
algorithm is also address-precise, as we discuss in Section
3. Our BIGFOOT implementation, however, uses additional
check placement optimizations for which one data race may
prevent the detection of a subsequent race. Consequently, our
implementation is trace-precise but not address-precise, as
described in Section 5.1 In practice, the BIGFOOT implemen-
tation was address-precise in all our experiments.

We also note that since BIGFOOT defers checking until
after accesses occur, a data race may be detected only after
it has happened. This introduces several subtleties related
to precision. First, we currently assume for simplicity that
all loops terminate and consider all unchecked exceptions
to be programming errors. Thus, a race preventing a loop
from terminating or causing an unchecked exception may be
missed since the deferred check is never reached. However,
we did not see this occur in practice, and we discuss analysis
extensions to cover these items in Sections 3 and 5. In
addition, if a data race can corrupt the race detector’s analysis

1 REDCARD and SLIMCARD exhibit similar precision properties for the
same reasons.

1: acq(lock);
∅ • {b.f3}

2: x = b.f;
{b.f�} • {b.f3}

3: rel(lock);
∅ • {b.f3}

4: y = b.f;
{b.f�} • ∅

5: check(b.f);
{b.f�, b.f

√
} • ∅

6: acq(lock);
{b.f�, b.f

√
} • {b.f3}

7: z = b.f;
{b.f�, b.f

√
} • ∅

8: rel(lock);
∅ • ∅

Figure 3. A code fragment with precise checks, and the
corresponding BIGFOOT analysis contexts from Section 3.
(All variables are thread-local, and objects thread-shared.)

state, it may similarly go undetected [5], but for type-safe
languages like Java, this cannot happen.

Contributions The primary contributions of this paper are:

• We define a theory of precise check placement for dy-
namic race detection and describe a core static analysis to
optimize check placement (Sections 2 and 3).

• We integrate static field proxy compression and dynamic
array shadow compression techniques to further reduce
run-time overhead (Section 4).

• We present our BIGFOOT prototype for Java (Section 5).
• We show that BIGFOOT’s static analysis scales well (re-

quiring on average less than 0.2s per method processed)
and reduces run-time overhead from 7.3x (for FAST-
TRACK) to 2.5x, an improvement of 61% (Section 6).

2. Theory of Check Placement
A key design goal of the core BIGFOOT algorithm is that the
checks inserted into a target program enable address-precise
data race detection. That is, BIGFOOT must insert checks that
are sufficient to detect all data races but that never report false
alarms. Reasoning about this requirement can be subtle. For
example, the code in Figure 3 contains a single check that
enables precise data race detection for all three accesses, but
it may not be immediately apparent why this is the case.
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Figure 4. Precise and imprecise check placement locations.

In this section, we develop a theory of check placement
to characterize exactly where checks must be performed to
avoid false negatives and false positives. To simplify our
exposition, we initially do not distinguish between read and
write accesses (although our implementation extends these
ideas to do so, as described in Section 5).

Given an execution trace of a program, we say the trace
has a data race if it has two accesses to the same memory
location that are not ordered by the happens-before relation,
which is defined in the usual fashion [33, 40].

Similarly, a trace has a check race if it has two checks to
the same memory location that are not ordered by happens-
before. A precise check placement algorithm must ensure
that any execution trace of the target program has a data race
if and only if it has a check race.

Figure 4(a) illustrates where checks must be performed
in a trace to guarantee all data races are detected. The
trace shown has a data race because the happens-before
edges (shown as solid arrows) generated by synchronization
operations do not order the two accesses to y.f, as indicated
by the dashed edge. Any check performed by Thread 1
in the Covering Check Range will trigger a check race
corresponding to that data race. However, checks outside
that range will not, resulting in a false negative because the
access race would have no corresponding check race.

With this intuition, we say that a check covers an access
to the same location by the same thread if the check either:

• precedes the access with no intervening release, or
• succeeds the access with no intervening acquire.

Note that we treat acquire and released differently, as they
serve as sources and sinks for synchronization edges in the
happens-before graph, respectively. Returning to Figure 3,
the single check thus covers all three accesses in any trace
generated by this code. We show in the supplementary
appendix that if each access in a program has a covering

check, then any trace with a data race also has a check race.
That is, access coverage guarantees no missed races.

Figure 4(b) illustrates where checks may be performed in
a trace to guarantee all check races indicate data races. This
trace has no data race because the three accesses to y.f are
ordered by happens-before edges. Similarly, the checks inside
the critical section of Thread 1 (marked Legitimate Check
Range) produce no check races. However, a check outside
this range produces a check race, which would be a false
alarm since there is no corresponding data race.

We say that a check is legitimate for an access to the same
location by the same thread if the check either:

• precedes the access with no intervening acquire, or
• succeeds the access with no intervening release.

For example, in Figure 3, the check is legitimate for the
second access, but not the first or third.

With these notions of legitimacy and coverage, we say a
trace has precise checks if each access is covered by some
check (no missed races) and each check is legitimate for some
access (no false alarms). A program has precise checks if all
possible execution traces have precise checks.

3. Optimizing Check Placement
We next describe our static analysis for optimizing the place-
ment of precise checks.

3.1 BFJ Language and Semantics
We formalize our ideas in terms of the idealized language BFJ
(BIGFOOT Java) shown in Figure 5. A program P contains a
sequence of class definitionsD and a collection of concurrent
threads s1‖...‖sn. Each class definition D contains field
and method declarations. Each field declaration is simply a
field name f . Each method declaration m(x){s; return z}
includes a unique methodm, formal parameters x, and a body
s followed by a return of the local variable z. We omit static
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P ∈ Program ::= D s1‖ . . . ‖sn
D ∈ Defn ::= class c { f meth }
meth ∈ Method ::= m(x) { s; return z }

s ∈ Stmt ::= skip | s; s | if be s s
| loop{ s; { if be break }; s }
| x = e | x← y | acq(y) | rel(y)
| x = new c | y.f = x | x = y.f
| x = new_array z | y[z] = x | x = y[z]
| x = y.m(z) | check(C)

e ∈ Expr ::= x | v | e = e | . . .
be ∈ BoolExpr ⊆ Expr
C ∈ PathSet ::= 2Path

p ∈ Path ::= x.f | x[r]
r ∈ StridedRange ::= e..e :e

c ∈ ClassName f ∈ FieldName
m ∈ MethodName x, y, z ∈ V ar

Figure 5. BFJ Syntax.

types and local variable declarations, which are orthogonal
to our formal development. We leave the set of expressions
e unspecified but assume it includes at least null, boolean
values, and local variables.

To facilitate our technical development, BFJ statements
are in A-normal form [27] and include a loop construct with
the exit test in the middle of the loop body. We motivate and
describe the renaming operator x← y below.

BFJ includes the statement check(C) to explicitly check
for races on each heap location described by a path p ∈ C.
A path of the form x.f describes an object field, and path of
the form x[r] describes array accesses, where r is a strided
range of the form “b..e : k” represents the set of indices
{b + ik : b ≤ b + ik < e} to be checked. We use
b and b..e to abbreviate singleton (“b..(b + 1) : 1”) and
continuous (“b..e :1”) strided ranges, respectively. We defer
distinguishing read checks and write checks until Section 5.

3.2 Analysis Contexts
The BIGFOOT analysis is intraprocedural, analyzing and
inserting checks into each method one at a time. Within
each method, the analysis infers a context H •A for each
program point that describes the known history properties H
and anticipated properties A at that point:

Context ::= H•A H ⊆ History A ⊆ Anticipated
h ∈ History ::= be | p� | p

√

a ∈ Anticipated ::= p3

These properties capture the following notions:

• Boolean expressions be from, e.g., branch tests.
• Past accesses p�, meaning that path p was previously

accessed, with no subsequent release. The analysis must
ensure there is a corresponding covering check.

• Past checks p
√

, meaning that p was previously checked
within the method, with no subsequent release.

• Anticipated accesses p3, meaning that the continuation
after the program point will access p (and therefore check
p), with no intervening acquire.

3.3 Check Placement Algorithm Overview
The BIGFOOT check placement algorithm defers checks as
long as possible and only inserts them into the program code
when they cannot be further deferred without risking false
alarms or missed data races; thus checks are only placed
before synchronization operations and control flow merge
points, and at the ends of methods and threads.

To illustrate how BIGFOOT uses context information to
place checks, we examine the analysis contexts in Figure 3.
As in all BFJ code, the variables in this snippet are local and
cannot be changed by other threads, although they may point
to shared objects.

BIGFOOT adds a past access p� to the history whenever
the code accesses p, and before an acquire it inserts a check
for any past access p� with no past covering check p

√
, as at

line 5. Since the acquire signifies the end of that past access’s
covering check range, placing the check any later would
introduce the potential for missed data races.

At each release, BIGFOOT removes each past access p�

from the history. The release signifies the end of the legitimate
check range for those accesses, and placing checks for them
any later would introduce the potential for false alarms.
“Forgetting” a past access p� like this typically requires
BIGFOOT to place a covering check before the release, but
there are two situations when no check is needed: (1) a
covering check has already occurred (p

√
is in the history),

as at line 8; or (2) we anticipate a later access to the same
location, as at line 3. The anticipated later access (and hence
its covering check) will occur before leaving the original
access’s covering check range at the next acquire. Each check
p
√

must also be forgotten at a release because that check
does not cover any subsequent access to p.

Anticipated access information flows backwards, and
anticipated accesses in an acquire’s post-history must be
removed from its pre-history because checks covering those
future accesses will not cover accesses prior to the acquire.

We now examine the if statement in Figure 6(a). The
merged context ∅•{b.f3} after the if describes properties
holding after both branches, and it omits past accesses occur-
ring only on one branch. BIGFOOT must ensure a covering
check exists for any such “forgotten” past access. That ne-
cessitates checking b.g in the “then” branch, after which it
is permissible to simultaneously forget both the past access
and past check on b.g when leaving the if. In contrast, x.f
is anticipated at the end of the “else” branch, and we skip
checking it at that point because the later access will have a
check covering both accesses.
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∅ • {b.f3}
if (i<0) {

{i < 0} • {b.f3, b.g3}
y = b.g;

{i < 0, b.g�} • {b.f3}
check(b.g);

{i < 0, b.g�, b.g
√
} • {b.f3}

} else {
{i ≥ 0} • {b.f3}

x = b.f;
{i ≥ 0, b.f�} • {b.f3}

}
∅ • {b.f3}

z = b.f;
{b.f�} • ∅

check(b.f);
{b.f�, b.f

√
} • ∅

1: i = 0;
{i = 0} • {b.f3, a[i]3}

2: loop {
{a[0..i]�} • {a[i]3, b.f3}

3: t = b.f;
{a[0..i]�, b.f�} • {a[i]3}

4: a[i] = t;
{a[0..i]�, a[i]�, b.f�} • ∅

5: i’←i;
{a[0..i’]�, a[i’]�, b.f�} • ∅

6: i = i’ + 1;
{i=i’+1, a[0..i’]�, a[i’]�, b.f�} • ∅

7: if (...) break;
{i=i’+1, a[0..i’]�, a[i’]�, b.f�} • {b.f3, a[i]3}

8: }
{i=i’+1, a[0..i’]�, a[i’]�, b.f�} • ∅

9: check(a[0..i],b.f);

Figure 6. Analysis contexts and check placements for BFJ method bodies containing (a) an if statement and (b) a loop.

Figure 6(b) illustrates how loops are handled. To simplify
our analysis, we require that the target x of any assignment
be a “fresh” variable not mentioned in the preceding history,
as the assignment would otherwise invalidate that history
information. The operation i’ ← i copies the value of i
into a fresh variable i’ and replaces all mentions of i in the
history by i’, thereby ensuring i is afterwards fresh, that
is, not mentioned in the history. BIGFOOT inserts renaming
statements on demand, but for simplicity our presentation
assumes any necessary renamings already exist.

BIGFOOT places all necessary checks at line 9 after the
loop using the following technique. First, BIGFOOT synthe-
sizes a loop invariant history that captures the set of accesses
that have been performed whenever execution reaches line
2. The invariant for our example is the underlined history
Hinv = {a[0..i]�}. On entry to the loop, Hinv holds be-
cause i = 0, meaning no array elements have been accessed.
On the loop back edge, Hinv is entailed by the loop body’s
final history {i=i’+1, a[0..i’]�, a[i’]�, b.f�}.

BIGFOOT defers checks until after the loop whenever
possible. In this case, the history at the loop exit on line
7 contains a[0..i’]� (the invariant rewritten due to the
renaming of i to i’ at line 5) and a[i’]� (the similarly
rewritten access from line 4). That history context captures
all accesses that must be checked after the loop. Given that
i’ = i + 1, BIGFOOT places the single check of a[0..i]
at line 9 to cover all array accesses from inside the loop.

BIGFOOT requires no global analysis to move the checks
out of the loop because all variables referenced in the code
are local and cannot be changed by other methods or threads.

This example also demonstrates that anticipation is crucial
for moving some checks out of loops. At the end of the
loop on line 8, the history contains b.f�, but the back edge
returns to loop head on line 2, where b.f� is not in the
history. This would normally necessitate placing a check on
b.f inside the loop before the back edge. However, since
b.f3 is anticipated at the loop head, we can avoid checking
b.f inside the loop and defer the check until after the loop.

Checks deferred until after a loop may never be executed if
the loop diverges. We currently assume all loops terminate but
could alternatively include a termination analysis and treat
potentially non-terminating loops specially by, for example,
periodically committing deferred checks inside the loop.

3.4 Check Placement Rules
We formalize BIGFOOT’s check placement algorithm as the
judgment ` s : H •A → H ′•A′ defined in Figure 7. The
contexts H•A and H ′•A′ are the pre- and post-contexts of
s. The analysis is a combined forward/backward analysis;
history properties flow forward from pre-history H to post-
history H ′, while anticipated properties flow backwards from
post-anticipated A′ to pre-anticipated A.

For conciseness, we do not express check placement as
a rewriting transformation on program syntax. Instead, we
assume that a pre-transformation has already inserted a check
check(C) wherever one may be required. The goal of the
check placement algorithm is then to resolve each path set
variable C into the appropriate set of paths to be checked
at that point. The rules for ` s : H •A → H ′•A′ include
antecedents constraining each C appropriately.

Context Entailment and Ordering Our rules use the nota-
tion h ∈ H for the usual syntactic notion of set membership
for history properties. In addition, we introduce a richer no-
tion of history entailment (H ` h) that accounts for other
information in H . For example, if H = {z[i]�, i = j} then
we can safely infer that H entails z[j]�, written H ` z[j]�.
Similarly, we introduce anticipated entailment (H•A ` a),
as in {i < 10}•{x[0..10]3} ` x[0..i]3. Our implementation
uses Z3 [16] to reason about entailment.

While history and anticipated sets could be ordered by the
subset relation (⊆), we employ a stronger ordering (v) based
on entailment to achieve greater precision:

H1 v H2 iff ∀h ∈ H1. H2 ` h
H ` A1 v A2 iff ∀a ∈ A1. H•A2 ` a
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` s : H•A→ H ′•A′ (We assume x 6∈ Vars(H) in the rules modifying x: [ASSIGN],
[RENAME], [NEW], [READ], [A-NEW], [A-READ], and [CALL].)

[SKIP] ` skip : H•A → H•A
[ACQ] ` check(C); acq(x) : H•∅ → (H ∪ C

√
)•A where C = Checks(H, ∅)

[REL] ` check(C); rel(x) : H•A → (H \ {_
√
, _�})•A where C = Checks(H,A)

[ASSIGN] ` x = e : H•A[x := e] → (H ∪ {x = e})•A where x 6∈ Vars(e)
[RENAME] ` x← y : H•A[x := y] → H[y := x]•A
[NEW] ` x = new c : H•(A \ x) → H•A
[A-NEW] ` x = new_array z : H•(A \ x) → H•A
[WRITE] ` y.f = x : H•(A ∪ {y.f3}) → (H ∪ {y.f�})•A
[A-WRITE] ` y[z] = x : H•(A ∪ {y[z]3}) → (H ∪ {y[z]�})•A
[READ] ` x = y.f : H•(A \ x ∪ {y.f3}) → (H ∪ {y.f�})•A
[A-READ] ` x = y[z] : H•(A \ x ∪ {y[z]3}) → (H ∪ {y[z]�})•A
[IF]

H1 = Hin ∪ {be} ` s1 : H1•A1→ H ′
1•Aout

H2 = Hin ∪ {¬be} ` s2 : H2•A2→ H ′
2•Aout

C1 = Checks(H ′
1, H

′
1 uH ′

2, Aout) C2 = Checks(H ′
2, H

′
1 uH ′

2, Aout)

Ain = H1•A1 uH2•A2 Hout = (H ′
1 ∪ C

√

1 ) u (H ′
2 ∪ C

√

2 )

` if be {s1; check(C1)} {s2; check(C2)} : Hin•Ain → Hout•Aout

[SEQ]

` s1 : H1•A1→ H2•A2

` s2 : H2•A2→ H3•A3

` s1; s2 : H1•A1 → H3•A3

[LOOP] ` s : Hinv•Ain → H•Ainv
Hback = H ∪ {¬be} Hout = H ∪ {be}

Cin = Checks(Hin, Hinv, Ain) Hin ∪ C
√

in w Hinv

Cback = Checks(Hback, Hinv, Ain) Hback ∪ C
√

back w Hinv

Hback ` Ainv v Ain Hout ` Ainv v Aout
` check(Cin); loop{ s; { if be break }; check(Cback) } :

Hin•Ain → Hout•Aout

[CALL]

C = Checks(H,H \KillSetHistory(m), A)
H ′ = (H ∪ C

√
) \KillSetHistory(m)

A = A′ \ x \KillSetAnticipated(m)

` check(C); x = y.m(z) : H•A→ H ′•A′

` s ` meth ` D ` D s
[STMT] ` s : ∅•A→ H•∅

C = Checks(H, ∅)
` s; check(C)

[METHOD]
` s

` m(x) { s; return z }

[CLASS]
∀meth ∈ meth. ` meth
` class c { f meth }

[PROGRAM] ∀D ∈ D. ` D
∀i. ` si

` D s1‖...‖sn
Figure 7. Check Placement Rules.

These orderings generate corresponding meet operators,
where the meet on anticipated sets additionally takes his-
tory sets to reason about entailment.

H1 u H2 = {h∈H1∪H2 : H1 ` a,H2 ` a}
H1•A1 u H2•A2 = {a∈A1∪A2 : H1•A1`a,H2•A2`a}

Analysis Rules The analysis rules are somewhat complex
due to their bidirectional nature and the subtle properties
being captured. We present the technical details of our core
rules below, but subsequent paper sections do not assume an
in depth understanding of all of their details.
[REL]: Since past accesses need to be checked before a
release, this rule targets the syntax check(C); rel(x) and
uses the function

Checks(H,A) = { p : p� ∈ H,H 6` p
√
, H•A 6` p3 }

to ensure that the path set C contains any path p that was
accessed (p� ∈ H) but not yet checked and is not anticipated.
(If p is anticipated, then the future check on the anticipated
access serves as the covering check for the past access.)

The post-history removes (1) all prior checks (denoted
_
√

) because these checks do not cover accesses after the
release and (2) all prior accesses (denoted _�) because we
are leaving the legitimate check range for them.
[ACQ]: This rule for check(C); acq(x) ensures C contains
any path p that was accessed but not checked. The post-
history contains the newly checked paths (where C

√
abbre-

viates {p
√
| p ∈ C}). The pre-anticipated set must be empty

because any anticipated access would need to occur before
this acquire.
[READ]: This rule matches the syntax x = y.f . To simplify
our analysis, we require that the target of any assignment
be to a “fresh” variable not mentioned in the pre-history H ,
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as the assignment would otherwise invalidate that history
information. The [READ] rule adds past access y.f� to the
post-history. The pre-anticipated paths becomeA\x∪{y.f3},
where A \ x removes all properties mentioning x from A.
[RENAME]: As mentioned above, assignments can only target
“fresh” variables not in H , but in some cases, e.g. before a
loop back edge, we may need to modify an existing non-fresh
variable y. We cannot simply remove y from the history, as
that might remove past accesses with pending checks, such
as y.f�. Instead, the renaming operation x ← y copies the
value of y into a fresh variable x, and replaces all mentions of
y in the history H by x, with the result that y is now “fresh”
(not mentioned in the history) and can be an assignment
target. To illustrate this rule, consider the renaming i ← i’
on line 5 in Figure 6(b). The history prior to the renaming
contains a[0..i]� and a[i]�. After renaming, we have
a[0..i’]� and a[i’]�, enabling us to continue deferring
the checks for those accesses.
[WRITE]: This rule for y.f = x adds the access y.f� to the
post-history, and y.f3 to the pre-anticipated set.
[ASSIGN]: This rule for the assignment x = e adds the
boolean expression x = e to the post-history. We require
x 6∈ Vars(e) to ensure the post-history does not refer to
the pre-value of x. The pre-anticipated set is computed from
the A via the substitution A[x := e], which replaces all
occurrences of x with e in each p3 ∈ A. Since anticipated
paths are not closed under this substitution, we remove from
the result any syntactically ill-formed anticipated paths.
[IF]: Conditionals may require checks to be placed at the
end of each branch, and so this rule targets the syntax
if be {s1; check(C1)} {s2; check(C2)}. This rule first
computes the post-histories H ′

1 and H ′
2 and pre-anticipated

sets A1 and A2 for s1 and s2. The merged history H ′
1 uH ′

2

describes properties holding after both branches but may
leave out accesses that occurred only on one branch. We
introduce the following variant of the Checks function to
compute the unanticipated unchecked past accesses in H that
must be checked when H is approximated by H ′:

Checks(H,H ′, A) =
{ p : p� ∈ H,H ′ 6` p�, H 6` p

√
, H•A 6` p3 }

Thus, C1 = Checks(H ′
1, H

′
1 u H ′

2, Aout) are those paths
that must be checked at the end of the “then” branch, and
similarly for C2 on the “else” branch. The contexts at the
end of the branches are then H1 ∪ C

√

1 and H2 ∪ C
√

2 , and
these are merged via u to yield the final history Hout. The
anticipated pre-context Ain is computed by merging together
the anticipated contexts preceding s1 and s2.
[LOOP]: Loops similarly require checks on the two paths
meeting at the loop head, and this rule targets the form:

check(Cin); loop{ s; { if be break }; check(Cback) }

In this rule,Hin andHback are the pre-histories of check(Cin)
and check(Cback), respectively, and Hinv is the loop-
invariant history at the loop head. As in [IF], the Checks
function uses these sets and Ain, the anticipated set at the
loop head, to compute Cin and Cback. The side conditions
Hin ∪ C

√

in w Hinv and Hback ∪ C
√

back w Hinv ensure that
properties in Hinv are true on all paths into the loop head.

Note that Hinv, H , and Hback are defined via mutual
recursion; they are computed as part of a greatest fixed point
computation over a method body. The computation is seeded
with an initial conjecture for Hinv that is then refined via a
form of predicate abstraction. (See Section 5.) An analogous
anticipated set Ainv characterizing what is anticipated prior
to the loop exit test is used in the computation of Ain.
[CALL]: A method call may require checks prior to the
call if the callee performs synchronization (either directly
or indirectly via a nested method call). Thus we match
syntax of the form check(C); x = y.m(z). The function
KillSetHistory(m) denotes the set of history properties
killed by the side effects of method m, and contains:

{ _�} if m acquires a lock
{ _�, _

√
} if m releases a lock

The function KillSetAnticipated(m) describes anticipated
accesses killed bym. It is {_3} ifm acquires a lock and ∅ oth-
erwise. Our implementation pre-computes KillSetHistory(m)
and KillSetAnticipated(m) using a separate whole program
analysis. Checks are added before the call for any unchecked
accesses C that are killed by the call, and the post-history
H ′ is derived from the pre-history H and C by removing all
such killed properties.

Correctness Sketch The Appendix contains a detailed
proof showing that the BIGFOOT algorithm described so
far is correct in that it is address-precise. We present a short
outline of our argument below.

We first formalize an operational semantics for BFJ that
evaluates program P = D s1‖ . . . ‖sn via a sequence of
states Σ0 →a1 Σ1 →a2 . . .→an Σn, where Σ0 is an initial
state for P and Σn is a final terminating state. This evaluation
sequence yields a trace α = a1.a2 . . . an describing the mem-
ory accesses, race checks, and synchronization operations
performed by P .

We also define a judgement D;α  Σ describing when
a run-time state has correct checks in the context of an
execution history α. This judgement most notably ensures
that, for each thread t, the context H•A for thread t’s current
program point is consistent with Σ and α. This judgement
entails the following: 1) Each expression be ∈ H is true when
evaluated by t in the current state Σ. 2) If p� ∈ H and p
denotes a memory l, there is an access to l in by t α with
no later release. (Each p

√
∈ H must have similar check). 3)

Each check by t in α is legitimate for a preceding access. 4)
Each access to a location l by t in α is either covered by a
check, or t is still in that access’s covering check range and
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there is some path p denoting l such that either p� is in H or
p3 is in A.

The first two requirements show that the history context
soundly approximates program behavior. The third and fourth
guarantee that each check performed by t is legitimate and
that each access by t has either been covered by a check or
will be covered by deferred check performed later in the trace.

Provided ` P , the initial state satisfies the criteria for
well-formed states (i.e., D; ε  Σ0), and we show via a
preservation argument that it holds for each subsequent state,
including the last, i.e., D;α  Σn. Since each thread in Σn
has terminated and will perform no subsequent checks or
accesses, the rules for () imply that α has precise checks.
Consequently, the checks in P are address-precise. That is, if
` P and P generates a trace α, then for any address l, α has
a data race on l if and only if it has a check race on l.

4. Check Coalescing & Shadow Compression
Post-Analysis Path Coalescing In preparation for our
shadow compression algorithms, we perform one last co-
alescing step on each set of checks added to the program.
Specifically, for each check(C) statement, we divide the
paths in C into equivalence classes based on the path desig-
nator: that is, d1.f1 and d2.f2 are in the same class if d1 and
d2 refer to the same object in the check’s pre-history written
H ` d1 = d2), and similarly for array paths.

We then coalesce each group d1.f1, d2.f2, . . . , dn.fn
sharing equivalent designators to the coalesced field path
d1.f1/f2/ · · · /fn. We also coalesce each group of paths
d1[b1..e1 : k1], . . . , dn[bn..en : kn] to one array path d1[b..e :
k] such that the strided range “b..e : k” captures the exact
same set of indices as the n original strided ranges. This
step necessitates solving a collection of integer constraints
over program expressions, but those constraints have a form
that cannot be handled by, e.g., Omega [41] or effectively
solved directly via Z3. Thus, to find a suitable b, e, and k, our
implementation tries various combinations of the bounds and
step sizes from the original strided ranges. This combinato-
rial approach can be expensive if there are a large number
of strided ranges, but we have found it effective in practice.
If a coalesced path cannot be found, we simply keep the
original set of paths. We could alternatively try to divide the
set into two or more coalescible subsets, but this provided
little benefit in practice.

Shadow Compression A precise dynamic race detector
typically maintains a distinct shadow location for each ob-
ject field or array element. Thus, an object pt with three
fields requires three shadow locations and check(pt.x/y/z)
performs three shadow-location operations. Similarly, an
array a of n elements requires n shadow locations, and
check(a[0..n]) performs n shadow-location operations.

However, check coalescing enables us to identify groups
of shadow locations that can be compressed into a single
shadow location at run time with no loss in precision. More-

over, a coalesced check covering a compressible group only
requires a single shadow-location operation, yielding sub-
stantial performance benefits. Compressible locations can be
identified statically or dynamically. We have found the com-
bination of static compression for object fields and dynamic
compression for array elements yields the best performance.

Static Field Compression We identify fields of a class that
are compressible via a static shadow proxy analysis [25].
Given a class with fields x and y, field x is a proxy for y if
every check check(p.· · · /y/· · · ) also checks p.x. In this
situation, any trace exhibiting a race on p.y will also have a
race on p.x. Hence, we can compress the shadow locations
for x and y into a single location while still being able
to distinguish race-free executions from those with races.2

Identifying field proxies requires a single pass over all checks.

Dynamic Array Compression We could express similar
proxy relationships for array elements. For example, a[0]
could be a proxy for all array entries a[0..n] if all checks
on the array all have the form check(a[0..n]). Similarly
a[i%2] could be the proxy for each a[i] if all checks
have the form check(a[0..n:2]) or check(a[1..n:2]).
REDCARD [25] used this approach, but its static array proxy
analysis failed to scale and was too imprecise to capture many
proxy relationships, as we demonstrate in Section 6.

BIGFOOT instead makes array shadow compression
choices dynamically using an extension of the approach
introduced in the SLIMSTATE checker [55]. Specifically,
BIGFOOT augments static array check coalescing with a
complementary dynamic coalescing technique based on array
footprints. For each array a, the BIGFOOT run time main-
tains a per-thread footprint of which indices must be checked
prior to that thread’s next synchronization operation. When a
thread t performs check(a[b..e:k]), BIGFOOT adds the
strided range b..e:k to t’s footprint for a. In this way, many
individual check operations that were not coalesced statically
may be coalesced dynamically into a single, large footprint.
At thread t’s next synchronization point, its footprint for a is
“committed” and the necessary shadow-location operations
are performed to verify race freedom.

BIGFOOT initially compresses the shadow state for the en-
tire array into a single shadow location. It then adaptively re-
fines that representation whenever it must commit a footprint
that is not consistent with the array’s current representation.
As in SLIMSTATE, BIGFOOT supports compression modes
matching common patterns of array accesses, including block-
based and stride-based patterns. SLIMSTATE processes every
individual array access at run time to build its dynamic foot-
prints. By statically coalescing checks, BIGFOOT eliminates
much of that overhead.

2 While this optimization guarantees that we precisely identify race-free
traces, we may not identify all memory locations with races since a race on
x may or may not imply a race on y. This subtlety goes away if we consider
only symmetric proxy relations, e.g.when y is also a proxy for x.
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5. Implementation
We have implemented our analysis in the BIGFOOT checker
for Java. BIGFOOT consists of a static component (STATICBF)
and a dynamic component (DYNAMICBF). STATICBF reads
in a bytecode program and a list of classes and methods
to transform, and it outputs a version of the program with
explicit race checks for all object and array accesses in the
specified methods. DYNAMICBF is the complementary dy-
namic race detector that reads in the instrumented program,
runs it, and reports any races observed.

Extending the BFJ analysis to the full Java language is
straightforward, and we describe the most important aspects
of STATICBF below. BIGFOOT handles all basic synchro-
nization operations present in Java, including locks, volatile
variables, fork/join, and wait/notify, as described in [23].

Alias Expressions and Precision STATICBF augments
BFJ’s set of boolean expression be with heap alias expres-
sions of the form x = y.f and x = y[z], which enable us
to reason about aliasing when deciding entailment. Those
expressions are added to the history on field/array reads and
are retained as long as they are valid under the assumption
that the target is race free. If an alias expression is invalidated
by a data race at run time, we may miss reporting some
subsequent data races (because race checks were not placed
in the necessary positions), but we will always detect the
initial race.

acq(lock);
x = a.f; // x = a.f
s = x.g;
y = a.f; // y = a.f
t = y.g;
check (a.f, x.g);
rel(lock);

For example, consider the
code fragment to the right,
which includes the alias expres-
sions recorded by STATICBF.
Those alias expressions enable
STATICBF to conclude x = y
at the check operation, mean-
ing that the check on x.g cov-
ers the access to y.g. Thus, no check on y.g is inserted.
However, those alias assumptions could be violated by a racy
write to a.f in between the two reads, and thus the race on
a.f could effectively hide a race on y.g.

While utlizing local alias expressions enables STATICBF
to better optimize check placement, it means that, in the-
ory, BIGFOOT is trace precise but not address precise. In
practice, however, BIGFOOT was address-precise for all of
our benchmark runs, which we verified via an additional dy-
namic analysis that checks that each observed execution trace
performs precise checks (in the sense of Section 2).

5.1 STATICBF
STATICBF is built on top of the WALA analysis frame-
work [54]. WALA represents methods as CFGs over SSA
instructions and analyzes all methods in a call graph con-
structed using a 0-CFA analysis. To ensure method CFGs
are amenable to our analysis, STATICBF performs an ini-
tial pass over the target to (1) rewrite each loop as an if
statement containing a do-while loop matching BFJ’s syn-

tax, and (2) eliminate all critical edges from the CFGs (see,
e.g., [3]). We use Soot [50] for this pass. We also precompute
KillSetHistory and KillSetAnticipated via a simple inter-
procedural dataflow analysis. STATICBF then inserts checks
into each method using a method-local dataflow analysis.

The initial context for each program point is {h : h ∈
History}•{a : a ∈ Anticipated}, and the analysis com-
putes the greatest fixed point solution for those contexts ac-
cording to the rules in Figure 7. To simplify the implemen-
tation, we compute context properties via separate passes
for (1) boolean and alias expressions, (2) past accesses, (3)
anticipated accesses, and finally (4) past checks and the set C
for each check(C). All passes are forward analyses, except
for the anticipated accesses pass.

STATICBF handles SSA φ-functions as they were handled
in REDCARD [25]. Also as in REDCARD, STATICBF tracks
extended paths containing multiple field/array references (as
in a[i].f or b.f.g), which are necessary for maintaining
precision when merging contexts encoding equivalent alias-
ing facts via different local variables. We implement the en-
tailment relations via the Z3 SMT Solver [16].

After applying the final coalescing step and static field
proxy analysis described in Section 4, STATICBF generates
a new version of the target code with the necessary checks
inserted. These checks take the form of method calls into
the DYNAMICBF run time. Paths in check statements refer
to SSA variables and variables introduced via the [RENAME]
rule, and not the stack slots and locals present in the original
bytecode. Thus, STATICBF inserts additional locals and
load/store instructions to reify them in the instrumented target.
Our relatively naive algorithm may introduce extraneous
memory loads/stores, and we apply the Soot optimizer in
a post-transformation pass to eliminate them.

Distinguishing Reads and Writes Up to this point, we have
not distinguished reads and writes. However, STATICBF
must do so because precise dynamic race detectors treat
them differently. In particular, two concurrent accesses are
considered conflicting only when at least one is a write.

To account for this, we extend our notions of legitimate
and covering checks. A write check is only legitimate for a
write access, but a read check is legitimate for both write and
read accesses. A write check can cover write or read accesses,
but a read check can only cover read accesses. In addition,
contexts record whether each p� and p3 is a read or write
access, and whether each p

√
is a read or write check. The

analysis rules and coalescing operations are also extended
appropriately.

Loop Invariants STATICBF infers the loop invariant Hinv

for rule [LOOP] via a form of Cartesian predicate abstrac-
tion [26, 30]. Specifically, STATICBF identifies the loop’s lin-
ear induction variables and trip count [28, 56] and then builds
an initial set Hheuristic of boolean constraints and past ac-
cesses consistent with that information. Since this algorithm
does not reason precisely about synchronization, function
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calls, and various other bytecode features, it may produce
some incorrect properties. Thus, STATICBF repeatedly ana-
lyzes the loop body to infer the maximal Hinv ⊆ Hheuristic

that is valid loop invariant as part of its dataflow analysis
passes. STATICBF similarly infers the anticipated invariant
Ainv by constructing an initial Aheuristic and computing the
maximal valid Ainv ⊆ Aheuristic . If no induction variables
can be identified, then Aheuristic is the empty set, and no
loop invariant are inferred. Irreducible loops and complex
computations may be problematic for our algorithm, but it is
quite effective in practice.

Static Fields In the JVM, a thread’s first access to a static
field may synchronize with the declaring class’s static initial-
izer to ensure proper behavior [34]. STATICBF provides a
command line flag to treat static field accesses as potential
synchronization so that checks will not be deferred across
them. We use this flag for several benchmarks where this
matters. (Other instructions that may synchronize with static
initializers, e.g. type casts, are handled similarly.)

Exceptions STATICBF reasons about control paths for
checked exceptions [29], but assumes unchecked exceptions,
such as NullPointerExceptions, are errors in the target
program and guarantees precision only for error-free traces.
This is an artifact of our current implementation and not a
fundamental limitation. Unchecked exceptions could be fully
handled via a more sophisticated code translation scheme
inside STATICBF, but given the complexity of the resulting
code, a better approach would be to integrate parts of the
analysis into the JVM’s exception mechanism. Our current
treatment of exceptions did not lead to missed race checks in
any of our benchmark experiments.

5.2 DYNAMICBF
We built our complementary DYNAMICBF dynamic analysis
in the ROADRUNNER framework [24]. Dynamic footprinting
and array shadow compression are implemented as in the ear-
lier SLIMSTATE checker and we use FASTTRACK’s adaptive
epoch representation [23] for shadow locations. BIGFOOT fol-
lows ROADRUNNER’s standard treatment of libraries: fields
of Java’s core library classes are not checked for races,
and synchronization operations internal to those libraries
are assumed not to be used to protect any of the target’s
data and are ignored. However, several key library methods
from java.lang.Object and java.lang.Thread, such as
Object.notify and Thread.start, are treated specially
as synchronizing operations. These assumptions are shared
by all checkers we evaluate, and also included in STATICBF.
Their violation may impact precision.

6. Validation
We validate BIGFOOT’s performance by comparing it to
FASTTRACK [23], SLIMSTATE [55], REDCARD [25], and
SLIMCARD (Section 6.2) on the JavaGrande [32] and Da-

Capo [6] benchmark suites. To facilitate comparison the de-
tectors share as much common implementation as possible.

We configured the JavaGrande programs to use their
largest data sizes and 16 worker threads. We also fixed racy
barrier implementations in several of them. We configured the
DaCapo benchmarks to use their default sizes, but we exclude
tradebeans and eclipse because of incompatibilities with
our underlying framework and other known issues [55]. We
additionally exclude several specific methods from the other
programs that ROADRUNNER cannot properly instrument
because the resulting code would exceed a JVM limit on
method size. Several DaCapo programs use reflection heavily.
To facilitate building the call graph for those programs in
STATICBF and REDCARD, we used a modified version of
Tamiflex [7] to eliminate reflection.

Since ROADRUNNER does not support the specialized
class loading features used by the DaCapo test harness, we
implemented a simplified version of that harness. It runs a
target’s workload several times in a warm up phase and then
measures the running time for 10 iterations of the workload.
We used that harness for the JavaGrande programs as well.
We report the means of ten such trials.

We verified all race detection tools examined reported
the same races (modulo variations due scheduling) manually.
All experiments were performed on a 2.4GHz 16-core AMD
Opteron processor with 64GB running Ubuntu Linux and
Oracle’s Java HotSpot 64-bit Server VM version 1.8.

6.1 STATICBF
BIGFOOT took 0.16 seconds per method on average to
process the benchmark programs, as shown in Table 1. With
careful caching of SMT solver results, only about 10% of
this time was spent solving Z3 queries. Together, call graph
construction for computing method kill sets and reasoning
about heap and boolean constraints accounted for more than
half of the running time in most cases. We have focused on
implementation simplicity and high precision. More careful
tuning would likely lead to significant improvements.

6.2 DYNAMICBF Time Overhead
Figure 8 shows, for each program, how many race checks
on shadow locations FASTTRACK (left graph) and BIGFOOT
(middle graph) perform relative to the number of heap ac-
cesses. FASTTRACK performs a check on each access, mean-
ing its check ratio ( # Checks

# Accesses ) is always 1. For BIGFOOT,
the average check ratio is 0.43, and much smaller for some
programs, particularly those in which traversals over large
arrays are covered by a single coalesced check. BIGFOOT’s
check ratio is also substantially lower than that of REDCARD
(0.73), SLIMSTATE (1.0), and SLIMCARD (0.76).

Table 1 shows the base running time for each program and
the overhead of each checker. Overhead is the additional time
beyond the base time necessary to check a program:

CheckerOverhead = CheckerTime− BaseTime
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Figure 8. Check Ratio for FASTTRACK and BIGFOOT, and BIGFOOT’s overhead relative to the FASTTRACK overhead.

Comparison to FASTTRACK BIGFOOT is significantly
faster than the other detectors. As shown in the last column
of Table 1, BIGFOOT incurs only 39% of the overhead
of FASTTRACK. The right-most graph in Figure 8 shows
this improvement visually. BIGFOOT is most effective on
programs exhibiting highly-structured access patterns to large
data sets, and thus low check ratios, such as crypt, moldyn,
montecarlo, and sunflow. Moving checks out of loops
and coalescing them accounts for much of this improvement.
BIGFOOT is also effective on programs with many redundant
checks that can be eliminated altogether, such as sparse.

It is interesting to note that several programs do not follow
the expected trend. For series, the FASTTRACK overhead
of only 1% is mostly due to internal ROADRUNNER book-
keeping, which leaves little opportunity for improvement.
The lufact benchmark performs a triangular array computa-
tion whose array accesses are readily coalesced by BIGFOOT,
resulting in a small check ratio. However, that triangular pat-
tern is not amenable to our online array state compression
algorithm, meaning that the array’s shadow representation be-
comes fine-grained and each coalesced check induces many
shadow location operations.

In other benchmarks, such as h2 and avrora, bookkeep-
ing for synchronization operations accounts for a greater
fraction of checking overhead, diminishing the benefit of op-
timizing memory operations with BIGFOOT. The degraded
performance for tomcat appears to be caused by higher con-
tention on interal ROADRUNNER data structures when using
BIGFOOT.

Field compression via proxies accounted for about 5%
of the savings in general, but over 50% of the savings in
raytracer and sunflow.

Comparison to REDCARD REDCARD eliminates one
form of redundant check [25], namely checks on accesses

where the current thread has already accessed (and checked)
that location within the same release-free span. The BIG-
FOOT check placement algorithm is able to eliminate other
forms of redundancy by both reasoning about anticipated
accesses and moving checks. For example, BIGFOOT can
eliminate more redundant checks and move checks out of
loops, as shown in Figure 6.

REDCARD also performs static proxy analysis, but the
array component crucially depends upon globally-computed
allocation-site points-to information. As such, REDCARD’s
static analysis fails to terminate within four hours on many
benchmarks, as indicated by the † symbol in Table 1. We use
REDCARD’s redundancy analysis without proxies for those
programs. Moreover, imprecisions in the proxy analysis limit
its effectiveness even on small programs.

Overall, the check ratio and overhead reduction for RED-
CARD were 0.73 and 17%, respectively. In contrast, the check
ratio and overhead reduction for BIGFOOT were were 0.43
and 61%. BIGFOOT’s ability to move checks out of loops is
key to achieving this improvement, particularly when coupled
with dynamic array shadow compression.

Comparison to SLIMSTATE SLIMSTATE introduced the
dynamic array compression scheme we use in BIGFOOT, but
its check ratio is 1 because it processes every access at run
time. BIGFOOT offers two crucial improvements: 1) BIG-
FOOT eliminates many redundant checks. 2) While SLIM-
STATE must process every individual array access at run
time to build its footprints, BIGFOOT statically coalesces
array checks where possible, thereby reducing the amount
of run-time footprint processing and eliminating much of
SLIMSTATE’s dynamic footprint construction overhead. BIG-
FOOT’s overhead is less than half of SLIMSTATE’s as a result.
Field compression, and moving field checks out of loops,
contributes to the performance savings as well.
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STATICBF Dynamic Analyses

Methods
Optimized

(count)

Time
Method

(sec)

BIGFOOT
Check
Ratio

Base
Time
(sec)

Time Overhead
(x Base Time)

Time Overhead vs. FT
Program

(
RC
FT

)(
SS
FT

)(
SC
FT

)(
BF
FT

)
FT RC SS SC BF

crypt 148 0.67 0.00000028 0.39 96.21 62.41 16.87 16.11 0.07 (0.65) (0.18) (0.17) (0.01)
series 144 0.10 0.000042 119.39 0.01 0.01 0.01 0.01 0.01 (1.00) (1.00) (1.00) (1.00)
lufact 168 0.15 0.0022 0.68 71.67 74.31 70.53 74.08 39.53 (1.04) (0.98) (1.03) (0.55)
moldyn 172 0.27 0.077 4.67 27.56 8.73 27.18 6.58 2.72 (0.32) (0.99) (0.24) (0.10)
montecarlo 480 0.05 0.085 2.23 7.38 6.81 2.73 2.02 0.08 (0.92) (0.37) (0.27) (0.01)
sparse 140 0.20 0.14 1.27 26.86 22.57 30.78 27.20 6.68 (0.84) (1.15) (1.01) (0.25)
sor 136 0.24 0.25 0.84 13.37 13.03 15.39 13.85 10.73 (0.97) (1.15) (1.04) (0.80)
batik 20,140 0.16 0.29 1.27 3.96 3.92† 4.07 4.06 2.26 (0.99) (1.03) (1.03) (0.57)
raytracer 308 0.07 0.32 1.84 13.46 6.46 12.64 7.72 6.37 (0.48) (0.94) (0.57) (0.47)
tomcat 27,940 0.12 0.50 0.81 2.05 1.49† 2.22 1.56 2.43 (0.73) (1.08) (0.76) (1.19)
sunflow 3,088 0.21 0.52 1.44 25.94 17.13 26.12 20.50 15.14 (0.66) (1.01) (0.79) (0.58)
luindex 4,728 0.07 0.67 0.54 16.35 15.75 19.00 17.64 11.34 (0.96) (1.16) (1.08) (0.69)
pmd 18,604 0.18 0.69 0.93 3.08 2.98† 2.75 2.65 2.38 (0.97) (0.89) (0.86) (0.77)
fop 24,756 0.15 0.73 0.44 6.51 5.12† 5.65 5.54 5.01 (0.79) (0.87) (0.85) (0.77)
lusearch 3,544 0.07 0.74 0.65 19.45 22.79 7.79 7.24 6.57 (1.17) (0.40) (0.37) (0.34)
avrora 9,936 0.04 0.75 7.82 1.45 1.34† 1.46 1.38 1.24 (0.92) (1.01) (0.95) (0.86)
jython 81,140 0.11 0.78 4.97 9.31 9.32† 8.77 8.58 8.28 (1.0) (0.94) (0.92) (0.89)
xalan 13,420 0.05 0.80 0.86 5.68 5.63† 5.62 5.43 4.64 (0.99) (0.99) (0.96) (0.82)
h2 16,748 0.08 0.81 22.60 3.23 3.08† 3.20 3.23 3.07 (0.95) (0.99) (1.00) (0.95)

Mean 0.16 0.43 7.26 6.00 6.03 5.05 2.47 (0.83) (0.83) (0.70) (0.39)

Table 1. Checker performance. Mean STATICBF time and Check Ratios are arithmetic means. Mean checker overheads for
FASTTRACK (FT), REDCARD (RC), SLIMSTATE (SS), SLIMCARD (SC), and BIGFOOT (BF) are geometric means. The †
symbol indicates that REDCARD’s proxy analysis failed to terminate within 4 hours. We turned off that analysis in those cases.

Comparison to SLIMCARD SLIMCARD combines RED-
CARD’s static check elimination and field proxy analysis
with SLIMSTATE’s dynamic array state compression. We did
not include static proxy analysis for arrays in SLIMCARD
because integrating the run-time bookkeeping necessary to
support static array proxies [25] into SLIMSTATE’s analysis
led to worse performance. As a result, SLIMCARD has an
overall check ratio of 76%, which is a few percent higher
than REDCARD’s ratio (73%).

As expected, the combined analysis improves upon SLIM-
STATE by eliminating many redundant checks and incurs only
70% of FASTTRACK’s overhead. However, SLIMCARD still
experiences the same overheads related to the construction
of footprints at run time as SLIMSTATE. Moreover, it can-
not move checks out of loops and coalesce them, which are
crucial for achieving BIGFOOT’s much better performance.
SLIMCARD’s memory overhead did not differ significantly
from SLIMSTATE’s or BIGFOOT’s.

6.3 DYNAMICBF Memory Overhead
While we have focused primarily on running time, we also
report the target program’s memory requirements, as well
as the overheads for each checker in Table 2. Following the
methodology of earlier work [55], we measure memory as the

smallest heap permitting successful execution of the target
program, which we find by iteratively shrinking the JVM’s
maximum heap until the program crashes or fails to terminate
within thrice the time to run with a 64 GB heap.

BIGFOOT, SLIMSTATE, and SLIMCARD reduce space
overhead by about 26–28% when compared to FASTTRACK.
These three tools utilize the same dynamic array compression
scheme. SLIMCARD and BIGFOOT additionally uses field
compression, but while field compression improved time, it
did not lead to sizable space reductions. Inspection of the
programs for which field compression made the greatest
speed difference revealed that there were never sufficiently
many objects with compressed fields alive at the same time
to sizably impact overall space needs.

The limited impact of static compression on space can
also be seen by comparing the space overhead of REDCARD
to FASTTRACK. The only fundamental space difference is
due to REDCARD’s use of compression for field and array
proxies, but again, there is little overall impact.

7. Other Related Work
In addition to REDCARD and SLIMSTATE, described ear-
lier, much work has focused on improving the performance
of dynamic race detection. Many precise tools, such as
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Base
Mem
(MB)

Space Overhead

Program
FT

Base

(
RC
FT

) (
SS
FT

)(
SC
FT

)(
BF
FT

)
crypt 193.76 26.27 (0.97) (0.04) (0.04) (0.04)
series 22.01 4.45 (1.02) (0.58) (0.59) (0.57)
lufact 32.15 10.16 (1.00) (1.10) (1.10) (1.11)
moldyn 16.20 5.44 (0.82) (0.91) (0.80) (0.82)
montecarlo 622.83 3.67 (1.00) (0.30) (0.30) (0.30)
sparse 98.11 5.64 (1.01) (1.44) (1.05) (0.79)
sor 32.12 5.11 (1.00) (1.40) (1.40) (2.48)
batik 44.74 3.78 (0.99) (0.75) (0.95) (1.00)
raytracer 16.42 3.67 (0.96) (0.60) (0.57) (0.60)
tomcat 19.59 4.81 (0.99) (0.98) (0.99) (1.14)
sunflow 10.42 9.50 (0.91) (0.93) (0.88) (0.86)
luindex 6.15 16.3 (0.98) (0.96) (0.96) (0.52)
pmd 30.24 6.02 (1.05) (1.02) (1.03) (1.09)
fop 28.07 6.35 (1.00) (0.98) (0.97) (0.99)
lusearch 12.04 7.00 (1.00) (0.57) (0.57) (0.57)
avrora 2.09 15.22 (1.01) (1.01) (1.01) (1.01)
jython 24.06 5.97 (1.03) (0.96) (0.96) (1.02)
xalan 8.20 11.00 (1.00) (0.84) (0.84) (0.82)
h2 259.71 3.90 (1.06) (1.10) (1.10) (0.93)

Geo Mean 6.84 (0.99) (0.73) (0.74) (0.72)

Table 2. Checker space overhead relative to FASTTRACK.

DJIT+ [40], use vector clocks [35], which are expensive.
FASTTRACK introduced epochs [25] to reduce these over-
heads. A common approach for further reducing overhead
is to use a single shadow location for whole arrays and ob-
jects [9, 13, 23, 39, 40, 51], although this may generate false
alarms, motivating additional technology to see if a reported
warning reflects a real race [11, 21].

Another approach for reducing overheads is to use sam-
pling [8, 20, 22], again with some loss of soundness. Eraser
verifies race-freedom for data that is thread-local, read-shared,
or lock protected [44], and has been extended to produce
fewer false alarms [11, 21, 39, 47, 57].

Several dynamic checkers defer the processing of accesses.
RecPlay [43] records all locations accessed within each
synchronization-free region and then verifies that concurrent
regions access disjoint locations during replay. DRD [17]
and ThreadSanitizer [46] similarly buffer accesses but do not
infer patterns or compress shadow state. Similar buffering is
also common in transactional memory systems [48]. Other
work [49] uses a single shadow location for contiguous
memory locations accessed within the same critical sections.
However, only the first two critical sections accessing a
location are considered, resulting in potential false alarms if
later accesses are not correlated.

Many static analyses for identifying races have also been
explored, including type-based systems [1, 2, 31], model
checking [12, 36, 58] and dataflow analyses [21], as well as

whole-program analyses [37, 53]. Many of the mentioned
static analyses are unsound by design or unsound in their
implementations to reduce the number of spurious warnings
(see, e.g., [1, 21]). Their focus on identifying race-free
accesses rather than redundant checks also lead to different
design choices in terms of precision and scalability.

Gross et al. present a global static analysis to improve the
precision and performance of a LockSet-based detector [52].
It is primarily designed to identify objects on which no races
can occur and requires global aliasing information, as well
as a static approximation of the happens-before graph for
the whole program. Moreover, their reliance on an imprecise
race detector leads their system to both miss races and report
spurious warnings. They also do not support arrays. Choi
et al. present a different global analysis for removing run-
time race checks for accesses guaranteed to be race-free [14].
Their analysis eliminates some redundant checks via a simple
intra-procedural forward analysis.

Properties related to accesses or checks within release-free
spans have been used in other settings. For example, the IFRit
race detector uses similar insights in its notion of interference-
free regions [20], which were originally designed to facili-
tate compiler optimizations for race-free programs [19]. The
IFRit race detector monitors execution and reports a data race
when multiple concurrently executing interference-free re-
gions access the same variable. IFRit prioritizes performance
over precision, and so may possibly miss races (but nicely
guarantees no false alarms). IFRit uses a static analysis to
insert and minimize monitor start/stop calls, which is anal-
ogous to BigFoot’s check insertion algorithm. BIGFOOT’s
approach necessitates a more complex static analysis to en-
sure sufficient precision to perform check motion, and so is
at a different point in the design space.

8. Summary
BIGFOOT leverages our theory of precise check placement
to substantially improve the efficiency of dynamic data race
detection. This work may enable more wide-spread use of
data race detectors, and it opens the door for further studies
on statically optimizing dynamic concurrency analyses.

One interesting direction is to extend our techniques to
compress memory locations across multiple arrays or objects,
which could yield further time and space savings. Another
important avenue for future work is to improve STATICBF’s
performance by adapting it to be modular or incremental and
by tailoring its data structures and decision procedures to the
most common cases encountered in practice.
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BIGFOOT: Static Check Placement for Dynamic Race Detection
Supplementary Appendix

We next prove that the check placement algorithm is correct. In particular it inserts checks so that any generated trace
has precise checks, and so has a data race if and only if there is a check race detected by DYNAMICBF.

• Appendix A formalizes the operational semantics of BFJ.
• Appendix B shows that a trace with precise checks has a data race if and only if it has a check race.
• Appendix C formalizes a GOODCHECKS judgment that satisfies preservation.
• Appendix D shows that the CHECKPLACEMENT algorithm inserts checks satisfying GOODCHECKS.
• Appendix E shows that the programs satisfying the GOODCHECKS judgment generate traces with precise checks.
• Appendix F shows that correctness of BIGFOOT.
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A. Semantics
We specify the operational semantics of BFJ in Figure 9. This semantics evaluates a program by stepping through a sequence of
states. Each state Σ consists of two components: a heap S and a collection of threads T . The heap maps locations to values,
where each location ρ.f or ρ[i] combines an address ρ with a field name f or array index i. The heap also maps each object
address ρ to the thread identifier (or Tid) of the thread holding the object’s lock (or ⊥ if it is not held). The thread set T maps
each thread identifier t ∈ Tid to a thread state 〈σ, s〉 that combines a statement s with a (thread-local) store σ mapping variables
in s to values.

In the context of a set of definitions D, the relation

D ` S · 〈σ, s〉 −→a S′ · 〈σ′, s′〉

models the effect of a single step by thread 〈σ, s〉 on the heap S and the thread’s local state. The Action a captures the heap
operation performed by the step. For example, if thread t accesses location ρ.f , a would be t :acc(ρ.f). The special action t :ε
indicates that a step has no heap effect.

Figure 9 defines the evaluation rules for each statement. In these rules, the heap S[ρ.f := v] is identical to S except that it
maps the location ρ.f to the value v. Similar update operations are used on the other state components. For example, S[ρ := t]
updates S to indicate that the lock for the object at location ρ is held by t. The term σ(e) evaluates an expression e using local
store σ for the values of variables.

The rule [E-CHKSET] unrolls a check on a set of paths to separate checks on each path. The rule [E-CHKINDEX] checks a
strided range of array indices by explicitly checking the first index and generating a new check for the remainder of the strided
range. Rule [E-CHKEMPTY] handles empty strided array indices.

To invoke a method x = y.m(z), we first look up the method m in the program definitions. We then construct a substitution
θ that maps 1) m’s local variables, which are the free variables of s, other than the return result variable r, to fresh names, 2) the
parameters z′ to the arguments z, 3) the self-reference this to y, and 4) the return variable r to x. If s is the method body of m,
θ(s) may be inserted into the evaluation context surrounding the call without variable capture. Moreover, the result of the call is
placed in x, as expected.

The relation D ` Σ→a Σ′ describes a single step of multithreaded program execution. That rule selects an arbitrary thread
t to take a step and updates the global state Σ accordingly. As above, a captures the memory or synchronization operation
performed by the step. We use the notation t :_ to represent an arbitrary action by thread t.

The relation D ` Σ −→α Σ denotes the reflexive-transitive closure of −→a, where the trace α is a sequence of actions
a1.a2 . . . an. Given this definition, D ` Σ→a Σ′ models the arbitrary interleaving of the various threads of a multithreaded
program D.

For a program D s1‖ . . . ‖sn, its initial state is Σ0 = S0 · T0, where

• S0 maps all locations to null and all addresses to ⊥; and
• T0 maps each thread t ∈ 1..n to 〈σ, st〉, where σ assigns a distinct global address to each free variable in s1..n. Thus, free

variables in s1..n implicitly denote potentially thread-shared objects.
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B. Data Races and Check Races
The happens-before relation <α for a trace α is the smallest transitively-closed relation over the operations in α such that the
relation a <α b holds whenever a occurs before b in α and one of the following holds:

• Program order: The two operations performed by the same thread.
• Locking: The two operations acquire or release the same lock.

We introduce the following definitions:

• Two operations are concurrent if they are not ordered by happens before.
• Two accesses conflict if they access the same location.
• Two checks conflict if they check the same location.
• A trace has a data race on a location l if it has a pair of conflicting concurrent accesses to l.
• A trace has a check race on a location l if it has a pair of conflicting concurrent checks on l.
• A check c = t :check(l) covers an access a = t :acc(l) if:

c precedes a with no intervening t :rel(l).

c succeeds a with no intervening t :acq(l).
• A check c = t :check(l) is legitimate for an access a = t :acc(l) if:

c precedes a with no intervening t :acq(l).

c succeeds a with no intervening t :rel(l).
• A trace α has precise checks if each access has a covering check and each check is legitimate for some access.

We start with two technical lemmas that show how the notions of covering and legitimate checks constrain the happens-before
relation for a trace.

Lemma 1. If a trace α has an access a with a covering check c then for any action d by a different thread in α we have that:

1. c <α d⇒ a <α d

2. d <α c⇒ d <α a

Proof. The check c can become either before or after the access in α.

• Case Before:
α = α1.c.α2.a.α3, where α2 has no releases by thread t since check c covers a.
Program order then shows that d <α c⇒ d <α a.
Since α2 does not contain a release by thread t, c <α d⇒ a <α d.

• Case After:
α = α1.a.α2.c.α3, where α2 has no acquires by t since check c covers a
By program order c <α d⇒ a <α d.
Since α2 does not contain an acquire by thread t, d <α c⇒ d <α a.

Lemma 2. If a trace α has a check c that is legitimate for an access a then for any action d by a different thread in α we have:

1. a <α d⇒ c <α d

2. d <α a⇒ d <α c

Proof. The proof is similar to the above lemma.

We next show that the notion of covering checks guarantees no missed races (false negatives), and the notion of legitimate
checks guarantees no false alarms (false positives).
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Lemma 3. Let l be a location and suppose each access to l in α has a covering check. If α has no check race on l then α has no
data race on l.

Proof. Let t : acc(l) and u : acc(l) be two accesses in α whose covering checks are not racy. Without loss of generality
we assume t : check(l) <α u : check(l). By Lemma 1(1), t : acc(l) <α u : check(l), and hence by Lemma 1(2)
t :acc(l) <α u :acc(l), so the accesses are race-free.

Lemma 4. Let l be a location and suppose each check in α on l is legitimate for some access. If α has a check race on l then α
has a data race on l.

Proof. Suppose α has two race-free accesses t : acc(l) and u : acc(l), where t : acc(l) <α u : acc(l). Each access
has a covering check t : check(l) and u : check(l). By Lemma 2(1), t : check(l) <α u : acc(l). By Lemma 2(2),
t :check(l) <α u :check(l).

By combining these ideas of covering and legitimate checks, we prove that a trace with precise checks has a check race if and
only if the trace has a data race (and therefore running a dynamic race detector with these checks will report a race if and only if
there is a data race).

Theorem B.1. Suppose α has precise checks. Then for all locations l, α has a check race on l if and only if α has a data race on
l.

Proof. By the application of Lemma 3 and 4.
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C. GOODCHECKS Judgment
Studies of type systems typically separate the problems of type inference and type checking. In our setting, we also separate
the problems of inferring where to place checks and verifying that check placement is precise. BIGFOOT’s check placement
judgment shown in Figure 7 performs the former; the “good checks" judgment presented in this section performs the later. We
refer to those judgments as CHECKPLACEMENT and GOODCHECKS, respectively.

The GOODCHECKS rules shown in Figure 10 include a subsumption rule [CC-SUB], and so it is not a syntax-directed
algorithm like CHECKPLACEMENT; instead it is a mathematical definition designed to satisfy the usual preservation property
plus other correctness properties discussed below regarding precise race detection.

The CHECKPLACEMENT algorithm uses both a history context H and anticipated context A to represent the forwards and
backwards analysis. GOODCHECKS combines these two to form a single context Π = H ∪A. We define the entailment relation
Π ` h from a context Π = H ∪A as simply H ` h. The GOODCHECKS rules are defined as follows:

• [CC-SKIP], [CC-NEW], and [CC-ANEW] do not change the context and always succeed.
• [CC-ASSIGN] adds a new constraint representing the assignment to the post-context.
• [CC-CHK] adds the checked paths (C

√
) to the post context. It only succeeds if each path p to check has already been accessed.

This condition prevents false positives by preventing checking locations which have not yet been accessed. We always delay
checks and never bring them forward so a location must have been accessed in order to be checked.

• [CC-READ] removes any anticipated accesses to y.f and adds an access to y.f . Removing the anticipated access is safe
because we are adding in an access to the same location.

• [CC-WRITE] also removes any anticipated accesses to y.f and adds in an access to y.f .
• [CC-AREAD] and [CC-AWRITE] are similar to the above.
• [CC-SEQ] allows for the chaining of two statements with the post-context of the first becoming the pre-context of the second.
• [CC-IF] checks both the then and the else branches using the pre-context along with the information gained about be. The

resulting post-contexts must match and are used for the post-context of the whole expression. Rule [CC-SUB] below can be
used to bring the two post-contexts into alignment.

• [CC-LOOP] enters the loop with a context of Πinv. Statement s1 is checked with this context and produces a new context
Π1 ∪ {¬be}. Statement s2 is then checked with Π1 ∪ {¬be} and produces the post context Πinv which can safely check s1.
Upon exiting the loop s1 has run and the be is true so the resulting post-context is Π1 ∪ {be}.

• [CC-ACQ] does not change the context. However, it does check that all accesses in the context have already been checked (as
checking them after acquiring the lock may cause a false negative). It also checks that there are no anticipated accesses in the
context as in the backward analysis the anticipated accesses can not be safely moved before an acquire.

• [CC-REL] removes all history information from the context except boolean expressions. We must remove accesses and checks
as the checks made so far are only valid while the lock about to be released is held. For every variable that has been accessed
but not checked yet there must be an anticipated access in the post context. This constraint allows the delaying of checks
outside of critical sections but only when a later access can be guaranteed.

• [CC-CALL] does not modify the context and requires that it not contain any items in the kill set of that method. All accesses
which may be killed in the method must be checked before the call. We can use [CC-SUB], shown below, to remove checked
access that may be killed but we can not use subsumption to remove unchecked accesses so the analysis remains sound.

• [CC-SUB] allows us to conservatively approximate contexts according to the following context ordering:

(H1 ∪A1) � (H2 ∪A2) iff


H1 w H2

H1 ` A1 v A2

∀p� ∈ H1. (H2 ` p�) ∨ (H1 ` p
√

) ∨ (H2•A2 ` p3)

Run-Time States We introduce the rules shown in Figure 11 to extend the GOODCHECKS relation to run-time states. The
judgment σ;α t h determines when a history property h holds in a given thread-local store σ of thread t. The execution history
α is used to validate past checks and accesses in h. The judgment σ;α t Π extends the previous judgment to contexts, and
ensures (via C1) each check in α has a legitimizing previous access in α, and also each access in α either 1) has a covering
check in α (via A1 or A2) or 2) the context Π records a corresponding past or anticipated access (via A3).
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We assume x 6∈ Vars(Π) in [CC-NEW], [CC-ASSIGN], [CC-READ], [CC-AREAD], [CC-ANEW], [CC-RENAME], [CC-CALL].

 s : Π→ Π′

[CC-SKIP]

 skip : Π→ Π

[CC-ASSIGN]
Π′ = Π ∪ {x = e}
 x = e : Π→ Π′

[CC-RENAME]
Π′ = H[y := x] ∪A

 x← y : H ∪A[x := y]→ Π′

[CC-CHK]
∀p ∈ C. Π ` p�

 check(C) : Π→ Π ∪ C
√

[CC-NEW]

 x = new c : Π→ Π

[CC-READ]

Π′ = Π \ {y.f3} ∪ {y.f�}
 x = y.f : Π→ Π′

[CC-WRITE]

Π′ = Π \ {y.f3} ∪ {y.f�}
 y.f = x : Π→ Π′

[CC-ANEW]

 x = new c : Π→ Π

[CC-AREAD]
Π′ = Π \ {y[z]3} ∪ {y[z]�}

 x = y[z] : Π→ Π′

[CC-AWRITE]
Π′ = Π \ {y[z]3} ∪ {y[z]�}

 y[z] = x : Π→ Π′

[CC-SEQ]
 s1 : Π→ Π1

 s2 : Π1 → Π2

 s1; s2 : Π→ Π2

[CC-IF]
 s1 : Π ∪ {be} → Π′

 s1 : Π ∪ {¬be} → Π′

 if be s1 s2 : Π→ Π′

[CC-LOOP]
 s1 : Πinv → Π1

 s2 : Π1 ∪ {¬be} → Πinv

 loop{ s1; { if be break }; s2 } : Πinv → Π1 ∪ {be}

[CC-ACQ]
∀p. p3 6∈ Π

∀p. p� ∈ Π⇒ Π ` p
√

 acq(x) : Π→ Π

[CC-REL]

∀p. p� 6∈ Π and p
√
6∈ Π

 rel(x) : Π→ Π

[CC-CALL]
Π ∩KillSetHistory(m) = ∅

Π ∩KillSetAnticipated(m) = ∅
 x = y.m(z) : Π→ Π

[CC-SUB]
 s : Π′

1 → Π′
2

Π1 � Π′
1

Π′
2 � Π2

 s : Π1 → Π2

 meth  D  s  D s

[CC-METHOD]

 s

 m(x){s; return z}

[CC-CLASS]

∀meth ∈ meth.  meth

 class c{f meth}

[CC-STMT]

 s : ∅ → ∅
 s

[CC-PROGRAM]
∀D ∈ D.  D
∀i.  si

 D s1‖ . . . ‖sn

Figure 10. GOODCHECKS Rules.

We extend the store σ to map paths (used by the static analysis) to sets of locations (used by the dynamic semantics) as
follows:

σ(x.f) = { σ(x).f }
σ(x[e1..e2 :e3]) = { p[j] : p = σ(x),

j = σ(e1) + i σ(e3),
σ(e1) ≤ j < σ(e2) }

The rules [CC-THREAD] and [CC-STATE] then extend this well-formedness criteria to threads and states, respectively. Note
that [CC-STATE] does not constraint the heap S in any way, since we do not reason about heap contents statically. If we were to,
for example, include alias assumptions in our core analysis, then we would need to ensure that all of our alias assumptions are
true for S.
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D;α  Σ D;α t 〈σ, s〉
[CC-STATE]

∀D ∈ D.  D
∀t ∈ Tid. D;α t T (t)

D;α  S · T

[CC-THREAD]
σ;α t Π

 s : Π→ ∅
D;α t 〈σ, s〉

σ;α t Π

[CC-CONTEXT]
∀h ∈ Π. σ;α t h

Each t :check(l) in α is preceded by t :acc(l) with no intervening t :rel(_) (C1)

Each t :acc(l) in α is

 preceded by t :check(l) with no intervening t :rel(_) or
followed by t :check(l) with no intervening t :acq(_) or
not followed by t :acq(_) and ∃p. (l ∈ σ(p) and (p3 ∈ Π or p� ∈ Π))

(A1)
(A2)
(A3)

σ;α t Π

σ;α t h

[CC-BOOLEXP]

σ(be) = true
σ;α t be

[CC-PASTACCESS]

∀l ∈ σ(p).

(
α = α1.t : acc(l).α2

α2 does not contain t : rel(ρ)

)
σ;α t p�

[CC-PASTCHECK]

∀l ∈ σ(p).

(
α = α1.t : check(l).α2

α2 does not contain t : rel(ρ)

)
σ;α t p

√

Figure 11. GOODCHECKS rules for Runtime States.
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D. Correctness of CHECKPLACEMENT

Any program satisfying the CHECKPLACEMENT judgment will satisfy the GOODCHECKS judgment.

Lemma 5. If ` D s1‖ . . . ‖sn then  D s1‖ . . . ‖sn.

Proof. Follows from Lemma 6.

Lemma 6. If ` s then  s.

Proof. If ` s then s = s′; check(C) where ` s′ : ∅•A→ H•∅ and C = Checks(H, ∅) from [STMT]. Hence  s′ : A→ H
by Lemma 7 so  s : A→ H ∪ C

√
by [CC-SEQ], and so by [CC-SUB]  s : ∅ → ∅, and hence  s.

Lemma 7. If ` s : H•A′ → H ′•A then ( s : H ∪A′ → H ′ ∪A).

Proof. By induction on the derivation of (` s : H•A′ → H ′•A) and case analysis on the rule concluding that derivation.

• [ASSIGN] where s = (x = e): In this case we have

` x = e : H•A[x := e]→ H ∪ {x = e}•A

where x 6∈ Vars(e,H). Rule [CC-ASSIGN] gives us

 x = e : H ∪A[x := e]→ H ∪ {x = e} ∪A[x := e]

Finally, H ∪A[x := e] ∪ {x = e} � H ∪ {x = e} ∪A by our assumption about entailment, so by [CC-SUB]

 x = e : H ∪A[x := e]→ H ∪ {x = e} ∪A

as required.

• [RENAME] where s = (x← y): In this case we have

` x← y : H•A[x := y]→ H[y := x]•A

where x 6∈ Vars(H). Rule [CC-ASSIGN] gives us the desired

 x← y : H ∪A[x := y]→ H[y := x] ∪A

• [WRITE] where s = (y.f = x): In this case we have

` y.f = x : H•A ∪ {y.f3} → H ∪ {y.f�}•A

Rule [CC-WRITE] gives us
 y.f = x : H ∪A ∪ {y.f3} → H ∪A ∪ {y.f�}

• [READ] where s = (x = y.f) : In this case we have

` x = y.f : H•A \ x ∪ {y.f3} → H ∪ {y.f�}•A

Rule [CC-READ] gives us

 x = y.f : H ∪A \ x ∪ {y.f3} → H ∪ {y.f�} ∪A \ y.f3

Finally, H ∪ {y.f�} ∪A \ y.f3 � H ∪ {y.f�} ∪A so by [CC-SUB] we reach our desired

 x = y.f : H ∪A \ x ∪ {y.f3} → H ∪ {y.f�} ∪A
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• [SKIP] where s = skip: Skip does not modify or place restrictions on the context in either GOODCHECKS or
CHECKPLACEMENT and so is trivial.

• [NEW] where s = (x = new c): In this case we have

` x = new c : H•A \ x→ H•A

where x 6∈ Vars(H). Rule [CC-NEW] gives us

 x = new c : H ∪A \ x→ H ∪A \ x

Finally, H ∪A \ x � H ∪A so by [CC-SUB]

 x = new c : H ∪A \ x→ H ∪A

• [A-NEW], [A-WRITE], and [A-READ] follow the same proofs as [NEW], [WRITE], and [READ].
• [ACQ] where s = check(C); acq(x): In this case we have

` check(C); acq(x) : H•∅ → H ∪ C
√
•A

where C = Checks(H, ∅). Rule [CC-CHK] gives us

 check(C) : H → H ∪ C
√

and requires that ∀p ∈ C. H ` p� which holds by the construction of C. Next [CC-ACQ] gives us

 acq(x) : H ∪ C
√
→ H ∪ C

√

and requires that ∀p. p3 6∈ H ∪ C
√

, which is trivially true, and ∀p. p� ∈ H ∪ C
√
⇒ H ∪ C

√
` p

√
which is true by the

construction of C. Finally, H ∪ C
√
� H ∪ C

√
∪A and so by [CC-SUB] and [CC-SEQ] we have the desired

 check(C); acq(x) : H → H ∪ C
√
∪A

• [REL] where s = check(C); rel(x): In this case we have

` check(C); rel(x) : H•A→ H \ {_
√
, _�}•A

where C = Checks(H,A). GOODCHECKS gives us

 check(C) : H ∪A→ H ∪A ∪ C
√

and requires that ∀p ∈ C. H ` p� which it does by the construction of C.
H ∪A ∪ C

√
� H \ {_

√
, _�} ∪A because we will never remove an access p� where p

√
6∈ H ∪ C

√
. Thus by [CC-SUB]

we have that
 check(C) : H ∪A→ H \ {_

√
, _�} ∪A

and by [CC-REL] and the fact that ∀p. p� 6∈ H \ {_
√
, _�} and p

√
6∈ H \ {_

√
, _�} we have

 rel(x) : H \ {_
√
, _�} ∪A→ H \ {_

√
, _�} ∪A

Finally, by [CC-SEQ] we have the desired

 check(C); rel(x) : H ∪A→ H \ {_
√
, _�} ∪A
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• [IF] where s = if be (s1; check(C1)) (s2; check(C2)): In this case we have

` if be (s1; check(C1)) (s2; check(C2)) : Hin•Ain → Hout•Aout
` s1 : Hin ∪ {be}•Ain → H ′

1•Aout
` s2 : Hin ∪ {¬be}•Ain → H ′

2•Aout

C1 = Checks(H ′
1, H

′
1 uH ′

2, Aout)
C2 = Checks(H ′

2, H
′
1 uH ′

2, Aout)
Ain = H1•A1 uH2•A2

Hout = (H ′
1 ∪ C

√

1 ) u (H ′
2 ∪ C

√

2 )

In order to conclude

 if be (s1; check(C1)) (s2; check(C2)) : Hin ∪Ain → Hout ∪Aout

We need to show that
 s1; check(C1) : Hin ∪Ain ∪ {be} → Hout ∪Aout

 s2; check(C2) : Hin ∪Ain ∪ {¬be} → Hout ∪Aout

By induction, [CC-CHK], and [CC-SEQ] we have

 s1; check(C1) : Hin ∪Ain ∪ {be} → H ′
1 ∪ C

√

1 ∪Aout

 s2; check(C2) : Hin ∪Ain ∪ {¬be} → H ′
2 ∪ C

√

2 ∪Aout

Finally by [CC-SUB]
 s1; check(C1) : Hin ∪Ain ∪ {be} → Hout ∪Aout

 s2; check(C2) : Hin ∪Ain ∪ {¬be} → Hout ∪Aout

• [SEQ] where s = s1; s2: This case holds trivial by induction.

• [CALL] where s = (check(C);x = y.m(z)): In this case we have

` check(C);x = y.m(z) : H•A→ H ′•A′

such that
C = Checks(H,H \KillSetHistory(m), A)

= {p : p� ∈ H,H \KillSetHistory(m) 6` p�, H•A 6` p3}
H ′ = (H ∪ C

√
) \KillSetHistory(m)

A = A′ \ x \KillSetAnticipated(m)

By [CC-CHECK]
 check(C) : H ∪A→ H ∪ C

√
∪A

By [CC-CALL]
 x = y.m(z) : H ′ ∪A→ H ′ ∪A

Also H ′ ∪A � H ′ ∪A′.
Finally, we need to show

H ∪ C
√
∪A � H ′ ∪A = (H ∪ C

√
) \KillSetHistory(m) ∪A

and in particular that
∀p� ∈ H. H ′ ` p� or H ′•A ` p3
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If C
√
6` p

√
then H \KillSetHistory(m) ` p� or H ∪C

√
` p

√
or H ′•A ` p3 and so the desired context ordering follows.

Hence

 check(C) : H ∪A→ H ∪ C
√
∪A

H ∪ C
√
∪A � H ′ ∪A

 x = y.m(z) : H ′ ∪A→ H ′ ∪A
H ′ ∪A � H ′ ∪A′

• [LOOP] where s = check(Cin); loop{ s1; { if be break }; check(Cback) }: In this case we have the following:

` s : Hin•Ain → Hout•Ainv
` s1 : Hinv•Ain → H•Ainv
Hback = H ∪ {¬be}
Hout = H ∪ {be}
Cin = Checks(Hin, Hinv, Ain)

Hin ∪ C
√

in w Hinv

Cback = Checks(Hback, Hinv, Ain)

Hback ∪ C
√

back w Hinv

By induction,
 s1 : Hinv ∪Ain → H ∪Ainv

Also, by [CC-CHK],
 check(Cback) : Hback ∪Ainv → Hback ∪Ainv ∪ C

√

back

Also, Hback ∪Ainv ∪ C
√

back � Hinv ∪Ain. Hence by [CC-LOOP]

 check(Cin); loop{ s1; { if be break }; check(Cback) } : Hinv ∪Ain → Hout ∪Ainv

This case concludes via [CC-SEQ] and [CC-SUB] based on:

Hout ∪Ainv � Hout ∪Aout
 check(Cin) : Hin ∪Ain → Hin ∪Ain ∪ C

√

in

Hin ∪Ain ∪ C
√

in � Hinv ∪Ain

Assumption 1 (Entailment Assumptions). We rely on the following assumptions about the entailment relationship.

1. H•A ` p3 is monotonic in H and A.
2. H ` h is monotonic in H .
3. {x = e}•{p3} ` p[x := e]3

4. {x = e}•{p[x := e]3} ` p3
5. {h} ` h
6. H•A ` p3 only depends on boolean expressions in H
7. {x[e1]

√
, x[(e1 + e3)..e2 :e3]

√
} ` x[e1..e2 :e3]

√
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E. Correctness of GOODCHECKS

We now show that if a program has passed GOODCHECKS then the program generates traces that have precise checks.

Definition E.1. A state Σ is terminated if all threads are skip.

Theorem E.1 (Correctness of GOODCHECKS). If D; ε  Σ0 and D  Σ0 −→α Σ′ and Σ′ is terminated then α has precise
checks.

Proof. By the Preservation Theorem, we have that D;α  Σ′ where Σ′ = S · T . Pick any thread t, and let 〈σ, skip〉 = T (t).
By [CC-STATE] and [CC-THREAD], D;α t 〈σ, skip〉 where σ;α t Π and  skip : Π → ∅ for some Π � ∅. Hence
[CC-CONTEXT] implies that (from C1) each check by t has a preceding legitimizing access. Moreover, since Π � ∅, from the
definition of � we know that Π has no anticipated access, and ∀p� ∈ Π we have that Π ` p

√
.

Consider any access t :acc(l) in α, which must satisfy one of the antecedents A1, A2, A3 in [CC-CONTEXT]. If the access
satisfies A1 or A2, then it clearly has a covering check. If the access satisfies A3, then, since Π has no anticipated accesses,
∃p. σ(p) = l and p� ∈ Π. Then, from above, Π ` p

√
, and so by [CC-PASTCHECK] α contains a check covering the access.

Hence, α has precise checks.

In order to prove the above induction we must prove that evaluation preserves well-formed states.

Theorem E.2 (Preservation). If D;α  Σ and Σ −→a Σ′ then D; (α.a)  Σ′.

Proof. Suppose the action a is performed by thread t. From the rule [CC-STATE] and the definition of our transition relation, we
have:

 D ∀D ∈ D
D;α i T (i) ∀i ∈ Tid
Σ = S · T [t := 〈σ, s〉]
Σ′ = S′ · T [t := 〈σ′, s′〉]
D ` S · 〈σ, s〉 −→a S′ · 〈σ′, s′〉

In addition, for any thread T (i) = 〈σi, si〉, rule [CC-THREAD] requires that there is a Πi such that:

σi;α i Πi

 si : Πi → ∅

If i 6= t, then an inspection of [CC-CONTEXT] shows that σi;α.a i Πi, and hence D; (α.a) i T (i). For thread t, from Lemma
8 below we have that there exists Π3 such that

 s′ : Π3 → ∅
σ′;α.a t Π3

Hence D; (α.a) t 〈σ′, s′〉. Finally, D; (α.a)  Σ′ then follows by rule [CC-STATE].

To prove the above we must prove preservation for an individual thread step. Given a well formed thread state, if we take one
step of evaluation the thread state remains well-formed.

Lemma 8 (Preservation for Statements). If ∀D ∈ D.  D and a is an action by thread t and

 s : Π1 → Π2

σ;α t Π1

D ` S · 〈σ, s〉 −→a S′ · 〈σ′, s′〉

then there exist Π3 such that:
 s′ : Π3 → Π2

σ′; (α.a) t Π3

Proof. By induction on the derivation of  s : Π1 → Π2 and case analysis on the rule used to conclude that derivation.

• [CC-IF] where s = if be s1 s2: There are two cases:
if σ(be) = true:
s′ = s1, σ

′ = σ, a = t :ε Via Evaluation
Let Π3 = Π1 ∪ {be}
σ;α t Π1 Given
Need to show σ;α t Π1 ∪ {be} as σ(be) = true
Need to show  s1 : Π1 ∪ {be} → Π2 Shown via [CC-IF]
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If σ(be) = false:
The false case is similar.

• [CC-REL] where s = rel(x): In this case,
s = rel(x)
Π2 = Π1

∀p. p� 6∈ Π1, p
√
6∈ Π1

s′ = skip
a = t :rel(p)
σ′ = σ

Let Π3 = Π1. We have  s′ : Π1 → Π1 via [CC-SKIP].
Since Π1 does not contain prior accesses or checks, it only contains boolean expressions, and so ∀h ∈ Π1 from σ;α t h we
can conclude σ;α.a t h. Also, properties C1, A1, A2, A3 are not invalidated by adding a to α so we conclude σ;α.a t Π1

as required.
• [CC-ACQ] where s = acq(x): In this case,

Π2 = Π1 Via [CC-ACQ]
∀p. p3 6∈ Π1 Via [CC-ACQ]
∀p. p� ∈ Π1 ⇒ Π1  p

√
Via [CC-ACQ]

a = t :acq(ρ) Via Evaluation
s′ = skip, σ′ = σ Via Evaluation
Let Π3 = Π2

 s′ : Π2 → Π2 Shown via [CC-SKIP]
We must show σ; (α.a) t Π1.
For all h ∈ Π1, we have σ; (α) t h and hence σ; (α.a) t h as a is not a release.
Since Π1 does not contain any anticipated access, the requirements C1, A2, A2, and A3 on α also hold for α.a. Hence
σ; (α.a) t Π1.

• [CC-CHK] where s = check(C)
There are four evaluation rules for s.

[E-CHKFIELD] where s = check({x.f}).
In this case,
s′ = skip, σ′ = σ Via Evaluation
a = t :check(σ(x).f) Via Evaluation
Π1 ` x.f� Via [CC-CHK]
Π2 = Π1 ∪ {x.f

√
} Via [CC-CHK]

Let Π3 = Π2

 s′ : Π2 → Π2 Via [CC-SKIP]
It remains to show σ;α.a t Π2.
Clearly σ;α.a t x.f

√
and so ∀h ∈ Π2. σ;α.a t h.

Since we are adding t : check(σ(x).f) to α, we need to show by C1 there was a t : acc(σ(x).f) in α with no later
release, which is already guaranteed by σ;α t x.f�.
Hence we conclude σ;α.a t Π2.
[E-CHKSET] where C = {p1, . . . , pn}.
In this case,
s′ = check({p1}); . . . ; check({pn}) Via Evaluation
σ′ = σ Via Evaluation
a = t :ε Via Evaluation
Let Π3 = Π1

From  s : Π1 → Π2 we clearly have  s′ : Π1 → Π2 and σ;α.a t Π1.
[E-CHKEMPTY] where C = x[e1..e2 :e3] and σ(e1) ≥ σ(e2).
We have
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s′ = skip Via Evaluation
σ′ = σ Via Evaluation
a = t :ε Via Evaluation
Π2 = Π1 ∪ {x[e1..e2 :e3]

√
} Via [CC-CHK]

Let Π3 = Π2

 s′ : Π2 → Π2 Via [CC-SKIP]
We need to show σ;α.a t Π2, which reduces to showing σ;α.a t x[e1..e2 :e3]

√
, which holds via [CC-PASTCHECK]

as σ(x[e1..e2 :e3]) is empty.
[E-CHKINDEX] where C = {x[e1..e2 :e3]}.
We have
ρ = σ(x) Via Evaluation
i = σ(e1) Via Evaluation
i < σ(e2) Via Evaluation
s′ = check({x[(e1 + e3)..e2 :e3]}) Via Evaluation
σ′ = σ Via Evaluation
a = t :check(ρ[i]) Via Evaluation
Π2 = Π1 ∪ {x[e1..e2 :e3]

√
} Via [CC-CHK]

Let Π3 = Π1 ∪ {x[e1]
√
}

Clearly σ;α.a t x[e1]
√

.
Since we are adding check a to the trace, we need to show by C1 there was a corresponding access t :acc(ρ[i]) in α with
no later release, which is already guaranteed by σ;α t x[e1..e2 :e3]�.
Hence we conclude σ;α.a t Π2.
Also, we have  s′ : Π1 ∪ {x[e1]

√
} → Π1 ∪ {x[e1]

√
} ∪ {x[e1 + e3..e2 : e3]

√
} via [CC-CHK], which via [CC-SUB]

gives  s′ : Π3 → Π2 as required.
• [CC-CALL] where s = (x = y.m(z)): In this case,

D  m(x){sm; return r} Via [CC-CALL]
x 6∈ Vars(Π1, e)
s′ = θ(sm) Via Evaluation
θ = {z′ := z, this := y, r := x} Via [CC-CALL]
Π ∩KillSetHistory(m) = ∅ Via [CC-CALL]
Π ∩KillSetAnticipated(m) = ∅ Via [CC-CALL]
σ′ = σ, a = t :ε Via Evaluation
Let Π3 = Π1 = Π2 = Π
Need to show σ;α.a t Π Given
Need to show  sm : Π→ Π
 sm : ∅ → ∅ Via [CC-METHOD] and [CC-STMT]
 θ(sm) : ∅ → ∅ Via Lemma 10
 sm : ∅ ∪Π→ ∅ ∪Π Via Lemma 9

• [CC-LOOP] where s = L:
L = loop{ s1; { if be break }; s2 }
s′ = s1; if be skip {s2;L} Via Evaluation
σ′ = σ, a = t :ε Via Evaluation
Π′ = Π2 \ {be}
 s1 : Π1 → Π′ Via [CC-LOOP]
 s2 : Π′ ∪ {¬be} → Π1 Via [CC-LOOP]
Let Π3 = Π1

Need to show σ;α.a t Π1 Given
Π2 = Π1 ∪ {be} Via [CC-LOOP]
Need to show  s′ : Π1 → Π′ ∪ {be}
 L : Π1 → Π′ ∪ {be} Given
 s2;L : Π′ ∪ {¬be} → Π′ ∪ {be} Via [CC-SEQ]
 skip : Π′ ∪ {be} → Π′ ∪ {be} Via [CC-SKIP]
 if be skip (s2;L) : Π′ → Π′ ∪ {¬be} Via [CC-SEQ] and [CC-SUB]
 s′ : Π1 → Π′ ∪ {be} Via [CC-SEQ]
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• [CC-SEQ] where s = s1; s2: There are two cases:
If s1 = skip:
S′ = s2, σ

′ = σ, a = t :ε Via Evaluation
Let Π3 = Π1

Need to show  s2 : Π1 → Π2 Shown via [CC-SEQ]
Need to show σ;α t Π1 Given

If s1 6= skip:
D ` S · 〈σ, s1〉 −→a S′ · 〈σ′, s′1〉 Via Evaluation
 s1 : Π1 → Π′ Via [CC-SEQ]
 s2 : Π′ → Π2 Via [CC-SEQ]
σ;α t Π1 Given
 s′1 : Π4 → Π′ Via inductive hypothesis
σ; (α.a) t Π4 Via inductive hypothesis
Let Π3 = Π4

Need to show σ; (α.a) t Π4 Shown via induction above
Need to show  s′1; s2 : Π3 → Π2 Shown via application of [CC-SEQ]

• [CC-READ] where s = (x = y.f):
Π2 = (Π1 \ {y.f3}) ∪ {y.f�} Via [CC-READ]
x 6∈ Vars(Π1, e)
s′ = skip, σ′ = σ[x := v], v = S(σ(y.f)) Via Evaluation
Let Π3 = Π2

Need to show  s′ : Π2 → Π2 Shown via [CC-SKIP]
a = t :acc(y.f) Via Evaluation
Need to show σ′; (α.a) t (Π1 \ {y.f3}) ∪ {y.f�})

All actions in α proved by A3 are still proved because we have removed y.f3 but added in a y.f�. Clearly σ;α.a t y.f�.
a is proved by A3 because y.f� ∈ Π3. All history properties in Π1 remain proved in σ′ as x 6∈ Vars(Π1).

• [CC-AREAD] where s = (x = y[z]): The proof is similar to above.
• [CC-WRITE] where s = (y.f = x):

Π2 = Π1 \ {f, y.f3} ∪ {y.f�, x = y.f} Via [CC-WRITE]
s′ = skip, σ′ = σ Via Evaluation
Let Π3 = Π2

Need to show  s′ : Π2 → Π2 shown via [CC-SKIP]
a = t :acc(y.f) Via Evaluation
Need to show σ′; (α.a) t Π2

All actions in α proved by A3 are still proved because we have removed y.f3 but added in a y.f�. Those proved by A1, A2,
and C1 do not change because we have not changed α. Clearly σ;α.a t y.f�. a is proved by A3 because y.f� ∈ Π3.

• [CC-AWRITE] where s = (y[z] = x): The proof is similar to above.
• [CC-NEW] where s = (x = new c):

Π2 = Π1 [CC-NEW]
x 6∈ Vars(Π1, e)
σ′ = σ[x := ρ] Via Evaluation
s′ = skip, a = t :ε Via Evaluation
Let Π3 = Π2

Need to show  s′ : Π2 → Π2 Shown via [CC-SKIP]
Need to show σ′;α t Π1 Given

• [CC-ANEW]: The proof is similar to above.
• [CC-ASSIGN] where s = (x = e):

s′ = skip, σ′ = σ[x := v], a = t :ε, v = σ(e) Via Evaluation
x 6∈ Vars(Π1, e)
Π2 = Π1 ∪ {x = e} Via [CC-ASSIGN]
Let Π3 = Π2

Need to show  s′ : Π2 → Π2 Shown via [CC-SKIP]
Need to show σ′;α t Π1 ∪ {x = e} Shown via what is given and the new constraint is true based on σ′
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• [CC-RENAME] where s = (x← y):
s′ = skip, σ′ = σ[x := σ(y)], a = t :ε Via Evaluation
x 6∈ Vars(Π1)
Π1 = H ∪A[x := y]
Π2 = H[y := x] ∪A Via [CC-RENAME]
Let Π3 = Π2

Need to show  s′ : Π2 → Π2 Shown via [CC-SKIP]
Need to show σ′;α t Π2 Shown via x 6∈ Vars(Π1) and σ(y) = σ′(x)

We now state several technical lemmas used in the arguments above. We extend the functions KillSetAnticipated and
KillSetHistory from method names to statements in the expected manner.

Lemma 9 (Extension). If  s : Π1 → Π2 and Π′ = Π \ KillSetHistory(s) \ KillSetAnticipated(s) then  s : Π1 ∪ Π′ →
Π2 ∪Π′.

Proof. By induction on the derivation of  s : Π1 → Π2 and case analysis on the rule used to conclude that derivation.

• [CC-SKIP], [CC-NEW], [CC-ASSIGN]: These rules have no constraints on their input and output Π so the proof holds trivially.
• [CC-ACQ]:

Π1 = Π2 [CC-ACQ]
∀p. p3 6∈ Π1 [CC-ACQ]
∀p. p� ∈ Π1 ⇒ Π1  p

√
[CC-ACQ]

Need to show ∀p. p3 6∈ (Π1 ∪Π′) [CC-ACQ]
∀p. p3 6∈ Π′ Because an acquire kills p3

Need to show ∀p. p� ∈ (Π1 ∪Π′)⇒ (Π1 ∪Π′)  p
√

[CC-ACQ]
∀p. p� 6∈ Π′ Because an acquire kills p�

• [CC-REL] where s = rel(x): In this case Π1 = Π2 and ∀p. p� 6∈ Π1, p
√
6∈ Π1

A release kills past checks and acquires, so ∀p. p� 6∈ Π′ and p
√
6∈ Π′. Hence  s : Π1 ∪Π′ → Π2 ∪Π′ as required.

• [CC-READ], [CC-WRITE], [CC-AREAD], [CC-AWRITE]: The only restriction is that the resulting Πf must contain no y.f3

and must contain y.f�. Unioning with Π′ can also not remove y.f� so that condition is met. If Π′ adds in a y.f3 then by
[CC-SUB] the rule still holds as the resulting Πf is greater then the original.

• [CC-IF], [CC-SEQ], [CC-LOOP]: By induction.
• [CC-CALL], [CC-SUB]: All requirements involving subterms are proved by induction. The only remaining requirements are

proved because Π1 � Π2 ⇒ (Π1 ∪Π) � (Π2 ∪Π).
• [CC-CHECK]: If Π1  p� then Π1 ∪Π′  p�.

Lemma 10 (Substitution). If  s : Π1 → Π2 and θ : Var→ Var is a permutation on variables, then  θ(s) : θ(Π1)→ θ(Π2).

Proof. Proof is by induction on the derivation of  s : Π1 → Π2.

F. Correctness of BIGFOOT

Theorem F.1 (Correctness). Suppose P = D s1‖ . . . ‖sn is a program with inserted checks (i.e. ` P ) that generates a trace α
via

D ` Σ0 −→α Σ

where Σ0 is the initial state for P and Σ is terminated. Then α has a data race on a location l if and only if α has a check race on
that location.

Proof. By Lemma 5, we have that  D s1‖ . . . ‖sn. Lemma 11 implies that D; ε  Σ0. By Theorem E.1, α has precise checks.
Finally, Theorem B.1 shows that α has a data race on location l if and only if it has a check race on l.

Lemma 11. If P = D s1‖ . . . ‖sn,  P , and Σ0 = S0 · T0 is the initial state for P , then D; ε  Σ0.
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Proof. By definition, T0 maps each t ∈ 1..n to 〈σ, st〉, where Dom(σ) = FV (s1) ∪ . . . ∪ FV (sn). Since  P can only be
derived via [CC-PROG], it must be that ∀D ∈ D.  D. Also, we have that σ; ε t ∅ via [CC-CTXT]. Consider any t. Since ` P ,
we know that ` st via [PROGRAM], which implies that  st via Lemma 6. This is only derivable via rule [CC-STMT], which
means that  s : ∅ → ∅. From the above, rule [CC-THREAD] allows us to conclude that D; ε t 〈σ, st〉. It then follows from
rule [CC-STATE] that D; ε  Σ0.
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