Atomizer: A Dynamic Atomicity Checker
For Multithreaded Programs

Cormac Flanagan
Department of Computer Science
University of California at Santa Cruz
Santa Cruz, CA 95064

Abstract

Ensuring the correctness of multithreaded programs iscdiffi
due to the potential for unexpected interactions betweeanwoent
threads. Much previous work has focused on detecting randi-co
tions, but the absence of race conditions does not by itselfemt
undesired thread interactions. We focus on the more fundteahe
non-interference property atomicity, a method is atomic if its ex-
ecution is not affected by and does not interfere with comily-
executing threads. Atomic methods can be understood angord
to their sequential semantics, which significantly simeéif{fformal
and informal) correctness arguments.

This paper presents a dynamic analysis for detecting aitynvie
olations. This analysis combines ideas from both Liptoh&otry
of reduction and earlier dynamic race detectors. Expeeievith
a prototype checker for multithreaded Java code demoastthat
this approach is effective for detecting errors due to @mded in-
teractions between threads. In particular, our atomidigcger de-
tects errors that would be missed by standard race deteetods
it produces fewer false alarms on benign races that do n&ecau
atomicity violations. Our experimental results also irdé that
the majority of methods in our benchmarks are atomic, sujmpr
our hypothesis that atomicity is a standard methodology uitim
threaded programming.

Categories and Subject Descriptors:D.2.4 [Software Engineer-
ing]: Software/Program Verificatiomeliability; D.2.5 [Software
Engineering]: Testing and Debuggingenitors, testing too|¢-.3.1
[Logics and Meanings of Programs]: Specifying and Verifyand
Reasoning about Programs.

General Terms: Languages, Algorithms, Verification.

Keywords: Atomicity, dynamic analysis, reduction.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear ttiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’04,January 14-16, 2004, Venice, Italy.

Copyright 2004 ACM 1-58113-729-X/04/0001 ...$5.00

Stephen N. Freund
Department of Computer Science
Williams College
Williamstown, MA 01267

1 Reliable Threads

Multiple threads of control are widely used in software depe
ment because they help reduce latency, increase throygépait
provide better utilization of multiprocessor machines. wduer,
reasoning about the behavior and correctness of multileccaode
is difficult, due to the need to consider all possible in@rlags of
the executions of the various threads. Thus, methods faifgpey
and controlling the interference between threads are artwithe
cost-effective development of reliable multithreadedwafe.

Much previous work on controlling thread interference rasited
onrace conditions A race condition occurs when two threads si-
multaneously access the same data variable, and at least thee
accesses is a write [47]. In practice, race conditions amaanly
avoided by protecting each data structure with a lock [6]s Tdtk-
based synchronization discipline is supported by a vaoétype
systems [21, 20, 19, 22, 8, 7, 28] and other static [49, 2313D,
and dynamic [47, 11, 51, 42, 45] analyses.

Unfortunately, the absence of race conditions is not sefficto
ensure the absence of errors due to unexpected interfdvetween
threads. As a concrete illustration of this limitation, sier the
following excerpt from the clasgava.lang.StringBuffer. All
fields of aStringBuffer object are protected by the implicit lock
associated with the object, and &liringBuffer methods should
be safe for concurrent use by multiple threads.

Excerpt from java.lang.StringBuffer
I 1
public final class StringBuffer {

public synchronized
StringBuffer append(StringBuffer sb) {
int len = sb.length();
// other threads may change sb.length(),
// so len does mot reflect the length of sb
sb.getChars(0, len, value, count);

—

public synchronized int length() { ... }
public synchronized void getChars(...) { ... }

}

The append method shown above first cali® . length (), which
acquires the loclsb, retrieves the length afb, and releases the
lock. The length okb is stored in the variableen. At this point,
a second thread could remove characters fsamin this situation,

len is nowstale[9] and no longer reflects the current lengthsof
and so thegetChars method is called with an invaliden argu-
ment, and may throw an exception. Th@sringBuffer objects

cannot be safely used by multiple threads, even though théeim

mentation is free of race conditions.

Recent results have shown that subtle defects of a simitarena

are common, even in well-tested libraries [24]. Havelungbres

finding similar errors in NASA's Remote Agent spacecraft con

troller [1], and Burrows and Leino [9] and von Praun and G543
have detected comparable defects in Java applicationarlZlthe
construction of reliable multithreaded software requites devel-
opment and application of more systematic methods for obimig

the interference between concurrent threads.

This paper focuses on a strong yet widely-applicable non-
interference property calleatomicity A method (or in general a

code block) is atomic if for every (arbitrarily interleaygatogram

execution, there is an equivalent execution with the sanesadlv

behavior where the atomic method is executed serially,ihahe
method’s execution is not interleaved with actions of othegads.

Atomicity corresponds to a natural programming methodpleg-
sentially dating back to Hoare’s monitdr§32]. Many existing
classes and library interfaces already follow this methagig our
experimental results indicate that the vast majority ofhds in
our benchmarks are atomic.

In addition, atomicity provides a strong, indeed maximalagn-
tee of non-interference between threads. This guaranteees the
challenging problem of reasoning about an atomic methcetsiz-

Atomizer error report

T 1
StringBuffer.append is not atomic:

Atomic block entered
at StringBuffer.append(StringBuffer.java:445)
at BreakStringBuffer.main(BreakStringBuffer.java:21)

Atomic block commits at lock release:
at StringBuffer.length(StringBuffer.java:144)
at StringBuffer.append(StringBuffer.java:451)
at BreakStringBuffer.main(BreakStringBuffer.java:21)

Atomicity violation at lock acquire:
at StringBuffer.getChars(StringBuffer. java:326)
at StringBuffer.append(StringBuffer.java:455)

at BreakStringBuffer.main(BreakStringBuffer.java:21)
1 1

We have implemented this dynamic analysis in an automaéclch
ing tool called theAtomizer The application of this tool to over
100,000 lines of Java code demonstrates that it providefetiee
approach for detecting defects in multithreaded prograncé,id-
ing some defects that would be missed by existing race-tietec
tools. In addition, the Atomizer produces fewer false akom be-
nign races that do not cause atomicity violations. Finally,results
suggest that a large majority of the exported methods in eachy
marks are atomic, which validates our hypothesis that atityris
a widely-used programming methodology.

We propose that the application of this technique duringdtheel-
opment, validation, and evolution of multithreaded progsawill
provide multiple benefits, including:

e detecting atomicity violations that are resistant to bo#ulit

ior in a multithreadedcontext to the simpler problem of reasoning
about the method’sequentiabehavior. The latter problem is sig-
nificantly more amenable to standard techniques such asahanu e facilitating safe code re-use in multithreaded settingsdlit

tional testing and existing race detection tools,

code inspection, dynamic testing, and static analysis.

In summary, atomicity is a widely-applicable and fundaraénor-
rectness property of multithreaded code. However, tramtiti test-
ing techniques are inadequate to verify atomicity. Whilstitey
may discover a particular interleaving on which an atorpieiola-
tion results in erroneous behavior, the exponentiallgdanumber
of possible interleavings makes obtaining adequate testrage

dating atomicity properties of interfaces,

simplifying code inspection and debugging, since atomic
methods can be understood according to their sequential se-
mantics, and

improving concurrent programming methodology by encour-
aging programmers to document the atomicity guarantees pro
vided by their code.

essentially impossible. . . . - .
Dynamic atomicity checking complements existing statichte

nigues, such as the type system for atomicity developed éyaF|
gan and Qadeer [24], since most software is currently viailas-
ing a combination of static type checking and dynamic tegstior
large programs, a benefit of the dynamic approach is thabitlav

This paper presents a dynamic analysis for detecting attymio-
lations. For each code block annotated as being atomic,raly-a
sis verifies that every execution of that code block is nacéd by
and does not interfere with other threads. Intuitivelys #gpproach - k ¢
increases the coverage of traditional dynamic testingtedus of the overhead of type annotations or type inference, paatigfor
waiting for a particular interleaving on which an atomioifglation legacy code. Combining dynamic atomicity checking withesth
causes erroneous behavior, such as a program crash, theechec Static checkers for multithreaded code, such as the C&lvioel
actively looks for evidence of atomicity violations that yneause developed by Freund and Qadeer [26], would yield similaefien
errors under other interleavings. Our approach synthesdeas) .

from dynamic race detectors (such as Eraseosksetalgorithm) The presentation of our results proceeds as follows. Sthlrpl-

and Lipton’'s theory of reduction (described in Section 3.Epr troduces a model of concurrent programs that we use as tfiee bas
the StringBuffer class described above, our technique detects for our development. Section 3 describes our dynamic aisalgs
that append contains a window of vulnerability between where atomicity. Section 4 describes how the Atomizer impleméhis

the locksb is released insidéength and then re-acquired inside analysis, and Section 5 presents our experimental reSiétgion 6
getChars, and produces the following warning, even on executions discusses related work, and we conclude with Section 7.

where this window of vulnerability is not exploited by coment

threads.

IMonitors are less general in that they rely on syntactic ecop
restrictions and do not support dynamically-allocatedethaata.

2 Multithreaded Programs

To provide a formal basis for reasoning about interfererste/éen
threads, we start by formalizing an execution semanticenfalti-
threaded programs. In this semantics, a multithreadedanmogon-
sists of a number of concurrently executing threads, eagrhath
has an associated thread identifie 7id. The threads communi-
cate through a global storg which is shared by all threads. The
global store maps program variableso valuesv. The global store
also records the state of each lock variablec Lock. If o(m) = t,
then the lockm is held by thread; if o(m) = L, then that lock is
not held by any thread.

In addition to operating on the shared global store, eacathalso
has its own local store containing data not manipulated by other
threads, such as the program counter of that thread. A State
(o, 1I) of the multithreaded system consists of a global stoeed

a mappindlI from thread identifiers to the local stor@I(t) of each
thread. Program execution starts in an initial stage= (o0, I1g).

Domains
I 1
u,t € Tid

T € Var

v E Value

m e Lock

o € GlobalStore
7 € LocalStore
IT € LocalStores Tid — LocalStore

Ye State GlobalStore x LocalStores
1]

(Var — Value) U (Lock — (Tid U {L}))

2.1 Standard semantics

We model the behavior of each thread in a multithreaded progr
as the transition relatioffi:

T C Tid x LocalStore x Operation x LocalStore

The relatiorT (¢, 7, a, ©’) holds if the thread can take a step from
a state with local store, performing the operatioa € Operation

on the global store, yielding a new local stare The set of possible
operations on the global store includesi(x, v), which reads a
value v from a variablex; wr(z,v), which writes a value to a
variablez; acq(m) andrel(m), which acquire and release a lock
m, respectivelybegin andend, which mark the beginning and end
of an atomic block; and, the empty operation.

a € Operation ::= rd(z,v) | wr(z,v)
| acq(m) | rel(m)

| begin|end|e

The following relations —¢ ¢’ models the effect of an operation
a by threadt on the global store~. The global storer[z := v] is
identical too except that it maps the variahteto the valuev.

Effect of operations: ¢ —§ o’
I 1

[ACT READ] [ACT WRITE] [ACT OTHER|
o(z)=wv a € {begin, end, e}
o —>:d(w"u) o o —>;M(w’v) olz =] o—to

[ACT ACQUIRE [ACT RELEASH

o(m)=_1 o(m) =t

- —>?CQ(W) olm = 1] o _}:el(m) olm = 1]
|]

The following transition relatiols — ¥’ performs a single step
of an arbitrarily chosen thread. We us€" to denote the reflexive-
transitive closure of-. A transition sequenc®, —* ¥ models
the arbitrary interleaving of the various threads of a nttuléaded
program, starting from the initial statéy. Although dynamic
thread creation is not explicitly supported by the semaniiccan
be modeled within the semantics in a straightforward way.

Standard semantics:X — ¥’

I[STD STER
T(t,I1(t), a, ") o—¢o
(o,1I) — (o', It := 7'])

/

2.2 Serialized semantics

We assume the functioa : LocalStore — Nat indicates the num-
ber of atomic blocks that are currently active, perhaps nex
ining the program counter and thread stack recorded in tba lo
store. This count should be zero in the initial state, andishonly
change when entering or leaving an atomic block. We forrealiz
these requirements as follows:

A(IIp(t)) = 0forallt € Tid;

if T(t, 7, begin, n’) thenA(n") = A(w) + 1;

if T(¢,7,end, "), thenA(r) > 0andA(r’) = A(m) — 1;
if T(t, 7, a,7")fora & {begin, end}, thenA(n) = A(x’).

The relationA(II) holds if any thread is inside an atomic block:

def

A % 3t e Tid. A(TI(E) #0

The followingserializedtransition relation— is similar to the stan-
dard relation—, except that a thread cannot perform a step if an-
other thread is inside an atomic block. Thus, the serialie&tion

— does not interleave the execution of an atomic block with in-
structions of concurrent threads.

Serialized semantics® — ¥’
I 1
[SERIAL STER
Tt I(t), a, ") o —¢ o Vu #t. AII(uw)) =0
(0,1I) = (o', 1]t := "))

Reasoning about program behavior and correctness is mgar ea
under the serialized semanties | than under the standard seman-
tics (—), since each atomic block can be understood sequentially,
without the need to consider all possible interleaved astif con-
current threads. However, standard language implemengatinly
provide the standard semanties), which admits additional transi-
tion sequences and behaviors. In particular, a progranbttaves
correctly according to the serialized semantics may stitidve er-
roneously under the standard semantics. Thus, in adddibeing
correct with respect to the serialized semantics, the progthould
also use sufficient synchronization to ensure the atomafigach
block of code that is intended to be atomic. Thus, for any raog
execution(cg, IIp) —* (o, IT) where—A(II), there should exist an
equivalent serialized executidiog, ITy) —* (o, I1). We call this
the atomicity requiremenbn program executions, and any execu-
tion of a correctly synchronized program should satisfg teguire-

ment. (The restrictiom.A(II) avoids consideration of partially-
executed atomic blocks.)

3 Dynamic Atomicity Checking

In this section, we present an instrumented semantics thmetna-
ically detects violations of the above atomicity requiremeWe
start by reviewing Lipton’s theory of reduction [38], whi¢brms
the basis of our approach.

3.1 Reduction

The theory of reduction is based on the notion of right-mareat
left-mover actions. An actiohis aright-moverif, for any execution
where the actioh performed by one thread is immediately followed
by an actionc of a concurrent thread, the actiohsand ¢ can be
swapped without changing the resulting state, as showmbelo

Commuting actions
I

b c '
So—— Ti——> %
L//// \\\\
Cc , b
o 3 Sy

For example, if the operatiohis a lock acquire, then the actien
of the second thread neither acquires nor releases thedadkso
cannot affect the state of that lock. Hence the acquire tiparean
be moved to the right of without changing the resulting state, and
we classify each lock acquire operation as a right-mover.

Conversely, an action is aleft-moverif wheneverc immediately
follows an actiorb of a different thread, the actiobsandc can be
swapped, again without changing the resulting state. Sgfwe
operationc by the second thread is a lock release. Duibnghe
second thread holds the lock, ahdan neither acquire nor release
the lock. Hence the lock release operation can be moved tefthe
of b without changing the resulting state, and we classify eack |
release operation as a left-mover.

Next, consider an access (read or write) to a variable thetased
by multiple threads. If the variable is protected by somé& kbat is
held whenever the variable is accessed, then two threadsevan
access the variable at the same time, and we classify eaebsatte
that variable as &oth-mover which means that it is both a right-
mover and a left-mover. If the variable is not consistentiytgcted
by some lock, we classify the variable access asramover

To illustrate how the classification of actions as variousdki of
movers enables us to verify atomicity, consider the firstaetien
trace in the diagram below. In this trace, a thread (1) aegquir
lock m, (2) reads a variable protected by that lock, (3) updates
and then (4) releases. The execution path of this thread is inter-
leaved with arbitrary actions;, bo, b3 of other threads. Because
the acquire operation is a right-mover and the write andasgl®p-
erations are left-movers, there exists an equivalentlsetecution
in which the operations of this path are not interleaved wjibra-
tions of other threads, as illustrated by the following déag. Thus
the execution path is atomic.

Reduced execution sequence
I 1
acq(m) b1 rd(x,0) ba
(Ca—y iy 2 2L e i 5~ 6.~ X7

£ ¥ RN N
b1 acq(m)_ rd(z,0) wr(z,1) rel(m) bo
’ / / ’ ’
Zl 22 Z? 24 2:5

Yo
1]

More generally, suppose a path through a code block congains
sequence of right-movers, followed by at most one non-mager
tion and then a sequence of left-movers. Then this path can be
reducedto an equivalent serial execution, with the same resulting
state, where the path is executed without any interleaviéohasdy
other threads.

3.2 Checking atomicity via reduction

We next leverage the theory of reduction to verify atomiaty
namically. In an initial presentation of our approach, weuase
the programmer provides a partial function

P : Var —e— Lock

that maps protected shared variables to associated lddRz) is
undefined, then is not protected by any lock.

We develop an instrumented semantics that only admits caiths p
that are reducible, and which goes wrong on irreduciblepatio
record whether each thread is in the right-mover or left-engart
of an atomic block, we extend the state space witinatrumenta-
tion store

¢ : Tid — {InRight, InLeft}

Each state is now a triples, ¢, II). If A(II(¢)) # 0, then thread
t is inside an atomic block, and(t) indicates whether the thread
is in the right-mover or left-mover part of that atomic blockhe
initial instrumentation storéy is given bygg (t) = InRight for all

t € Tid.

The following relation® =¢ ¢’ updates the instrumentation store
whenever thread performs operatiom. The rule [NS ACCESS
PROT] deals with an access to a protected variable while holdirg t
appropriate lock. This action is a both-mover and so theunstn-
tation storep does not change. Accesses to unprotected variables
are non-movers, and they can occur outside atomic blockdisge
ACCESS OUTSIDE. Unprotected accesses are also allowed inside
an atomic block, and they cause a transition from the rigbten

to the left-mover part of the atomic block: se®$ ACCESS com
MIT]. Acquire operations are right-movers, and they can ocath o
side or in the right-mover part of an atomic block, and cosebr

for release operations.

The relation> =¢ wrong holds if the operatioru by threadt
would go wrongby accessing a protected variable without hold-
ing the correct lock VRONG RACH], or by performing a non-left-
mover action in the left-mover part of an atomic block. Neft
mover actions include accessing an unprotected variatioNG
UNPROTECT] or acquiring a lock WVRONG ACQUIRH.

Instrumented operations: 3 =¢ ¢’ and X =% wrong
I 1
[INS ACCESS PROT [INS ACCESS comMMIT
a € {rd(z,v), wr(z,v)} a € {rd(z,v), wr(z,v)}
P(z) defined P(z) undefined
o(P(x)) =t A(II(t)) #0 ¢(t) = InRight
(0,6, 1) =2 ¢ (0, ¢, 1) =2 @[t := InLeft]

[INS ACCESS OUTSIDE
a € {rd(z,v), wr(z,v)}
P(x) undefined A(II(t)) =0
(0,0,11) =¢ ¢

[INS ACQUIRE|
¢(t) = InRight
or A(II(t)) =0

(0, ¢,11) =>¢°4™)

[INS RELEASH [INS RE-ENTER|

A(TI(1) # 0
(0_7 d),H) :>lt)eg1n ¢

(0, ¢, T1) =11 [t .= InLeft]

[INS ENTER [INS OTHER
A(II(t)) =0 a € {end, €}
(0,0, 1) =29 ¢[t .= InRight] (0,6, 1) =¢ ¢

[WRONG RACH
a € {rd(z,v), wr(z,v)}
P(z) defined
o(P(z)) #1
(0, ¢, II) =& wrong

[WRONG UNPROTECT
a € {rd(z,v), wr(z,v)}
P(z) undefined
A(TI(t)) #0 o(t) = InLeft
(0, ¢, 1) =% wrong

[WRONG ACQUIRH
A(II(t)) #0 o(t) = InLeft

(o, ¢,1I) :>?cq<m) wrong
1]

The instrumented transition relatioh = ¥’ performs an instru-
mented step of an arbitrary thread; 84d= wrong holds if a step
from X could violate the synchronization discipline or the atdtgic
requirement.

Instrumented semantics:Y = ¥’ and £ = wrong

I[|Ns STER

[INs WRONG
T(t, 11(t), a,7") T(t, 1(t), a, ")
o —¢ o o —¢ o’
(0,9, 11) =¢ ¢/ (0, ¢, 1I) =% wrong

(o,¢,II) = (¢/, ¢, II[t := 7']) (o, ¢, II) = wrong

The following theorems state that the instrumented semmusi
identical to the standard semantics, except that the imstnted
semantics records additional information and may go wrémgd-
dition, any instrumented execution that does not go wrotigfsss
the atomicity requirement.

THEOREM1 (EQUIVALENCE OF SEMANTICS).

1. If (o,¢,11) =* (o, ¢, '), then(o, TI) —* (o/, T1').
2. If (o,T1) —* (¢/,11') thenV¢ either

@) (o,¢,I) =* wrong, or

(b) 3¢’ such that(o, ¢, II) =* (o’, ¢/, II').

PrROOF By induction over derivations.

THEOREM2 (INSTRUMENTEDREDUCTION).
If (00, ¢0,110) =" (0,¢,1I) and —~A(II) then (oq,lp) —*
(o,1I).

PROOF. See Appendix.

If the instrumented semantics admits a particular exeautioen

not only is that execution reducible, but many similar exens

are also reducible. In particular, when an atomic block igsdpe
executed, the only scheduling decision that affects prodrahav-

ior is when the commit operation (the transition frdmRight to
InLeft) is scheduled. Scheduling decisions regarding when other
operations in the atomic block are scheduled are irrelevanhat
they do not affect program behavior or reducibility. Hermae test

run under our instrumented semantics can simultaneousfy tiee
reducibility of many executions of the standard semantics.

3.3 Inferring protecting locks

The instrumented semantics of the previous section reliethe
programmer to specify protecting locks for shared vargbl&o
avoid burdening the programmer, we next extend the instnteade
semantics to infer protecting locks, using a variant of Eras ock-
setalgorithm [47]. We extend the instrumentation stgréo map
each variabler to a set ofcandidate lockdor =, such that these
candidate locks have all been held on every accesssten so far:

¢ : (Tid — {InRight, InLeft}) U (Var — 210°k)

The initial candidate lock set for each variable is the seildbcks,
that is,¢o(z) = Lock for all z € Var.

The relationt =¢ ¢’ updates the extended instrumentation store
whenever thread performs operatior on the global store. The
rule [INS2 AccEsq{ for a variable access removes from the vari-
able’s candidate lock set all locks not held by the currergat.
We useH (¢, o) to denote the set of locks held by threiaih state

H(t,o) = {m € Lock | o(m) =t}

If the candidate lock set for a variable becomes empty, thieaca
cesses to that variable should be treated as non-moverprewir
ous accesses may already have been incorrectly classifteutias
movers. For example, ip(x) = {m} when thread: enters the
following function double, then the first access to by threadt
will be classified as a both-mover. If, at that point, an acitd a
concurrent thread causegx) to become empty, the analysis will
classify the second accessitdy ¢ as a non-mover, but will not re-
classify the first access, and thus the analysis will faikmognize
thatdouble may not be reducible.

/*# atomic */ void double() {
synchronized (m) {
int t = x;
X =2 % t;
}
}

Thus, to ensure soundness, the lock inference semantissndbe
support unprotected variables, and instead requires ewgigble
to have a protecting lock. If the candidate lock set becomgsty
then that state goes wrong, Vi&RONG2 RACE].

Instrumented operations 2: % =¢ ¢’ and X =¢ wrong
I 1
[INs2 AcCESS [INS2 ACQUIRE
a € {rd(z,v), wr(z,v)} ¢(t) = InRight
p(zx) N H(t, o) # 0 or A(II(t)) = 0
(0,¢,11) ¢ gl :=P(z) N H(t,0)] (5, ¢,11) 2™

[INS2ENTER| [INS2 RE-ENTER|
A(II() =0 A(II(1) #0
(0,0, 1) V9™ $[t := InRight] (0, ,11) ;9" ¢
[INS2 RELEASE [INS2 OTHER
a € {end, €}
(0,6,11) 1™ gt .= InLeft] (0,0, 1) ST ¢

[WRONG2 RACE] [WRONG2 ACQUIRE]

a € {rd(z,v), wr(z,v)} AI(t)) #0
o(x)NH(t,o) =0 o(t) = InLeft
(0, ¢, II) ¢ wrong (o, ¢, T0) Q?CQ(m) wrong

The relation® = ¥’ performs an instrumented step (with lock
inference) of an arbitrarily chosen thread; the relatibs> wrong
describes states that go wrong.

Instrumented semantics 2:X = ¥’ and ¥ = wrong
I 1

[INS2 STEH [INS2 WRONG]|
T(t,11(t), a,7') T(t,11(t), a,)
o —¢ o o —¢ o’
(0,6,11) ¢ ¢/ (0, ¢, IT) ¢ wrong

(o,0,I1) = (¢/, ¢, II[t := 7']) (0, ¢, II) = wrong

Like the previous instrumented semanties)(the lock-inference
semantics£) is equivalent to the standard semanties)(except
that it only admits execution sequences that satisfy thmiatty
requirement. The following two theorems formalize theserem-
ness properties. Their proofs are analogous to those ofr&heol
and 2.

THEOREM3 (EQUIVALENCE OF SEMANTICS 2).

1. If(0,¢,11) =* (¢/,¢',11'), then(o, II) —* (o’ 11").
2. If (o,T1) —* (¢/,11') thenV¢ either
@) (o,¢,I) =* wrong, or

(b) 3¢’ such that(o, ¢, 1) =* (o', &', I1').

THEOREM4 (INSTRUMENTEDREDUCTION 2).
If (00, ¢0,1l0) =" (0,¢,11) and = A(II) then (o9,I1y) —*
(o, 10).

Again, if the instrumented semantics admits a particulacaton,
then all executions that are equivalent to that executioduioir-
relevant scheduling decisions are reducible.

4 Implementation

We have developed an implementation, calledAbhamizer of the
dynamic analysis outlined in the previous section. The Atrem
takes as input a multithreaded Java [27] program and resitite

program to include additional instrumentation code. Thistru-
mentation code calls appropriate methods of the Atomizer ru
time that implement the Lockset and reduction algorithntsiasue
warning messages when atomicity violations are detected.

The Atomizer performs the instrumentation on Java source
code. This approach has a number of advantages: it supports
programmer-supplied annotations; it works at the highlle¥ab-
straction of the Java language; and it is portable acroskedl vir-

tual machines. This approach does require source codehéut t
instrumentation could also be performed at the bytecods.lev

The target program can include annotations in commentsitodte
that a method is atomic, as in:

/*# atomic */ void getChars() {...}

The Atomizer supports additional annotations to speciéy ¢hcode
block is atomic, to suppress spurious warnings, to ignategan
specific fields, and so on. Alternatively, the Atomizer caplgp
heuristics to decide which blocks should be checked for aioyn
These heuristics are that (1) all methedportedby classes should
be atomic, and (2) all synchronized blocks and synchronizeth-
ods should be atomic. Exported methods are those that alie pub
package protected. However, these heuristics are not asadifn
and therun methods oRunnable objects, because these methods
typically are not atomic. Although these heuristic are ggimple,
they provide a reasonable starting point for identifyingnaicity
errors in unannotated code.

In the rest of this section, we describe our Lockset and téatuc
implementation, demonstrate how the tool identifies andntsger-
rors, and present several improvements to the basic digurit

4.1 Lockset algorithm

For each field of each allocated object, the Atomizer trackage
that reflects the degree to which the field has been sharedgamon
multiple threads.

Lockset algorithm states for each allocated field
I 1
first thread riw second thread r/w

second thread r/ .
Thread
Local(2)

other thread
write

other thread
rea

any thread riw
any thread
read
any thread

Shared
Modified Shared
Read
write

The following possible states of our algorithm are similarthe
states in earlier race detectors [47, 50]:

Thread-Local: The field has only been accessed by the object’s
creating thread.

Thread-Local (2):0wnership has transferred to a second thread,
and the field is no longer accessed by the creating threads Thi
state supports common initialization patterns in Java.[50]

Read-SharedThe field has been read, but not written, by multi-
ple threads.

Shared-ModifiedThe field has been read and written by multiple
threads, and a candidate lock set records which locks hae be
consistently held when accessing this field. When entefiig t
state, the candidate set is initialized with all locks hejdthe
current thread.

When a thread accesses a field, the Atomizer run-time updates
state according to the following transition diagram. (Therizer
does not instrument array accesses.)

4.2 Reduction algorithm

The instrumented semantics for lock inference in SectiBrg8es
wrong on any race condition. Since programs frequently Heeve
nign races, the Atomizer implements a relaxed version af $k
mantics that accommodates such benign race conditionshelf t
candidate lock set for a variable becomes empty, then subséq
accesses to that variable are considered non-movers. Nate t
previous accesses to that variable, which were earliesiiled as
movers, will not be re-classified as non-movers, sincergyaihis-
tory of all variable accesses would be expensive. Thus, as me
tioned in Section 3.3, these relaxed rules introduce a degfran-
soundness. We believe this unsoundness rarely causesdhe At
izer to miss atomicity violations in practice because ituiegs an
unlucky scheduling of operations and because the Atomiikr w
report the problem on the next execution of the non-atomieco
fragment. The following rules adapt the relaticis=¢ ¢’ and

3 =¢ wrong to express this relaxed semantics.

Relaxed instrumentation: =¢ ¢’ and X =¢ wrong
I 1
[INS2 RACE]|
a € {rd(z,v), wr(z,v)}
p(z) N H(t,o) =0
A(TI(t)) =0 or ¢(t) = InRight
(0,9, I1) D¢ @[t := InLeft,x := (]

[WRONG2 RACE]
a € {rd(z,v),wr(z,v)}
o(x)NH(t,o)=0
A(II(t)) #£0 ¢(t) = InLeft

(o, ¢, II) =¢ wrong
1]

To produce clear error messages like that in Section 1, tbenAt
izer can optionally capture stack traces (in the forrixfeption
objects) at the entry and commit points of each atomic blacki,
include these stack traces in error messages. Since theizZgiom
supports nested atomic blocks, a single operation couldtras
multiple atomicity violations.

4.3 Extensions

The Atomizer may produce false alarms due to imprecisionkén
Lockset and reduction algorithms. We next present several i
provements that eliminate many of these false alarms. We sta
by revisiting the treatment of synchronization operaticiising
reduction. The classification of lock acquires and releases
right-movers and left-movers, respectively, is correct derly-
conservative in some cases. In particular, modular progrm-
ically include redundant synchronization operations thatcan
more precisely characterize as both-movers.

Re-entrant locks Lock acquires are in general only right-movers
and not left-movers. However, Java provides re-entrarksloand

a re-entrant lock acquire is a both-mover, because thisatipar
cannot interact with other threads. Similarly, a re-eritralease is
also a both-mover.

Thread-local locks If a lock is used by only a single thread, ac-
quires and releases of that lock are both-movers.

Thread-local (2) locks Adding anotherThread-localstate, as in
our Lockset algorithm, eliminates false alarms caused itipliza-

tion patterns in which one thread creates and initializesotepted
object, and then transfers ownership of both the object tngro-

tecting lock to another thread.

Protected locks Suppose each thread always holds some tagk
before acquiring lockns. In this case, two threads cannot attempt
to acquiremo simultaneously, and so operations on the logkare
also both-movers.

Write-protected data Consider the following two methods, in
which the variablex is protected by a lock for all writes, but not
protected for reads.

/*# atomic */ int read() { return x; }

/*# atomic */ void inc() {
synchronized (lock) { x =

}

If x is a 32-bit variable, then theead () method is atomic on a
sequentially-consistent machine, even though no proigbbick is
held. Despite the presence of such unprotected readsnth@®
method is also atomic. In particular, when the lock is heltgad
of x is a both-mover, since no other thread can write teithout
holding the lock.

x+1; }

To handle examples like this one, we use a variant of the Lock-
set algorithm. For each field, this algorithm infertoek set pair
consisting of:

1. anaccess-protectingpck set, which contains locks held on
every access (read or write) to that field, and

2. awrite-protectingock set, which contains locks held on every
write to that field.

The access-protecting lock set is always a subset of the-writ
protecting lock set. A field read is a both-mover if the cuttbnead
holds at least one of the write-protecting locks; othervfmeread

is a non-mover. In contrast, a field write is a both-mover dhly
the access-protecting lock set is non-empty; otherwisantiite is

a non-mover.

Using these lock set pairs, the Atomizer can infer thad () is
atomic, since it consists of a right-mover (the lock acqyiaeboth-
mover (the read of); an atomic action (since the write efdoes

not commute with concurrent reads of other threads); andta le
mover (the lock release). In comparison, existing raceal&n
tools would produce a false warning about the race condition
read(), even though this race condition is benign and does not
affect the atomicity of either method.

Num. Num. Max. Num. Base Atomizer | Atomicity
Benchmark|| Lines | Threads| Locks | Locks Held| Lock Set Pairs| Time (s) | Slowdown | Warnings | Errors
elevator 529 5 8 1 17 11.14 — 2 0
hedc 29,948 26 385 3 728 8.36 — 4 1
tsp 706 10 2 1 5 0.94 48.2 7 0
sor 17,690 4 1 1 2 0.70 7.3 0 0
moldyn 1,291 5 1 1 2 3.62 11.8 0 0
montecarlo || 3,557 5 1 1 2 7.94 2.2 1 0
raytracer 1,859 5 5 1 7 5.96 36.6 1 1
mitrt 11,315 6 7 2 7 2.33 46.4 6 0
jigsaw 90,100 53 706 31 4,531 13.49 47 34 1
specJBB 30,490 10 262,000 6 340,088 18.01 11.2 4 0
webl 22,284 5 402,445 3 452,685 60.35 — 19 0
lib-java 75,305 39 816,617 6 986,855 96.5 — 19 4

Figure 1. Summary of test programs and performance.

5 Evaluation

This section summarizes our experience applying the Atentiz
twelve benchmark programs. These programs incklderator,

a discrete event simulator for elevators [SHédc, a tool to access
astrophysics data from Web sources [58dp, a Traveling Sales-
man Problem solver [51kor, a scientific computing program [51];
mtrt, a multithreaded ray-tracing program from the SPEC JVM98
benchmark suite [48igsaw, an open source web server [54] con-
figured to serve a fixed number of pages to a cravéesc JBB, the
SPEC JBB2000 business object simulator [48] configured ¢e pr
cess a fixed number of transactiongjldyn, montecarlo, and
raytracer from the Java Grande benchmark suite [33jp1, a
scripting language interpreter for processing web pagegigured

to execute a simple web crawler [34]; anib-java. This last pro-
gram is an uninstrumented test harness (compriseciaf, jbb,

The “Atomicity Warnings” column in Figure 1 reports the nuenb

of atomic blocks and methods that failed the Atomizer's atem
ity requirements during test runs. Figure 2 shows the cutinela
benefit of the extensions from Section 4.3. The “Basic” caium
dicates the number of warnings reported for each prograny ke
basic Lockset and reduction algorithms. The succeedingmuod
show the number of warnings as each refinement from Sectn 4.
is added. Cumulatively, these five refinements are quitetafte
they reduce the number of warnings by roughly 70% (from 341 to
97).

The last column in Figure 1 reports the number of atomicity vi
lations that we consider errors, either because they ceald to
undesirable program behavior or because they violate dected
atomicity properties. Despite checking only mature sofeyahe
Atomizer identified a number of potentially damaging errdtislf

andhedc) that tests an instrumented version of the standard Javaof the errors were reported for atomic blocks with multipkgal

libraries java.lang, java.io, java.net, and java.util. All
programs other thahib-java use uninstrumented libraries.

The Atomizer instrumented these programs using the hasride-
scribed in Section 4 (exported methods and synchronizezkblare
annotated as atomic). To ensure that our measurements aould
curately reflect the cost of the underlying analysis, theizer did
not record stack histories for atomic block entry and conpaints
for these tests. We performed the experiments on a Red HakLin

races or a single data race followed by a lock acquire. Thaiem
der contained a lock acquire operation after a lock release.

When testing the instrumented libraries, the Atomizer
warned of an atomicity violation in the synchronized method
PrintStream.println(String s), which uses two calls to
write the strings and the following new-line character to a stream
stored in the instance variabdat. However, a different thread in
the system also wrote teut, potentially at the same time, which

8.0 computer with dual 3.06GHz Pentium 4 Xeon processors and could cause the output stream to be corrupted. A comparable

2GB of memory. We used the Sun JDK 1.4.2 compiler and virtual
machine for all benchmarks excepib-java, for which we used
the Sun JDK 1.3.1 virtual machine due to compatibility peshs.

Figure 1 presents statistics for the test programs usirtheabxten-
sions from Section 4.3. The number of locks and distinct leek
pairs were relatively small for most programs, althoughlénger
programs used many objects as locks, in some cases sedges or
of magnitude more than in comparably-sized C programs [47].

The slowdown incurred by the instrumentation varied fro@x2o
roughly 50x. We only report slowdowns for compute-bound-pro
grams. Those programs with very little slowdown, suchsas
andmontecarlo, spent most of the time in uninstrumented library
code. We believe that slowdowns of 20x—40x are represeatfi
most programs. However, we did not focus on efficiency in this
prototype, and there is much room for improvement. In palic
static analyses have reduced the overhead of dynamic reexida

to under 50% [51], which suggests that similar performarméd:

be achieved when checking atomicity.

error in PrintWriter had been previously identified by a static
type system [24], but the Atomizer caught this defect with no
programmer intervention and pinpointed an exact locatiothe
program where the bug could manifest itself.

The Atomizer reported an error jigsaw that was also found stat-
ically using aview consistencgnalysis [51]. In this case, a specific
interleaving could allow an entry to be added to a resoume stf-
ter the store had been closed as part of the shutdown pradthe.
errors included a known problem wittashtable iterators in the
presence of concurrent modifications, and a case wherepteulti
threads updated @lendar object through non-atomic methods.

In most programs, the warnings that did not indicate defeatdd

be suppressed by inserting a handful of annotations. Afgigni
number of false alarms were due to the overly-optimisticristias
employed by the Atomizer to identify atomic blocks. Fewdsda
alarms would be produced when checking code with programmer
inserted/*# atomic */ declarations. For example, atomicity vi-
olations were often reported on methods called near théetag-

140

hedc ——x-

120 sor - -x-- —
sor ---cE-e-
moldyn —-m--

100 montecarlo —-&- -]
raytracer -- e- -
mtrt ---4--

n 80 jigsaw ---+ - _|
= | o specJBB —v—
c A webl ——-—
< - lib-java --¢--

S |

60

elevator —+—

]

O&:."__.'—T'—T%_- = el PR |
Basic +reentrant +thread-local +thread-local +protected +write-protected
locks locks locks (2) locks data

Extensions

Figure 2. Warnings reported by the Atomizer under different configurations.

entry points of the program (theain andrun methods), but many

Lockset algorithm with a happens-before analysis to redalse

such methods are not intended to be atomic and would not be la-alarms in a dynamic race detector for Java programs.

beled as atomic by a programmer. Other common sources ef fals
alarms include double-checked locking patterns, lazyaiiegation
patterns, and various caching idioms. These programmiogil
are notoriously problematic for analysis tools based or datec-
tion and are discussed in more detail in [42]. Although sorhe o
these practices, such as double-checked locking, are ipettilsie
with the Java memory model specification, we classify thefalas
alarms since they do not cause problems in most current d&ira e
ronments [42].

During these tests, the Atomizer also recognized five fields w
benign race conditions that did not lead to atomicity violas. In
these cases, the Atomizer did not report spurious warningket
user, as would have been the case for race condition checkers

Overall, the Atomizer found no potential atomicity viotatis in
over 90% of the methods annotated as atomic that were esdrcis
during our test runs. These statistics suggest that attynigia
fundamental design principle in many multithreaded systesspe-
cially library classes and reusable application companent

6 Related Work

Lipton [38] first proposed reduction as a way to reason abont ¢
current programs without considering all possible intariegs. He
focused primarily on checking deadlock freedom. Doeppfbf, [
Back [4], and Lamport and Schneider [37] extended this work
to allow proofs of general safety properties. Cohen and Lam-
port [12] extended reduction to allow proofs of livenesspanmies.
Misra [41] has proposed a reduction theorem for programi bui
with monitors [32] communicating via procedure calls.

Eraser [47] introduced the Lockset algorithm for dynamicera
detection. This approach has been extended to objecttedien
languages [50] and has been improved for precision and perfo
mance [11, 45]. O’Callahan and Choi [42] recently combirtesl t

A number of static race detectors have also been developed.
Warlock [49] is a static race detection system for C programs
ESC/Java [23] statically catches a variety of software atefan-
cluding race conditions. Other approaches for static radedead-

lock prevention are discussed in earlier papers [20, 19iRé&$e in-
clude model-checking [10, 13, 18], dataflow analysis [16kteact
interpretation [44], and type systems for process cal@ij B6].

In previous work, we produced a type system [21] that preseiat
olations of the lock-based synchronization disciplinencgithen,
similar type systems have been developed that include amofi
object ownership [8], and that target other languages sadbya
clone [28], a type-safe variant of C. Compared to dynamib-tec
niques, these static type systems provide stronger sossdjuar-
antees and detect errors earlier in the development cydleequire
more effort from programmer.

While some of these race detection tools have been quite-effe
tive, they may fail to detect atomicity violations and maglgifalse
alarms on benign race conditions that do not violate atdyici

Baconet aldeveloped Guava [5], an extension to the Java language
with a form of monitor capable of sharing object state in a Weat
prevents race conditions. The Atomizer would work very viedl
languages like Guava, since language-enforced race freadold
eliminate several common sources of false alarms obsertéé w
checking programs written in languages that permit races.

In recent work, Flanagan and Qadeer developed a static ygpens
to verify atomicity in Java programs [25, 24]. In comparigorihe
Atomizer, the type system provides better coverage anddsmss
guarantees, but is less expressive (for example, it doesupgiort
redundant locking). The type system also requires progrmm
inserted annotations that specify properties such as thnlg dis-
cipline followed by the program.

This type system for atomicity was inspired by the CalvinZ®][
static checking tool for multithreaded programs. Calvistipports
modular verification of multithreaded programs by annatagach
procedure with a specification; this specification is relate the
procedure implementation via abstraction relation thahluoes
the notions of simulation and reduction. In ongoing worle tio-
tions of reduction and atomicity are used by Qadeteal [46] to
infer concise procedure summaries in an analysis for rhodtded
programs.

An alternative approach for verifying atomicity using mbde
checking is being explored by Hatclit al [30]. In addition to us-
ing Lipton’s theory of reduction, they also investigate @prach
based on partial order reductions. Their experimentalli®esug-
gest that the model-checking approach for verifying atiyiis
feasible for unit-testing, where the reachable state sizaamaller
than in integration-testing.

Atomicity is a semantic correctness condition for mulithded
software. In this respect, it is similar to strict seriabay [43],

a correctness condition for database transactions, aedrizabil-
ity [31], a correctness condition for concurrent object®rifying
that an object is linearizable requires full program vegifiicn. We
hope that our analysis for atomicity can be leveraged toldpve
lightweight checking tools for related correctness caods.

Artho et al [1] have developed a dynamic analysis tool to identify
one class of “higher-level races”. The analysis is basechemb-
tion of view consistencylIntuitively, a view is the set of variables
accessed within a synchronized block. Thread A is view &nsi
tent with B if all views from the execution of A, intersectedthv
the maximal view of B, are ordered by subset inclusion. \iola
tions of view consistency can indicate that a program maysiregu
shared variables in a problematic way. View consistenciatiams
can also be detected statically [52]. ESC/Java has beendade
to catch a different notion of higher-level races, whereatestalue
from one synchronized block is used in a subsequent synizean
block [9].

In recent work, Wang and Stoller [53] developed severalritlyms
for checking atomicity dynamically, including the basigadithm
described in Section 3.3. Their work focuses primarily orrerex-
pressive algorithms that can verify additional executieguences
as serializable. They have not yet applied their algorittoriarge
programs. Our experiments on large programs motivated ¢he d
velopment of several crucial improvements to the basicritgu,
such as our support for redundant synchronization opeisiond
write-protected data, and has allowed us to validate theiefity
and effectiveness of our approach.

While our tool checks atomicity, other researchers havegsed
using atomicity as a language primitive, essentially immating
the serialized semanties>. Lomet [40] first proposed the use of
atomic blocks for synchronization. The Argus [39] and Avelb7]
projects developed language support for implementing iatoin
jects. Persistent languages [2, 3] are attempting to augatemic-
ity with data persistence in order to introduce transastioto pro-
gramming languages. A more recent approach to supportiomg-at
icity uses lightweight transactions implemented in thetiore sys-
tem [29]. An alternative is to generate synchronizationecadto-
matically from high-level specifications [14].

7 Conclusions

Developing reliable multithreaded software is notorigudifficult,
because concurrent threads often interact in unexpect@mmo-
neous ways. Programmers try to avoid unintended interscty
designing methods and interfaces that are atomic, buttiaél
testing techniques are inadequate for verifying atomicity

This paper presents a dynamic analysis designed to catoficato

ity violations would be missed by traditional testing orafit or
dynamic) race-detection techniques. This analysis has ingge-
mented and applied to a range of benchmark programs, and has
successfully detected atomicity violations in these pratg. In ad-
dition, our experimental results suggest that over 90% efitleth-

ods in our benchmarks are atomic, which validates our hygsigh

that atomicity is a fundamental design principle in muléhded
programs.

For future work, we hope to studwbrid atomicity checkers based
on a synthesis of the dynamic and static approaches. In ane co
bination, a static type-based analysis may verify many ebgoe
race-freedom and atomicity properties, and the dynamimiatty
checker could then focus on the unverified residue. For ratecd
tion, this hybrid approach has reduced the instrumentatierhead
by an order of magnitude [51, 42]; we expect comparable ingsro
ments when checking atomicity.

Acknowledgments We thank Martin Abadi, Shaz Qadeer, Rob
QO’'Callahan, and Scott Stoller for valuable comments onwusk.

We also thank Christof von Praun for his assistance in citigc

test programs. This work was partly supported by the NatiSoa

ence Foundation under Grants CCR-0341179 and CCR-0341387,
and by faculty research funds granted by the University dif@a

nia at Santa Cruz and by Williams College.

8 References

[1] C. Artho, K. Havelund, and A. Biere. High-level data racdn The
First International Workshop on Verification and Validatiof Enter-
prise Information System2003.

[2] M. P. Atkinson, K. J. Chisholm, and W. P. Cockshott. Pl an
Algol with a persistent heapACM SIGPLAN Noticesl7(7):24-31,
1981.

[3] M. P. Atkinson and D. Morrison. Procedures as persistizit ob-
jects. ACM Transactions on Programming Languages and Systems
7(4):539-559, 1985.

[4] R.-J. Back. A method for refining atomicity in parallelgafrithms.
In PARLE 89: Parallel Architectures and Languages Europs#ume
366 ofLecture Notes in Computer Sciengages 199-216. Springer-
Verlag, 1989.

[5] D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: A diatefciava
without data races. IRroceedings of the ACM Conference on Object-
Oriented Programming, Systems, Languages and Applicatzages
382-400, 2001.

[6] A.D.Birrell. Anintroduction to programming with threls. Research
Report 35, Digital Equipment Corporation Systems Rese@efter,
1989.

[7] C.Boyapati, R. Lee, and M. Rinard. A type system for preirey data
races and deadlocks in Java programs.Pfaceedings of the ACM
Conference on Object-Oriented Programming, Systems, uzges
and Applicationspages 211-230, 2002.

[8] C.Boyapati and M. Rinard. A parameterized type systemdoe-free
Java programs. IfProceedings of the ACM Conference on Object-

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Oriented Programming, Systems, Languages and Applicatmages
56-69, 2001.

M. Burrows and K. R. M. Leino. Finding stale-value erramsoncur-
rent programs. Technical Note 2002-004, Compaq SystemsaRes
Center, 2002.

A. T. Chamillard, L. A. Clarke, and G. S. Avrunin. An emigal
comparison of static concurrency analysis techniqueshriieal Re-
port 96-084, Department of Computer Science, UniversityViak-
sachusetts at Amherst, 1996.

J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkand M. Srid-
hara. Efficient and precise datarace detection for mudiittied object-
oriented programs. |Rroceedings of the ACM Conference on Pro-
gramming Language Design and Implementatigages 258-269,
2002.

E. Cohen and L. Lamport. Reduction in TLA. Proceedings of
the International Conference on Concurrency Theeplume 1466 of
Lecture Notes in Computer Sciengages 317-331. Springer-Verlag,
1998.

J. C. Corbett. Evaluating deadlock detection methadsdncurrent
software. |IEEE Transactions on Software Engineerir@2(3):161—
180, 1996.

X. Deng, M. Dwyer, J. Hatcliff, and M. Mizuno. Invariafiased
specification, synthesis, and verification of synchroiirain concur-
rent programs. Iinternational Conference on Software Engineering
pages 442-452, 2002.

T. W. Doeppner, Jr. Parallel program correctness tinaefinement.
In Proceedings of the ACM Symposium on the Principles of Progra
ming Languagespages 155-169, 1977.

M. B. Dwyer and L. A. Clarke. Data flow analysis for veiiifig prop-
erties of concurrent programs. Technical Report 94-04pafiment
of Computer Science, University of Massachusetts at Anhee94.

J. L. Eppinger, L. B. Mummert, and A. Z. SpectoCamelot and
Avalon: A Distributed Transaction FacilifMorgan Kaufmann, 1991.

L. Fajstrup, E. Goubault, and M. Raussen. Detectinglbeks in con-
current systems. In D. Sangiorgi and R. de Simone, edifiseed-
ings of the International Conference on Concurrency Theeojume
1466 ofLecture Notes in Computer Scienpages 332-347. Springer-
Verlag, 1998.

C. Flanagan and M. Abadi. Object types against racesl. [D. M.
Baeten and S. Mauw, editofBroceedings of the International Confer-
ence on Concurrency Thegryolume 1664 ot.ecture Notes in Com-
puter Sciencepages 288—-303. Springer-Verlag, 1999.

C. Flanagan and M. Abadi. Types for safe locking. In SSier-
stra, editor,Proceedings of European Symposium on Programming
volume 1576 ofLecture Notes in Computer Sciengeages 91-108.
Springer-Verlag, 1999.

C. Flanagan and S. N. Freund. Type-based race detefctiolava.
In Proceedings of the ACM Conference on Programming Language
Design and Implementatippages 219-232, 2000.

C. Flanagan and S. N. Freund. Detecting Race Condifiohsrge
Programs. InNorkshop on Program Analysis for Software Tools and
Engineering pages 90-96, 2001.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, B. Saxe,
and R. Stata. Extended static checking for Javdrbteedings of the
ACM Conference on Programming Language Design and Implemen
tation, pages 234-245, 2002.

C. Flanagan and S. Qadeer. A type and effect system doniaity.
In Proceedings of the ACM Conference on Programming Language
Design and Implementatippages 338—-349, 2003.

C. Flanagan and S. Qadeer. Types for atomicityroceedings of the
ACM Workshop on Types in Language Design and Implementation
pages 1-12, 2003.

S. N. Freund and S. Qadeer. Checking concise speatficafor mul-

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

tithreaded software. IWorkshop on Formal Techniques for Java-like
Programs 2003.

J. Gosling, B. Joy, and G. Steel@he Java Language Specification
Addison-Wesley, 1996.

D. Grossman. Type-safe multithreading in Cyclone.Phoceedings
of the ACM Workshop on Types in Language Design and Implement
tion, pages 13-25, 2003.

T. L. Harris and K. Fraser. Language support for lighty¢ trans-
actions. InProceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages and Applicatipages 388-402,
2003.

J. Hatcliff, Robby, and M. B. Dwyer. Verifying atomigitspecifica-
tions for concurrent object-oriented software using maxhelcking.
In Proceedings of the International Conference on Verificatidodel
Checking and Abstract Interpretatip8004.

M. P. Herlihy and J. M. Wing. Linearizability: A correméss con-
dition for concurrent objects.ACM Transactions on Programming
Languages and Systeni®(3):463-492, 1990.

C. Hoare. Monitors: an operating systems structuriogcept. Com-
munications of the ACML7(10):549-557, 1974.

Java Grande Forum. Java Grande benchmark suite. Alaifeom
http://www.javagrande.org/, 2003.

T. Kistler and J. Marais. WebL — a programming languagethe
web. InProceedings of the International World Wide Web Conference
volume 30 ofComputer Networks and ISDN Systepeges 259-270.
Elsevier, 1998.

N. Kobayashi. A partially deadlock-free typed proceakulus.ACM
Transactions on Programming Languages and Syst@0€2):436—
482, 1998.

N. Kobayashi, S. Saito, and E. Sumii. An implicitly-gg deadlock-
free process calculus. In C. Palamidessi, edi®ygceedings of the
International Conference on Concurrency Theowplume 1877 of
Lecture Notes in Computer Sciengages 489-503. Springer-Verlag,
2000.

L. Lamport and F. B. Schneider. Pretending atomicitgs&arch Re-
port 44, DEC Systems Research Center, 1989.

R. J. Lipton. Reduction: A method of proving propertigfsparallel
programs.Communications of the ACM8(12):717-721, 1975.

B. Liskov, D. Curtis, P. Johnson, and R. Scheifler. Immpéatation
of Argus. InProceedings of the Symposium on Operating Systems
Principles pages 111-122, 1987.

D. B. Lomet. Process structuring, synchronizatiord eecovery using
atomic actions.Language Design for Reliable Softwamages 128—
137, 1977.

J. Misra. A Discipline of Multiprogramming: Programming Theory
for Distributed Applications Springer-Verlag, 2001.

R. O’Callahan and J.-D. Choi. Hybrid dynamic data raegedtion.
In ACM SIGPLAN Symposium on Principles and Practice of Pdralle
Programming pages 167-178, 2003.

C. Papadimitriou.The theory of database concurrency conti@bm-
puter Science Press, 1986.

Polyspace technologies, 2003.
sSpace.com.

Available mattp: //wuw.poly-

E. Pozniansky and A. Schuster. Efficient on-the-fly date detection
in multithreaded C++ programs. IRroceedings of the ACM Sym-
posium on Principles and Practice of Parallel Programmimages
179-190, 2003.

S. Qadeer, S. K. Rajamani, and J. Rehof. Summarizinggglares in
concurrent programs. IRroceedings of the ACM Symposium on the
Principles of Programming Languagez004.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and Ariderson.

Eraser: A dynamic data race detector for multi-threadedjiams.
ACM Transactions on Computer Systeris(4):391-411, 1997.

[48] Standard Performance Evaluation Corporation. SPE®Hmarks.

Available fromhttp://www.spec.org/, 2003.

[49] N. Sterling. Warlock: A static data race analysis tdalProceedings

of the USENIX Winter Technical Conferenpages 97-106, 1993.

C. von Praun and T. Gross. Obiject race detection.Prisceedings
of the ACM Conference on Object-Oriented Programming, eByst
Languages and Applicationpages 70-82, 2001.

[50]

[51] C.von Praun and T. Gross. Static conflict analysis foltirtiireaded
object-oriented programs. Proceedings of the ACM Conference on
Programming Language Design and Implementatjoseges 115-128,

2003.

C. von Praun and T. Gross. Static detection of atomicigfations
in object-oriented programs. Morkshop on Formal Techniques for
Java-like Programs2003.

L. Wang and S. D. Stoller. Run-time analysis for atotyiciln Pro-
ceedings of the Workshop on Runtime Verificatiooslume 89(2) of
Electronic Notes in Computer Scien&gsevier, 2003.

[54] World Wide Web Consortium.
http://www.w3c.org, 2001.

[52]
(53]

Jigsaw. Available from

A Proof of Theorem 2

We start by defining two additional transition relations:=; ¥’,
which performs an instrumented step of threadndX = >,
which is a serialized variant of the instrumented semantics

Additional relations: ¥ =; ¥/ and ¥ & ¥
I 1
[INS STEP T
T(t,11(t), a,7")
o —>ta o’ (07 (i),H) =t (0/7 ¢,7 H,)
(0,9, 11) =¢ ¢’ Vu # t. A(TI(u)) =0
(0,6,1) = (o/, ¢/, [t := 7]) (0,0,11) B (07, ¢, 1I')

[INS SERIAL STER

We introduce three state predica®$t), R(t), and L(t), where
N(t) means that threatlis not in an atomic block, an®&(¢) and
L(t) mean that thread is in the right-mover and left-mover parts
of an atomic block, respectively. The following Reductioheb-
rem formalizes five conditions that are sufficient to coneltidat
all atomic blocks are reducible.

The statement of this theorem uses some additional notaEon
two actions, ¢ C State x State, we say thab right-commutesvith
cif forall X1, X9, X3, whenever(X1,32) € band(Xs,X3) € ¢,
then there existE) such tha(X;, ¥5) € cand(35, X3) € b. The
actionb left-commutesvith the actiorc if ¢ right-commutes witfb.
We also define thieft restrictionp - b and theright restrictiond - p
of an actionb with respect to a set of statpsC State.

o b d:ef

b'p d:cf

{(=,2)eb|Tep}
{(=,2) eb| 5 €p}

THEOREM5 (REDUCTION). Suppose that for alt,u € Tid
with ¢t # u:

Al. R(t), L(t), and N (t) form a partition ofState.
A2. (L(t) - =¢ - R(t)) is empty.

A3. (= - R(t)) right-commutes withs,.

A4. (L(t) - =) left-commutes witks,.

A5 if Y =; ¥, then® € R(u) & ¥ € R(u), and¥% €
L(u) & X' € L(u).

Suppose further thafy =* ¥ and Xy and X are in N(t) for all
t € Tid. ThenZy &* 3.

PROOF. See [25].

We now leverage this theorem to show that every instrumested
ecution trace is reducible.

RESTATEMENT OF THEOREM 2 (INSTRUMENTEDREDUCTION)
If (00, ®0,11p) =* (o,¢,1I) and = A(II) then (og,Ip) —*
(o, 10).

PROOF. We define the predicate¥(t), R(t), andL(t) necessary
to apply Theorem 5 (Reduction) as follows:

N Y {(0,6.00) | A@I(E) = 0}
R(t) “ {(0,6.10) | A(IL(t)) # O A 6(t) = InRight}
Lt) % {(0,6,10) | A(II(t)) # 0 A $(t) = InLeft}

These predicates satisfy the following five requirement3tofo-
rem 5, fort,u € Tid with ¢ # u:

def

Al They clearly partitiorState.

A2 (L(t)-=¢- R(t)) is empty, sincep(t) is never set tdnRight
while within an atomic block.

A3. (= - R(t)) right-commutes with=,, since ifR(t) holds af-
ter an action of threat] then that action must be by one of the
rules [NS ACCESS PROY; [INS ACQUIRE], [INS RE-ENTER,,
[INs ENTER, or [INS OTHER], all of which right-commute
with =,.

A4 (L(t) - =) left-commutes with=-,, since if L(¢) holds
before an action of thread, then that action must be
by one of the rules IS ACCESS PROY, [INS RELEASH,
[INS RE-ENTER, or [INS OTHER, all of which left-commute
with =,

A5, if ¥ =, ¥/, then® € R(u) < ¥/ € R(u) and® € L(u) <
¥ € L(u), since a step by threaddoes not changé(u) or
().

Hence by Theorem 5 (Reductiotyg, ¢o, 1) B (o, ¢, 1), and
therefore(og, Ip) —* (o, II).

