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Abstract

Precise dynamic data race detectors provide strong correct-

ness guarantees but have high overheads because they gener-

ally keep analysis state in a separate shadow location for each

heap memory location, and they check (and potentially up-

date) the corresponding shadow location on each heap access.

The BIGFOOT dynamic data race detector uses a combination

of static and dynamic analysis techniques to coalesce checks

and compress shadow locations. With BIGFOOT, multiple

accesses to an object or array often induce a single coalesced

check that manipulates a single compressed shadow location,

resulting in a performance improvement over FASTTRACK

of 61%.

CCS Concepts •Theory of computation → Program

analysis; •Software and its engineering → Concurrent

programming languages; Software defect analysis

Keywords Data race conditions, concurrency, static analy-

sis, dynamic analysis

1. Introduction

Data race conditions are a notorious problem in multithreaded

software, often resulting in erroneous outputs and viola-

tions of expected correctness properties such as sequential

consistency and atomicity. Much prior work has focused

on static [1, 2, 4, 10, 18, 21, 31, 37, 53] and dynamic

[15, 38, 40, 44, 45, 51, 59, 59] data race detection.

Static analyses are able to reason about all executions of a

program, but they generate false alarms or miss actual data

races due to their necessarily conservative approximations of

program behavior. In contrast, precise dynamic analyses offer

a stronger guarantee of reporting a race condition if and only

if a race occurs in the observed trace. The main limitation of

precise dynamic detection is performance. The most efficient

precise detectors, such as DJIT+ [40] and FASTTRACK [23]

have overheads close to an order of magnitude or more, which

is too high for many applications.

In general, precise dynamic race detectors work by keep-

ing, for each shared memory location in the target program,

a corresponding shadow location that records information

about the access history for that memory location. For ex-

ample, in DJIT+ each shadow location records the time of

the last read and write to that location by each thread [40].

FASTTRACK refines this representation to store only the most

recent read and write among all threads when possible [23].

The primary sources of overhead in dynamic race detectors

are: the space overhead of maintaining a shadow location for

each memory location in the target, and the time overhead

of updating shadow locations for each memory access of the

target. Dynamic analyses may sacrifice precision for reduced

overhead, but only at the cost of introducing undesirable false

alarms or missed races. In this paper, we present an optimized

precise dynamic data race detection algorithm, BIGFOOT,

that mitigates these overheads as follows:

1. Rather than keeping a distinct shadow location for each

field in an object, or each entry in an array, BIGFOOT

employs compressed representations using fewer shadow

locations per object/array.

2. Rather than checking and updating shadow location meta-

data at each memory access of the target program, BIG-

FOOT uses a sophisticated static analysis to optimize check

placement in the target code. In particular, it statically

eliminates redundant checks where possible and statically

combines multiple checks into a single coalesced check

covering multiple fields or array indices.

Figure 1 compares BIGFOOT’s static check placement

algorithm to the standard approach of performing a check at

each access. In the move method, a typical race detector

would instrument each of the six accesses with a check

verifying that the access is race free. In contrast, BIGFOOT

determines that the read check in each read-modify-write

sequence is redundant with the check on the subsequent write,

in the sense that the read will be involved in a data-race only

if the write is also in a race. Thus, the read checks are not

necessary to validate whether a trace is race free.

Furthermore, BIGFOOT combines the three write checks

into a single coalesced check CheckWrite(this.x/y/z)
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Standard Race Checks BIGFOOT Race Checks

class Point {

int x, y, z;

void move(int dx, int dy, int dz) {

int tmp;

CheckRead(this.x); tmp = this .x;

CheckWrite(this.x); this .x = tmp + dx;

CheckRead(this.y); tmp = this .y;

CheckWrite(this.y); this .y = tmp + dy;

CheckRead(this.z); tmp = this .z;

CheckWrite(this.z); this .z = tmp + dz;

}

}

void movePts(Point[] a, int lo, int hi) {

for(int i = lo; i < hi; i++) {

CheckRead(a[i]);

a[i] .move(1, 1, 1);

}

}

class Point {

int x, y, z;

void move(int dx, int dy, int dz) {

int tmp;

tmp = this .x;

this .x = tmp + dx;

tmp = this .y;

this .y = tmp + dy;

tmp = this .z;

this .z = tmp + dz;

CheckWrite(this.x/y/z);

}

}

void movePts(Point[] a, int lo, int hi) {

for(int i = lo; i < hi; i++) {

a[i] .move(1, 1, 1);

}

CheckRead(a[lo..hi]);

}

Figure 1. Check placement for precise data race detection.

covering all three fields. Coalescing field checks in this

manner is particularly helpful because it enables static shadow

location compression for objects. In particular, suppose that

all checks on Point objects are coalesced checks of the form

CheckWrite(p.x/y/z) or CheckRead(p.x/y/z). BIGFOOT

can then safely combine the shadow locations for the three

fields into a single shadow location, and the coalesced checks

then perform a single check-and-update operation on that

shadow location, in contrast to the six checks on three shadow

locations required by the traditional approach.

BIGFOOT optimizes array checks similarly, as shown in

the method movePts in Figure 1. That code iterates over all

array indices in a from lo to hi and moves each correspond-

ing Point. In contrast to a standard dynamic race detector,

which separately checks each array read, BIGFOOT coalesces

these checks into the single check CheckRead(a[lo..hi])

after the loop. Here, lo..hi denotes the closed-open interval

lo, lo+ 1, . . . , hi− 2, hi− 1.

To efficiently handle such coalesced checks, BIGFOOT

again employs a compressed representation for array shadow

locations. In contrast to objects however, this compressed

representation is chosen and adaptively refined at run time.

Specifically, an array like a is initially represented as a

“coarse-grained” single shadow location covering all array el-

ements. A call such as movePts(a,0,a.length) generates

a coalesced check CheckRead(a[0..a.length]) covering

all array elements, which ]is processed at run time by check-

ing and updating that array’s single shadow location. If a

subsequent call movePts(a, 0, a.length/2) generates a

check CheckRead(a[0..a.length/2]) covering just half

the array elements, the BIGFOOT run time would refine the

shadow state for a to be two shadow locations, each cover-

ing half of a. That check is then handled by appropriately

updating the first of these two shadow locations.

BIGFOOT’s adaptive mechanism for arrays, modeled after

SLIMSTATE [55], enables compressed array representations

under a variety of common access patterns including block-

based and strided accesses. If those patterns are not followed,

BIGFOOT reverts to the “fine-grained” representation of a

shadow location for each array element.

Imprecisions in BIGFOOT’s static analysis may lead to

sub-optimal check placement, as in the following example:

for(int i = 0; i < a .length; i++) {

if(predicate()) {

a[i] .move(1, 1, 1);

CheckRead(a[i]);

}

}

BIGFOOT’s method-local analysis will not statically coalesce

the array checks because it cannot statically determine which

elements are accessed. At run time, suppose a has a single

shadow location when this code runs. If predicate() al-

ways returns true, then all indices in a are accessed, and we’d

like to preserve the coarse-grained representation to save both

space and time. To do so, BIGFOOT’s run time defers checks

on arrays, and instead dynamically records a per-thread foot-

print of which indices have “pending” checks. BIGFOOT
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Race Check Motion and Coalescing Red. Check Metadata Compression Run-Time

Detector objects arrays Elimination objects arrays Overhead

FASTTRACK [23] no no no no no 7.3x

REDCARD [25] no no static static proxy static proxy, global 6.0x

SLIMSTATE [55] no dynamic no no dynamic 6.0x

SLIMCARD no dynamic static static proxy dynamic 5.1x

BIGFOOT static static+dynamic static, better static proxy dynamic 2.5x

Figure 2. Comparison to prior precise dynamic race detectors, and SLIMCARD (which combines REDCARD and SLIMSTATE).

“commits” the footprint for a thread and checks the corre-

sponding shadow locations for races when the thread next

performs a synchronization operation. This dynamic foot-

printing technique allows BIGFOOT to keep a single shadow

location for the array a, even in the presence of a scenario

like the above that is not amenable to static coalescing.

Figure 2 compares BIGFOOT to several prior precise race

detection algorithms: FASTTRACK, REDCARD (which stat-

ically eliminates some redundant checks and compresses

shadow state), SLIMSTATE (which dynamically compresses

array shadow state), and SLIMCARD (which combines the

REDCARD and SLIMSTATE analyses, as described in Sec-

tion 6). All were implemented in the ROADRUNNER frame-

work for Java [24]. The key innovations of BIGFOOT, namely

static check motion and coalescing, provide substantial per-

formance improvements, particularly when combined with

existing static and dynamic shadow compression techniques.

Detection Precision A data race detector is trace-precise

if it correctly determines whether a given trace has a race

condition or not. A trace-precise race detector is additionally

address-precise if it can also determine all addresses that

have race conditions. Using this terminology, FASTTRACK

and SLIMSTATE are address-precise. Our BIGFOOT core

algorithm is also address-precise, as we discuss in Section

3. Our BIGFOOT implementation, however, uses additional

check placement optimizations for which one data race may

prevent the detection of a subsequent race. Consequently, our

implementation is trace-precise but not address-precise, as

described in Section 5.1 In practice, the BIGFOOT implemen-

tation was address-precise in all our experiments.

We also note that since BIGFOOT defers checking until

after accesses occur, a data race may be detected only after

it has happened. This introduces several subtleties related

to precision. First, we currently assume for simplicity that

all loops terminate and consider all unchecked exceptions

to be programming errors. Thus, a race preventing a loop

from terminating or causing an unchecked exception may be

missed since the deferred check is never reached. However,

we did not see this occur in practice, and we discuss analysis

extensions to cover these items in Sections 3 and 5. In

addition, if a data race can corrupt the race detector’s analysis

1 REDCARD and SLIMCARD exhibit similar precision properties for the

same reasons.

1: acq(lock);
∅ • {b.f✸}

2: x = b.f;
{b.f✁} • {b.f✸}

3: rel(lock);
∅ • {b.f✸}

4: y = b.f;
{b.f✁} • ∅

5: check(b.f);
{b.f✁, b.f

√
} • ∅

6: acq(lock);
{b.f✁, b.f

√
} • {b.f✸}

7: z = b.f;
{b.f✁, b.f

√
} • ∅

8: rel(lock);
∅ • ∅

Figure 3. A code fragment with precise checks, and the

corresponding BIGFOOT analysis contexts from Section 3.

(All variables are thread-local, and objects thread-shared.)

state, it may similarly go undetected [5], but for type-safe

languages like Java, this cannot happen.

Contributions The primary contributions of this paper are:

• We define a theory of precise check placement for dy-

namic race detection and describe a core static analysis to

optimize check placement (Sections 2 and 3).

• We integrate static field proxy compression and dynamic

array shadow compression techniques to further reduce

run-time overhead (Section 4).

• We present our BIGFOOT prototype for Java (Section 5).

• We show that BIGFOOT’s static analysis scales well (re-

quiring on average less than 0.2s per method processed)

and reduces run-time overhead from 7.3x (for FAST-

TRACK) to 2.5x, an improvement of 61% (Section 6).

2. Theory of Check Placement

A key design goal of the core BIGFOOT algorithm is that the

checks inserted into a target program enable address-precise

data race detection. That is, BIGFOOT must insert checks that

are sufficient to detect all data races but that never report false

alarms. Reasoning about this requirement can be subtle. For

example, the code in Figure 3 contains a single check that

enables precise data race detection for all three accesses, but

it may not be immediately apparent why this is the case.

143



 ⋮

check(y.f)

rel(lock)

 ⋮

check(y.f)

 ⋮

t = y.f

 ⋮

check(y.f)

 ⋮ 

acq(lock)

check(y.f)

 ⋮

check r
ace

acq(lock)

check(y.f)

y.f = 1

rel(lock)

Thread 1                                 Thread 2

C
o

v
e

ri
n

g
 C

h
e

c
k
 R

a
n

g
e

✗

✔

✔

✗

check race

n
o

 a
c
q

s
n
o

 r
e
ls

data race

 ⋮

check(y.f)

acq(lock)
 ⋮ 

check(y.f)
 ⋮  

t = y.f
 ⋮

check(y.f)
 ⋮

rel(lock)

check(y.f)
 ⋮

check race

check race

check(y.f)

y.f = 1

rel(lock)

 ⋮

Thread 1                                 Thread 2

L
e

g
it

im
a

te
 

C
h

e
c
k
 R

a
n

g
e

✔

✔

✗

 ⋮

acq(lock)

check(y.f)

y.f = 2

n
o

 r
e
ls

✗

n
o

 a
c
q

s

 ⋮

 ⋮

(a) Covering Checks (b) Legitimate Checks

Figure 4. Precise and imprecise check placement locations.

In this section, we develop a theory of check placement

to characterize exactly where checks must be performed to

avoid false negatives and false positives. To simplify our

exposition, we initially do not distinguish between read and

write accesses (although our implementation extends these

ideas to do so, as described in Section 5).

Given an execution trace of a program, we say the trace

has a data race if it has two accesses to the same memory

location that are not ordered by the happens-before relation,

which is defined in the usual fashion [33, 40].

Similarly, a trace has a check race if it has two checks to

the same memory location that are not ordered by happens-

before. A precise check placement algorithm must ensure

that any execution trace of the target program has a data race

if and only if it has a check race.

Figure 4(a) illustrates where checks must be performed

in a trace to guarantee all data races are detected. The

trace shown has a data race because the happens-before

edges (shown as solid arrows) generated by synchronization

operations do not order the two accesses to y.f, as indicated

by the dashed edge. Any check performed by Thread 1

in the Covering Check Range will trigger a check race

corresponding to that data race. However, checks outside

that range will not, resulting in a false negative because the

access race would have no corresponding check race.

With this intuition, we say that a check covers an access

to the same location by the same thread if the check either:

• precedes the access with no intervening release, or
• succeeds the access with no intervening acquire.

Note that we treat acquire and released differently, as they

serve as sources and sinks for synchronization edges in the

happens-before graph, respectively. Returning to Figure 3,

the single check thus covers all three accesses in any trace

generated by this code. We show in the supplementary

appendix that if each access in a program has a covering

check, then any trace with a data race also has a check race.

That is, access coverage guarantees no missed races.

Figure 4(b) illustrates where checks may be performed in

a trace to guarantee all check races indicate data races. This

trace has no data race because the three accesses to y.f are

ordered by happens-before edges. Similarly, the checks inside

the critical section of Thread 1 (marked Legitimate Check

Range) produce no check races. However, a check outside

this range produces a check race, which would be a false

alarm since there is no corresponding data race.

We say that a check is legitimate for an access to the same

location by the same thread if the check either:

• precedes the access with no intervening acquire, or
• succeeds the access with no intervening release.

For example, in Figure 3, the check is legitimate for the

second access, but not the first or third.

With these notions of legitimacy and coverage, we say a

trace has precise checks if each access is covered by some

check (no missed races) and each check is legitimate for some

access (no false alarms). A program has precise checks if all

possible execution traces have precise checks.

3. Optimizing Check Placement

We next describe our static analysis for optimizing the place-

ment of precise checks.

3.1 BFJ Language and Semantics

We formalize our ideas in terms of the idealized language BFJ

(BIGFOOT Java) shown in Figure 5. A program P contains a

sequence of class definitions D and a collection of concurrent

threads s1‖...‖sn. Each class definition D contains field

and method declarations. Each field declaration is simply a

field name f . Each method declaration m(x){s; return z}
includes a unique method m, formal parameters x, and a body

s followed by a return of the local variable z. We omit static
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P ∈ Program ::= D s1‖ . . . ‖sn
D ∈ Defn ::= class c { f meth }
meth ∈ Method ::= m(x) { s; return z }

s ∈ Stmt ::= skip | s; s | if be s s
| loop{ s; { if be break }; s }
| x = e | x← y | acq(y) | rel(y)
| x = new c | y.f = x | x = y.f
| x = new_array z | y[z] = x | x = y[z]
| x = y.m(z) | check(C)

e ∈ Expr ::= x | v | e = e | . . .
be ∈ BoolExpr ⊆ Expr
C ∈ PathSet ::= 2Path

p ∈ Path ::= x.f | x[r]
r ∈ StridedRange ::= e..e :e

c ∈ ClassName f ∈ FieldName
m ∈ MethodName x, y, z ∈ V ar

Figure 5. BFJ Syntax.

types and local variable declarations, which are orthogonal

to our formal development. We leave the set of expressions

e unspecified but assume it includes at least null, boolean

values, and local variables.

To facilitate our technical development, BFJ statements

are in A-normal form [27] and include a loop construct with

the exit test in the middle of the loop body. We motivate and

describe the renaming operator x← y below.

BFJ includes the statement check(C) to explicitly check

for races on each heap location described by a path p ∈ C.

A path of the form x.f describes an object field, and path of

the form x[r] describes array accesses, where r is a strided

range of the form “b..e : k” represents the set of indices

{b + ik : b ≤ b + ik < e} to be checked. We use

b and b..e to abbreviate singleton (“b..(b + 1) : 1”) and

continuous (“b..e :1”) strided ranges, respectively. We defer

distinguishing read checks and write checks until Section 5.

3.2 Analysis Contexts

The BIGFOOT analysis is intraprocedural, analyzing and

inserting checks into each method one at a time. Within

each method, the analysis infers a context H •A for each

program point that describes the known history properties H
and anticipated properties A at that point:

Context ::= H•A H ⊆ History A ⊆ Anticipated

h ∈ History ::= be | p✁ | p
√

a ∈ Anticipated ::= p✸

These properties capture the following notions:

• Boolean expressions be from, e.g., branch tests.
• Past accesses p✁, meaning that path p was previously

accessed, with no subsequent release. The analysis must

ensure there is a corresponding covering check.

• Past checks p
√

, meaning that p was previously checked

within the method, with no subsequent release.
• Anticipated accesses p✸, meaning that the continuation

after the program point will access p (and therefore check

p), with no intervening acquire.

3.3 Check Placement Algorithm Overview

The BIGFOOT check placement algorithm defers checks as

long as possible and only inserts them into the program code

when they cannot be further deferred without risking false

alarms or missed data races; thus checks are only placed

before synchronization operations and control flow merge

points, and at the ends of methods and threads.

To illustrate how BIGFOOT uses context information to

place checks, we examine the analysis contexts in Figure 3.

As in all BFJ code, the variables in this snippet are local and

cannot be changed by other threads, although they may point

to shared objects.

BIGFOOT adds a past access p✁ to the history whenever

the code accesses p, and before an acquire it inserts a check

for any past access p✁ with no past covering check p
√

, as at

line 5. Since the acquire signifies the end of that past access’s

covering check range, placing the check any later would

introduce the potential for missed data races.

At each release, BIGFOOT removes each past access p✁

from the history. The release signifies the end of the legitimate

check range for those accesses, and placing checks for them

any later would introduce the potential for false alarms.

“Forgetting” a past access p✁ like this typically requires

BIGFOOT to place a covering check before the release, but

there are two situations when no check is needed: (1) a

covering check has already occurred (p
√

is in the history),

as at line 8; or (2) we anticipate a later access to the same

location, as at line 3. The anticipated later access (and hence

its covering check) will occur before leaving the original

access’s covering check range at the next acquire. Each check

p
√

must also be forgotten at a release because that check

does not cover any subsequent access to p.

Anticipated access information flows backwards, and

anticipated accesses in an acquire’s post-history must be

removed from its pre-history because checks covering those

future accesses will not cover accesses prior to the acquire.

We now examine the if statement in Figure 6(a). The

merged context ∅•{b.f✸} after the if describes properties

holding after both branches, and it omits past accesses occur-

ring only on one branch. BIGFOOT must ensure a covering

check exists for any such “forgotten” past access. That ne-

cessitates checking b.g in the “then” branch, after which it

is permissible to simultaneously forget both the past access

and past check on b.g when leaving the if. In contrast, x.f

is anticipated at the end of the “else” branch, and we skip

checking it at that point because the later access will have a

check covering both accesses.
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∅ • {b.f✸}
if (i<0) {

{i < 0} • {b.f✸, b.g✸}
y = b.g;

{i < 0, b.g✁} • {b.f✸}
check(b.g);

{i < 0, b.g✁, b.g
√
} • {b.f✸}

} else {

{i ≥ 0} • {b.f✸}
x = b.f;

{i ≥ 0, b.f✁} • {b.f✸}
}

∅ • {b.f✸}
z = b.f;

{b.f✁} • ∅
check(b.f);

{b.f✁, b.f
√
} • ∅

1: i = 0;
{i = 0} • {b.f✸, a[i]✸}

2: loop {
{a[0..i]✁} • {a[i]✸, b.f✸}

3: t = b.f;

{a[0..i]✁, b.f✁} • {a[i]✸}
4: a[i] = t;

{a[0..i]✁, a[i]✁, b.f✁} • ∅
5: i’←i;

{a[0..i’]✁, a[i’]✁, b.f✁} • ∅
6: i = i’ + 1;

{i=i’+1, a[0..i’]✁, a[i’]✁, b.f✁} • ∅
7: if (...) break;

{i=i’+1, a[0..i’]✁, a[i’]✁, b.f✁} • {b.f✸, a[i]✸}
8: }

{i=i’+1, a[0..i’]✁, a[i’]✁, b.f✁} • ∅
9: check(a[0..i],b.f);

Figure 6. Analysis contexts and check placements for BFJ method bodies containing (a) an if statement and (b) a loop.

Figure 6(b) illustrates how loops are handled. To simplify

our analysis, we require that the target x of any assignment

be a “fresh” variable not mentioned in the preceding history,

as the assignment would otherwise invalidate that history

information. The operation i’ ← i copies the value of i

into a fresh variable i’ and replaces all mentions of i in the

history by i’, thereby ensuring i is afterwards fresh, that

is, not mentioned in the history. BIGFOOT inserts renaming

statements on demand, but for simplicity our presentation

assumes any necessary renamings already exist.

BIGFOOT places all necessary checks at line 9 after the

loop using the following technique. First, BIGFOOT synthe-

sizes a loop invariant history that captures the set of accesses

that have been performed whenever execution reaches line

2. The invariant for our example is the underlined history

Hinv = {a[0..i]✁}. On entry to the loop, Hinv holds be-

cause i = 0, meaning no array elements have been accessed.

On the loop back edge, Hinv is entailed by the loop body’s

final history {i=i’+1, a[0..i’]✁, a[i’]✁, b.f✁}.
BIGFOOT defers checks until after the loop whenever

possible. In this case, the history at the loop exit on line

7 contains a[0..i’]✁ (the invariant rewritten due to the

renaming of i to i’ at line 5) and a[i’]✁ (the similarly

rewritten access from line 4). That history context captures

all accesses that must be checked after the loop. Given that

i’ = i + 1, BIGFOOT places the single check of a[0..i]

at line 9 to cover all array accesses from inside the loop.

BIGFOOT requires no global analysis to move the checks

out of the loop because all variables referenced in the code

are local and cannot be changed by other methods or threads.

This example also demonstrates that anticipation is crucial

for moving some checks out of loops. At the end of the

loop on line 8, the history contains b.f✁, but the back edge

returns to loop head on line 2, where b.f✁ is not in the

history. This would normally necessitate placing a check on

b.f inside the loop before the back edge. However, since

b.f✸ is anticipated at the loop head, we can avoid checking

b.f inside the loop and defer the check until after the loop.

Checks deferred until after a loop may never be executed if

the loop diverges. We currently assume all loops terminate but

could alternatively include a termination analysis and treat

potentially non-terminating loops specially by, for example,

periodically committing deferred checks inside the loop.

3.4 Check Placement Rules

We formalize BIGFOOT’s check placement algorithm as the

judgment ⊢ s : H •A → H ′•A′ defined in Figure 7. The

contexts H•A and H ′•A′ are the pre- and post-contexts of

s. The analysis is a combined forward/backward analysis;

history properties flow forward from pre-history H to post-

history H ′, while anticipated properties flow backwards from

post-anticipated A′ to pre-anticipated A.

For conciseness, we do not express check placement as

a rewriting transformation on program syntax. Instead, we

assume that a pre-transformation has already inserted a check

check(C) wherever one may be required. The goal of the

check placement algorithm is then to resolve each path set

variable C into the appropriate set of paths to be checked

at that point. The rules for ⊢ s : H •A → H ′•A′ include

antecedents constraining each C appropriately.

Context Entailment and Ordering Our rules use the nota-

tion h ∈ H for the usual syntactic notion of set membership

for history properties. In addition, we introduce a richer no-

tion of history entailment (H ⊢ h) that accounts for other

information in H . For example, if H = {z[i]✁, i = j} then

we can safely infer that H entails z[j]✁, written H ⊢ z[j]✁.

Similarly, we introduce anticipated entailment (H•A ⊢ a),

as in {i < 10}•{x[0..10]✸} ⊢ x[0..i]✸. Our implementation

uses Z3 [16] to reason about entailment.

While history and anticipated sets could be ordered by the

subset relation (⊆), we employ a stronger ordering (⊑) based

on entailment to achieve greater precision:

H1 ⊑ H2 iff ∀h ∈ H1. H2 ⊢ h
H ⊢ A1 ⊑ A2 iff ∀a ∈ A1. H•A2 ⊢ a
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⊢ s : H•A→ H ′•A′ (We assume x 6∈ Vars(H) in the rules modifying x: [ASSIGN],

[RENAME], [NEW], [READ], [A-NEW], [A-READ], and [CALL].)

[SKIP] ⊢ skip : H•A → H•A
[ACQ] ⊢ check(C); acq(x) : H•∅ → (H ∪ C

√
)•A where C = Checks(H, ∅)

[REL] ⊢ check(C); rel(x) : H•A → (H \ {_
√
, _✁})•A where C = Checks(H,A)

[ASSIGN] ⊢ x = e : H•A[x := e] → (H ∪ {x = e})•A where x 6∈ Vars(e)
[RENAME] ⊢ x← y : H•A[x := y] → H[y := x]•A

[NEW] ⊢ x = new c : H•(A \ x) → H•A
[A-NEW] ⊢ x = new_array z : H•(A \ x) → H•A

[WRITE] ⊢ y.f = x : H•(A ∪ {y.f✸}) → (H ∪ {y.f✁})•A
[A-WRITE] ⊢ y[z] = x : H•(A ∪ {y[z]✸}) → (H ∪ {y[z]✁})•A

[READ] ⊢ x = y.f : H•(A \ x ∪ {y.f✸}) → (H ∪ {y.f✁})•A
[A-READ] ⊢ x = y[z] : H•(A \ x ∪ {y[z]✸}) → (H ∪ {y[z]✁})•A

[IF]
H1 = Hin ∪ {be} ⊢ s1 : H1•A1 → H ′

1•Aout

H2 = Hin ∪ {¬be} ⊢ s2 : H2•A2 → H ′
2•Aout

C1 = Checks(H ′
1, H

′
1 ⊓H ′

2, Aout) C2 = Checks(H ′
2, H

′
1 ⊓H ′

2, Aout)

Ain = H1•A1 ⊓H2•A2 Hout = (H ′
1 ∪ C

√

1 ) ⊓ (H ′
2 ∪ C

√

2 )

⊢ if be {s1; check(C1)} {s2; check(C2)} : Hin•Ain → Hout•Aout

[SEQ]

⊢ s1 : H1•A1 → H2•A2

⊢ s2 : H2•A2 → H3•A3

⊢ s1; s2 : H1•A1 → H3•A3

[LOOP]
⊢ s : Hinv•Ain → H•Ainv

Hback = H ∪ {¬be} Hout = H ∪ {be}

Cin = Checks(Hin, Hinv, Ain) Hin ∪ C
√

in
⊒ Hinv

Cback = Checks(Hback, Hinv, Ain) Hback ∪ C
√

back
⊒ Hinv

Hback ⊢ Ainv ⊑ Ain Hout ⊢ Ainv ⊑ Aout

⊢ check(Cin); loop{ s; { if be break }; check(Cback) } :
Hin•Ain → Hout•Aout

[CALL]

C = Checks(H,H \KillSetHistory(m), A)
H ′ = (H ∪ C

√
) \KillSetHistory(m)

A = A′ \ x \KillSetAnticipated(m)

⊢ check(C); x = y.m(z) : H•A→ H ′•A′

⊢ s ⊢ meth ⊢ D ⊢ D s
[STMT] ⊢ s : ∅•A→ H•∅

C = Checks(H, ∅)

⊢ s; check(C)

[METHOD]

⊢ s

⊢ m(x) { s; return z }

[CLASS]

∀meth ∈ meth. ⊢ meth

⊢ class c { f meth }

[PROGRAM] ∀D ∈ D. ⊢ D
∀i. ⊢ si

⊢ D s1‖...‖sn

Figure 7. Check Placement Rules.

These orderings generate corresponding meet operators,

where the meet on anticipated sets additionally takes his-

tory sets to reason about entailment.

H1 ⊓ H2 = {h∈H1∪H2 : H1 ⊢ a,H2 ⊢ a}

H1•A1 ⊓ H2•A2 = {a∈A1∪A2 : H1•A1⊢a,H2•A2⊢a}

Analysis Rules The analysis rules are somewhat complex

due to their bidirectional nature and the subtle properties

being captured. We present the technical details of our core

rules below, but subsequent paper sections do not assume an

in depth understanding of all of their details.

[REL]: Since past accesses need to be checked before a

release, this rule targets the syntax check(C); rel(x) and

uses the function

Checks(H,A) = { p : p✁ ∈ H,H 6⊢ p
√
, H•A 6⊢ p✸ }

to ensure that the path set C contains any path p that was

accessed (p✁ ∈ H) but not yet checked and is not anticipated.

(If p is anticipated, then the future check on the anticipated

access serves as the covering check for the past access.)

The post-history removes (1) all prior checks (denoted

_
√

) because these checks do not cover accesses after the

release and (2) all prior accesses (denoted _✁) because we

are leaving the legitimate check range for them.

[ACQ]: This rule for check(C); acq(x) ensures C contains

any path p that was accessed but not checked. The post-

history contains the newly checked paths (where C
√

abbre-

viates {p
√
| p ∈ C}). The pre-anticipated set must be empty

because any anticipated access would need to occur before

this acquire.

[READ]: This rule matches the syntax x = y.f . To simplify

our analysis, we require that the target of any assignment

be to a “fresh” variable not mentioned in the pre-history H ,
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as the assignment would otherwise invalidate that history

information. The [READ] rule adds past access y.f✁ to the

post-history. The pre-anticipated paths become A\x∪{y.f✸},
where A \ x removes all properties mentioning x from A.

[RENAME]: As mentioned above, assignments can only target

“fresh” variables not in H , but in some cases, e.g. before a

loop back edge, we may need to modify an existing non-fresh

variable y. We cannot simply remove y from the history, as

that might remove past accesses with pending checks, such

as y.f✁. Instead, the renaming operation x ← y copies the

value of y into a fresh variable x, and replaces all mentions of

y in the history H by x, with the result that y is now “fresh”

(not mentioned in the history) and can be an assignment

target. To illustrate this rule, consider the renaming i ← i’

on line 5 in Figure 6(b). The history prior to the renaming

contains a[0..i]✁ and a[i]✁. After renaming, we have

a[0..i’]✁ and a[i’]✁, enabling us to continue deferring

the checks for those accesses.

[WRITE]: This rule for y.f = x adds the access y.f✁ to the

post-history, and y.f✸ to the pre-anticipated set.

[ASSIGN]: This rule for the assignment x = e adds the

boolean expression x = e to the post-history. We require

x 6∈ Vars(e) to ensure the post-history does not refer to

the pre-value of x. The pre-anticipated set is computed from

the A via the substitution A[x := e], which replaces all

occurrences of x with e in each p✸ ∈ A. Since anticipated

paths are not closed under this substitution, we remove from

the result any syntactically ill-formed anticipated paths.

[IF]: Conditionals may require checks to be placed at the

end of each branch, and so this rule targets the syntax

if be {s1; check(C1)} {s2; check(C2)}. This rule first

computes the post-histories H ′
1 and H ′

2 and pre-anticipated

sets A1 and A2 for s1 and s2. The merged history H ′
1 ⊓H ′

2

describes properties holding after both branches but may

leave out accesses that occurred only on one branch. We

introduce the following variant of the Checks function to

compute the unanticipated unchecked past accesses in H that

must be checked when H is approximated by H ′:

Checks(H,H ′, A) =
{ p : p✁ ∈ H,H ′ 6⊢ p✁, H 6⊢ p

√
, H•A 6⊢ p✸ }

Thus, C1 = Checks(H ′
1, H

′
1 ⊓ H ′

2, Aout) are those paths

that must be checked at the end of the “then” branch, and

similarly for C2 on the “else” branch. The contexts at the

end of the branches are then H1 ∪ C
√

1 and H2 ∪ C
√

2 , and

these are merged via ⊓ to yield the final history Hout. The

anticipated pre-context Ain is computed by merging together

the anticipated contexts preceding s1 and s2.

[LOOP]: Loops similarly require checks on the two paths

meeting at the loop head, and this rule targets the form:

check(Cin); loop{ s; { if be break }; check(Cback) }

In this rule, Hin and Hback are the pre-histories of check(Cin)

and check(Cback), respectively, and Hinv is the loop-

invariant history at the loop head. As in [IF], the Checks

function uses these sets and Ain, the anticipated set at the

loop head, to compute Cin and Cback. The side conditions

Hin ∪ C
√

in
⊒ Hinv and Hback ∪ C

√

back
⊒ Hinv ensure that

properties in Hinv are true on all paths into the loop head.

Note that Hinv, H , and Hback are defined via mutual

recursion; they are computed as part of a greatest fixed point

computation over a method body. The computation is seeded

with an initial conjecture for Hinv that is then refined via a

form of predicate abstraction. (See Section 5.) An analogous

anticipated set Ainv characterizing what is anticipated prior

to the loop exit test is used in the computation of Ain.

[CALL]: A method call may require checks prior to the

call if the callee performs synchronization (either directly

or indirectly via a nested method call). Thus we match

syntax of the form check(C); x = y.m(z). The function

KillSetHistory(m) denotes the set of history properties

killed by the side effects of method m, and contains:

{ _✁} if m acquires a lock

{ _✁, _
√
} if m releases a lock

The function KillSetAnticipated(m) describes anticipated

accesses killed by m. It is {_✸} if m acquires a lock and ∅ oth-

erwise. Our implementation pre-computes KillSetHistory(m)
and KillSetAnticipated(m) using a separate whole program

analysis. Checks are added before the call for any unchecked

accesses C that are killed by the call, and the post-history

H ′ is derived from the pre-history H and C by removing all

such killed properties.

Correctness Sketch Our companion technical report [42]

provides a detailed proof showing that the BIGFOOT algo-

rithm described so far is correct in that it is address-precise.

We present a short outline of our argument below.

We first formalize an operational semantics for BFJ that

evaluates program P = D s1‖ . . . ‖sn via a sequence of

states Σ0 →
a1 Σ1 →

a2 . . .→an Σn, where Σ0 is an initial

state for P and Σn is a final terminating state. This evaluation

sequence yields a trace α = a1.a2 . . . an describing the mem-

ory accesses, race checks, and synchronization operations

performed by P .

We also define a judgement D;α 
 Σ describing when

a run-time state has correct checks in the context of an

execution history α. This judgement most notably ensures

that, for each thread t, the context H•A for thread t’s current

program point is consistent with Σ and α. This judgement

entails the following: 1) Each expression be ∈ H is true when

evaluated by t in the current state Σ. 2) If p✁ ∈ H and p
denotes a memory l, there is an access to l in by t α with

no later release. (Each p
√
∈ H must have similar check). 3)

Each check by t in α is legitimate for a preceding access. 4)

Each access to a location l by t in α is either covered by a

check, or t is still in that access’s covering check range and
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there is some path p denoting l such that either p✁ is in H or

p✸ is in A.

The first two requirements show that the history context

soundly approximates program behavior. The third and fourth

guarantee that each check performed by t is legitimate and

that each access by t has either been covered by a check or

will be covered by deferred check performed later in the trace.

Provided ⊢ P , the initial state satisfies the criteria for

well-formed states (i.e., D; ǫ 
 Σ0), and we show via a

preservation argument that it holds for each subsequent state,

including the last, i.e., D;α 
 Σn. Since each thread in Σn

has terminated and will perform no subsequent checks or

accesses, the rules for (
) imply that α has precise checks.

Consequently, the checks in P are address-precise. That is, if

⊢ P and P generates a trace α, then for any address l, α has

a data race on l if and only if it has a check race on l.

4. Check Coalescing & Shadow Compression

Post-Analysis Path Coalescing In preparation for our

shadow compression algorithms, we perform one last co-

alescing step on each set of checks added to the program.

Specifically, for each check(C) statement, we divide the

paths in C into equivalence classes based on the path desig-

nator: that is, d1.f1 and d2.f2 are in the same class if d1 and

d2 refer to the same object in the check’s pre-history written

H ⊢ d1 = d2), and similarly for array paths.

We then coalesce each group d1.f1, d2.f2, . . . , dn.fn
sharing equivalent designators to the coalesced field path

d1.f1/f2/ · · · /fn. We also coalesce each group of paths

d1[b1..e1 : k1], . . . , dn[bn..en : kn] to one array path d1[b..e :
k] such that the strided range “b..e : k” captures the exact

same set of indices as the n original strided ranges. This

step necessitates solving a collection of integer constraints

over program expressions, but those constraints have a form

that cannot be handled by, e.g., Omega [41] or effectively

solved directly via Z3. Thus, to find a suitable b, e, and k, our

implementation tries various combinations of the bounds and

step sizes from the original strided ranges. This combinato-

rial approach can be expensive if there are a large number

of strided ranges, but we have found it effective in practice.

If a coalesced path cannot be found, we simply keep the

original set of paths. We could alternatively try to divide the

set into two or more coalescible subsets, but this provided

little benefit in practice.

Shadow Compression A precise dynamic race detector

typically maintains a distinct shadow location for each ob-

ject field or array element. Thus, an object pt with three

fields requires three shadow locations and check(pt.x/y/z)
performs three shadow-location operations. Similarly, an

array a of n elements requires n shadow locations, and

check(a[0..n]) performs n shadow-location operations.

However, check coalescing enables us to identify groups

of shadow locations that can be compressed into a single

shadow location at run time with no loss in precision. More-

over, a coalesced check covering a compressible group only

requires a single shadow-location operation, yielding sub-

stantial performance benefits. Compressible locations can be

identified statically or dynamically. We have found the com-

bination of static compression for object fields and dynamic

compression for array elements yields the best performance.

Static Field Compression We identify fields of a class that

are compressible via a static shadow proxy analysis [25].

Given a class with fields x and y, field x is a proxy for y if

every check check(p.· · · /y/· · · ) also checks p.x. In this

situation, any trace exhibiting a race on p.y will also have a

race on p.x. Hence, we can compress the shadow locations

for x and y into a single location while still being able

to distinguish race-free executions from those with races.2

Identifying field proxies requires a single pass over all checks.

Dynamic Array Compression We could express similar

proxy relationships for array elements. For example, a[0]

could be a proxy for all array entries a[0..n] if all checks

on the array all have the form check(a[0..n]). Similarly

a[i%2] could be the proxy for each a[i] if all checks

have the form check(a[0..n:2]) or check(a[1..n:2]).

REDCARD [25] used this approach, but its static array proxy

analysis failed to scale and was too imprecise to capture many

proxy relationships, as we demonstrate in Section 6.

BIGFOOT instead makes array shadow compression

choices dynamically using an extension of the approach

introduced in the SLIMSTATE checker [55]. Specifically,

BIGFOOT augments static array check coalescing with a

complementary dynamic coalescing technique based on array

footprints. For each array a, the BIGFOOT run time main-

tains a per-thread footprint of which indices must be checked

prior to that thread’s next synchronization operation. When a

thread t performs check(a[b..e:k]), BIGFOOT adds the

strided range b..e:k to t’s footprint for a. In this way, many

individual check operations that were not coalesced statically

may be coalesced dynamically into a single, large footprint.

At thread t’s next synchronization point, its footprint for a is

“committed” and the necessary shadow-location operations

are performed to verify race freedom.

BIGFOOT initially compresses the shadow state for the en-

tire array into a single shadow location. It then adaptively re-

fines that representation whenever it must commit a footprint

that is not consistent with the array’s current representation.

As in SLIMSTATE, BIGFOOT supports compression modes

matching common patterns of array accesses, including block-

based and stride-based patterns. SLIMSTATE processes every

individual array access at run time to build its dynamic foot-

prints. By statically coalescing checks, BIGFOOT eliminates

much of that overhead.

2 While this optimization guarantees that we precisely identify race-free

traces, we may not identify all memory locations with races since a race on

x may or may not imply a race on y. This subtlety goes away if we consider

only symmetric proxy relations, e.g.when y is also a proxy for x.
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5. Implementation

We have implemented our analysis in the BIGFOOT checker

for Java. BIGFOOT consists of a static component (STATICBF)

and a dynamic component (DYNAMICBF). STATICBF reads

in a bytecode program and a list of classes and methods

to transform, and it outputs a version of the program with

explicit race checks for all object and array accesses in the

specified methods. DYNAMICBF is the complementary dy-

namic race detector that reads in the instrumented program,

runs it, and reports any races observed.

Extending the BFJ analysis to the full Java language is

straightforward, and we describe the most important aspects

of STATICBF below. BIGFOOT handles all basic synchro-

nization operations present in Java, including locks, volatile

variables, fork/join, and wait/notify, as described in [23].

Alias Expressions and Precision STATICBF augments

BFJ’s set of boolean expression be with heap alias expres-

sions of the form x = y.f and x = y[z], which enable us

to reason about aliasing when deciding entailment. Those

expressions are added to the history on field/array reads and

are retained as long as they are valid under the assumption

that the target is race free. If an alias expression is invalidated

by a data race at run time, we may miss reporting some

subsequent data races (because race checks were not placed

in the necessary positions), but we will always detect the

initial race.

acq(lock);

x = a.f; // x = a.f

s = x.g;

y = a.f; // y = a.f

t = y.g;

check (a.f, x.g);

rel(lock);

For example, consider the

code fragment to the right,

which includes the alias expres-

sions recorded by STATICBF.

Those alias expressions enable

STATICBF to conclude x = y

at the check operation, mean-

ing that the check on x.g cov-

ers the access to y.g. Thus, no check on y.g is inserted.

However, those alias assumptions could be violated by a racy

write to a.f in between the two reads, and thus the race on

a.f could effectively hide a race on y.g.

While utlizing local alias expressions enables STATICBF

to better optimize check placement, it means that, in the-

ory, BIGFOOT is trace precise but not address precise. In

practice, however, BIGFOOT was address-precise for all of

our benchmark runs, which we verified via an additional dy-

namic analysis that checks that each observed execution trace

performs precise checks (in the sense of Section 2).

5.1 STATICBF

STATICBF is built on top of the WALA analysis frame-

work [54]. WALA represents methods as CFGs over SSA

instructions and analyzes all methods in a call graph con-

structed using a 0-CFA analysis. To ensure method CFGs

are amenable to our analysis, STATICBF performs an ini-

tial pass over the target to (1) rewrite each loop as an if

statement containing a do-while loop matching BFJ’s syn-

tax, and (2) eliminate all critical edges from the CFGs (see,

e.g., [3]). We use Soot [50] for this pass. We also precompute

KillSetHistory and KillSetAnticipated via a simple inter-

procedural dataflow analysis. STATICBF then inserts checks

into each method using a method-local dataflow analysis.

The initial context for each program point is {h : h ∈
History}•{a : a ∈ Anticipated}, and the analysis com-

putes the greatest fixed point solution for those contexts ac-

cording to the rules in Figure 7. To simplify the implemen-

tation, we compute context properties via separate passes

for (1) boolean and alias expressions, (2) past accesses, (3)

anticipated accesses, and finally (4) past checks and the set C
for each check(C). All passes are forward analyses, except

for the anticipated accesses pass.

STATICBF handles SSA φ-functions as they were handled

in REDCARD [25]. Also as in REDCARD, STATICBF tracks

extended paths containing multiple field/array references (as

in a[i].f or b.f.g), which are necessary for maintaining

precision when merging contexts encoding equivalent alias-

ing facts via different local variables. We implement the en-

tailment relations via the Z3 SMT Solver [16].

After applying the final coalescing step and static field

proxy analysis described in Section 4, STATICBF generates

a new version of the target code with the necessary checks

inserted. These checks take the form of method calls into

the DYNAMICBF run time. Paths in check statements refer

to SSA variables and variables introduced via the [RENAME]

rule, and not the stack slots and locals present in the original

bytecode. Thus, STATICBF inserts additional locals and

load/store instructions to reify them in the instrumented target.

Our relatively naive algorithm may introduce extraneous

memory loads/stores, and we apply the Soot optimizer in

a post-transformation pass to eliminate them.

Distinguishing Reads and Writes Up to this point, we have

not distinguished reads and writes. However, STATICBF

must do so because precise dynamic race detectors treat

them differently. In particular, two concurrent accesses are

considered conflicting only when at least one is a write.

To account for this, we extend our notions of legitimate

and covering checks. A write check is only legitimate for a

write access, but a read check is legitimate for both write and

read accesses. A write check can cover write or read accesses,

but a read check can only cover read accesses. In addition,

contexts record whether each p✁ and p✸ is a read or write

access, and whether each p
√

is a read or write check. The

analysis rules and coalescing operations are also extended

appropriately.

Loop Invariants STATICBF infers the loop invariant Hinv

for rule [LOOP] via a form of Cartesian predicate abstrac-

tion [26, 30]. Specifically, STATICBF identifies the loop’s lin-

ear induction variables and trip count [28, 56] and then builds

an initial set Hheuristic of boolean constraints and past ac-

cesses consistent with that information. Since this algorithm

does not reason precisely about synchronization, function
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calls, and various other bytecode features, it may produce

some incorrect properties. Thus, STATICBF repeatedly ana-

lyzes the loop body to infer the maximal Hinv ⊆ Hheuristic

that is valid loop invariant as part of its dataflow analysis

passes. STATICBF similarly infers the anticipated invariant

Ainv by constructing an initial Aheuristic and computing the

maximal valid Ainv ⊆ Aheuristic . If no induction variables

can be identified, then Aheuristic is the empty set, and no

loop invariant are inferred. Irreducible loops and complex

computations may be problematic for our algorithm, but it is

quite effective in practice.

Static Fields In the JVM, a thread’s first access to a static

field may synchronize with the declaring class’s static initial-

izer to ensure proper behavior [34]. STATICBF provides a

command line flag to treat static field accesses as potential

synchronization so that checks will not be deferred across

them. We use this flag for several benchmarks where this

matters. (Other instructions that may synchronize with static

initializers, e.g. type casts, are handled similarly.)

Exceptions STATICBF reasons about control paths for

checked exceptions [29], but assumes unchecked exceptions,

such as NullPointerExceptions, are errors in the target

program and guarantees precision only for error-free traces.

This is an artifact of our current implementation and not a

fundamental limitation. Unchecked exceptions could be fully

handled via a more sophisticated code translation scheme

inside STATICBF, but given the complexity of the resulting

code, a better approach would be to integrate parts of the

analysis into the JVM’s exception mechanism. Our current

treatment of exceptions did not lead to missed race checks in

any of our benchmark experiments.

5.2 DYNAMICBF

We built our complementary DYNAMICBF dynamic analysis

in the ROADRUNNER framework [24]. Dynamic footprinting

and array shadow compression are implemented as in the ear-

lier SLIMSTATE checker and we use FASTTRACK’s adaptive

epoch representation [23] for shadow locations. BIGFOOT fol-

lows ROADRUNNER’s standard treatment of libraries: fields

of Java’s core library classes are not checked for races,

and synchronization operations internal to those libraries

are assumed not to be used to protect any of the target’s

data and are ignored. However, several key library methods

from java.lang.Object and java.lang.Thread, such as

Object.notify and Thread.start, are treated specially

as synchronizing operations. These assumptions are shared

by all checkers we evaluate, and also included in STATICBF.

Their violation may impact precision.

6. Validation

We validate BIGFOOT’s performance by comparing it to

FASTTRACK [23], SLIMSTATE [55], REDCARD [25], and

SLIMCARD (Section 6.2) on the JavaGrande [32] and Da-

Capo [6] benchmark suites. To facilitate comparison the de-

tectors share as much common implementation as possible.

We configured the JavaGrande programs to use their

largest data sizes and 16 worker threads. We also fixed racy

barrier implementations in several of them. We configured the

DaCapo benchmarks to use their default sizes, but we exclude

tradebeans and eclipse because of incompatibilities with

our underlying framework and other known issues [55]. We

additionally exclude several specific methods from the other

programs that ROADRUNNER cannot properly instrument

because the resulting code would exceed a JVM limit on

method size. Several DaCapo programs use reflection heavily.

To facilitate building the call graph for those programs in

STATICBF and REDCARD, we used a modified version of

Tamiflex [7] to eliminate reflection.

Since ROADRUNNER does not support the specialized

class loading features used by the DaCapo test harness, we

implemented a simplified version of that harness. It runs a

target’s workload several times in a warm up phase and then

measures the running time for 10 iterations of the workload.

We used that harness for the JavaGrande programs as well.

We report the means of ten such trials.

We verified all race detection tools examined reported

the same races (modulo variations due scheduling) manually.

All experiments were performed on a 2.4GHz 16-core AMD

Opteron processor with 64GB running Ubuntu Linux and

Oracle’s Java HotSpot 64-bit Server VM version 1.8.

6.1 STATICBF

BIGFOOT took 0.16 seconds per method on average to

process the benchmark programs, as shown in Table 1. With

careful caching of SMT solver results, only about 10% of

this time was spent solving Z3 queries. Together, call graph

construction for computing method kill sets and reasoning

about heap and boolean constraints accounted for more than

half of the running time in most cases. We have focused on

implementation simplicity and high precision. More careful

tuning would likely lead to significant improvements.

6.2 DYNAMICBF Time Overhead

Figure 8 shows, for each program, how many race checks

on shadow locations FASTTRACK (left graph) and BIGFOOT

(middle graph) perform relative to the number of heap ac-

cesses. FASTTRACK performs a check on each access, mean-

ing its check ratio ( # Checks

# Accesses
) is always 1. For BIGFOOT,

the average check ratio is 0.43, and much smaller for some

programs, particularly those in which traversals over large

arrays are covered by a single coalesced check. BIGFOOT’s

check ratio is also substantially lower than that of REDCARD

(0.73), SLIMSTATE (1.0), and SLIMCARD (0.76).

Table 1 shows the base running time for each program and

the overhead of each checker. Overhead is the additional time

beyond the base time necessary to check a program:

CheckerOverhead = CheckerTime− BaseTime
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Figure 8. Check Ratio for FASTTRACK and BIGFOOT, and BIGFOOT’s overhead relative to the FASTTRACK overhead.

Comparison to FASTTRACK BIGFOOT is significantly

faster than the other detectors. As shown in the last column

of Table 1, BIGFOOT incurs only 39% of the overhead

of FASTTRACK. The right-most graph in Figure 8 shows

this improvement visually. BIGFOOT is most effective on

programs exhibiting highly-structured access patterns to large

data sets, and thus low check ratios, such as crypt, moldyn,

montecarlo, and sunflow. Moving checks out of loops

and coalescing them accounts for much of this improvement.

BIGFOOT is also effective on programs with many redundant

checks that can be eliminated altogether, such as sparse.

It is interesting to note that several programs do not follow

the expected trend. For series, the FASTTRACK overhead

of only 1% is mostly due to internal ROADRUNNER book-

keeping, which leaves little opportunity for improvement.

The lufact benchmark performs a triangular array computa-

tion whose array accesses are readily coalesced by BIGFOOT,

resulting in a small check ratio. However, that triangular pat-

tern is not amenable to our online array state compression

algorithm, meaning that the array’s shadow representation be-

comes fine-grained and each coalesced check induces many

shadow location operations.

In other benchmarks, such as h2 and avrora, bookkeep-

ing for synchronization operations accounts for a greater

fraction of checking overhead, diminishing the benefit of op-

timizing memory operations with BIGFOOT. The degraded

performance for tomcat appears to be caused by higher con-

tention on interal ROADRUNNER data structures when using

BIGFOOT.

Field compression via proxies accounted for about 5%

of the savings in general, but over 50% of the savings in

raytracer and sunflow.

Comparison to REDCARD REDCARD eliminates one

form of redundant check [25], namely checks on accesses

where the current thread has already accessed (and checked)

that location within the same release-free span. The BIG-

FOOT check placement algorithm is able to eliminate other

forms of redundancy by both reasoning about anticipated

accesses and moving checks. For example, BIGFOOT can

eliminate more redundant checks and move checks out of

loops, as shown in Figure 6.

REDCARD also performs static proxy analysis, but the

array component crucially depends upon globally-computed

allocation-site points-to information. As such, REDCARD’s

static analysis fails to terminate within four hours on many

benchmarks, as indicated by the † symbol in Table 1. We use

REDCARD’s redundancy analysis without proxies for those

programs. Moreover, imprecisions in the proxy analysis limit

its effectiveness even on small programs.

Overall, the check ratio and overhead reduction for RED-

CARD were 0.73 and 17%, respectively. In contrast, the check

ratio and overhead reduction for BIGFOOT were were 0.43

and 61%. BIGFOOT’s ability to move checks out of loops is

key to achieving this improvement, particularly when coupled

with dynamic array shadow compression.

Comparison to SLIMSTATE SLIMSTATE introduced the

dynamic array compression scheme we use in BIGFOOT, but

its check ratio is 1 because it processes every access at run

time. BIGFOOT offers two crucial improvements: 1) BIG-

FOOT eliminates many redundant checks. 2) While SLIM-

STATE must process every individual array access at run

time to build its footprints, BIGFOOT statically coalesces

array checks where possible, thereby reducing the amount

of run-time footprint processing and eliminating much of

SLIMSTATE’s dynamic footprint construction overhead. BIG-

FOOT’s overhead is less than half of SLIMSTATE’s as a result.

Field compression, and moving field checks out of loops,

contributes to the performance savings as well.
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STATICBF Dynamic Analyses

Methods

Optimized

(count)

Time

Method

(sec)

BIGFOOT

Check

Ratio

Base

Time

(sec)

Time Overhead

(x Base Time)

Time Overhead vs. FT

Program
(

RC

FT

)(

SS

FT

)(

SC

FT

)(

BF

FT

)

FT RC SS SC BF

crypt 148 0.67 0.00000028 0.39 96.21 62.41 16.87 16.11 0.07 (0.65) (0.18) (0.17) (0.01)

series 144 0.10 0.000042 119.39 0.01 0.01 0.01 0.01 0.01 (1.00) (1.00) (1.00) (1.00)

lufact 168 0.15 0.0022 0.68 71.67 74.31 70.53 74.08 39.53 (1.04) (0.98) (1.03) (0.55)

moldyn 172 0.27 0.077 4.67 27.56 8.73 27.18 6.58 2.72 (0.32) (0.99) (0.24) (0.10)

montecarlo 480 0.05 0.085 2.23 7.38 6.81 2.73 2.02 0.08 (0.92) (0.37) (0.27) (0.01)

sparse 140 0.20 0.14 1.27 26.86 22.57 30.78 27.20 6.68 (0.84) (1.15) (1.01) (0.25)

sor 136 0.24 0.25 0.84 13.37 13.03 15.39 13.85 10.73 (0.97) (1.15) (1.04) (0.80)

batik 20,140 0.16 0.29 1.27 3.96 3.92† 4.07 4.06 2.26 (0.99) (1.03) (1.03) (0.57)

raytracer 308 0.07 0.32 1.84 13.46 6.46 12.64 7.72 6.37 (0.48) (0.94) (0.57) (0.47)

tomcat 27,940 0.12 0.50 0.81 2.05 1.49† 2.22 1.56 2.43 (0.73) (1.08) (0.76) (1.19)

sunflow 3,088 0.21 0.52 1.44 25.94 17.13 26.12 20.50 15.14 (0.66) (1.01) (0.79) (0.58)

luindex 4,728 0.07 0.67 0.54 16.35 15.75 19.00 17.64 11.34 (0.96) (1.16) (1.08) (0.69)

pmd 18,604 0.18 0.69 0.93 3.08 2.98† 2.75 2.65 2.38 (0.97) (0.89) (0.86) (0.77)

fop 24,756 0.15 0.73 0.44 6.51 5.12† 5.65 5.54 5.01 (0.79) (0.87) (0.85) (0.77)

lusearch 3,544 0.07 0.74 0.65 19.45 22.79 7.79 7.24 6.57 (1.17) (0.40) (0.37) (0.34)

avrora 9,936 0.04 0.75 7.82 1.45 1.34† 1.46 1.38 1.24 (0.92) (1.01) (0.95) (0.86)

jython 81,140 0.11 0.78 4.97 9.31 9.32† 8.77 8.58 8.28 (1.0) (0.94) (0.92) (0.89)

xalan 13,420 0.05 0.80 0.86 5.68 5.63† 5.62 5.43 4.64 (0.99) (0.99) (0.96) (0.82)

h2 16,748 0.08 0.81 22.60 3.23 3.08† 3.20 3.23 3.07 (0.95) (0.99) (1.00) (0.95)

Mean 0.16 0.43 7.26 6.00 6.03 5.05 2.47 (0.83) (0.83) (0.70) (0.39)

Table 1. Checker performance. Mean STATICBF time and Check Ratios are arithmetic means. Mean checker overheads for

FASTTRACK (FT), REDCARD (RC), SLIMSTATE (SS), SLIMCARD (SC), and BIGFOOT (BF) are geometric means. The †
symbol indicates that REDCARD’s proxy analysis failed to terminate within 4 hours. We turned off that analysis in those cases.

Comparison to SLIMCARD SLIMCARD combines RED-

CARD’s static check elimination and field proxy analysis

with SLIMSTATE’s dynamic array state compression. We did

not include static proxy analysis for arrays in SLIMCARD

because integrating the run-time bookkeeping necessary to

support static array proxies [25] into SLIMSTATE’s analysis

led to worse performance. As a result, SLIMCARD has an

overall check ratio of 76%, which is a few percent higher

than REDCARD’s ratio (73%).

As expected, the combined analysis improves upon SLIM-

STATE by eliminating many redundant checks and incurs only

70% of FASTTRACK’s overhead. However, SLIMCARD still

experiences the same overheads related to the construction

of footprints at run time as SLIMSTATE. Moreover, it can-

not move checks out of loops and coalesce them, which are

crucial for achieving BIGFOOT’s much better performance.

SLIMCARD’s memory overhead did not differ significantly

from SLIMSTATE’s or BIGFOOT’s.

6.3 DYNAMICBF Memory Overhead

While we have focused primarily on running time, we also

report the target program’s memory requirements, as well

as the overheads for each checker in Table 2. Following the

methodology of earlier work [55], we measure memory as the

smallest heap permitting successful execution of the target

program, which we find by iteratively shrinking the JVM’s

maximum heap until the program crashes or fails to terminate

within thrice the time to run with a 64 GB heap.

BIGFOOT, SLIMSTATE, and SLIMCARD reduce space

overhead by about 26–28% when compared to FASTTRACK.

These three tools utilize the same dynamic array compression

scheme. SLIMCARD and BIGFOOT additionally uses field

compression, but while field compression improved time, it

did not lead to sizable space reductions. Inspection of the

programs for which field compression made the greatest

speed difference revealed that there were never sufficiently

many objects with compressed fields alive at the same time

to sizably impact overall space needs.

The limited impact of static compression on space can

also be seen by comparing the space overhead of REDCARD

to FASTTRACK. The only fundamental space difference is

due to REDCARD’s use of compression for field and array

proxies, but again, there is little overall impact.

7. Other Related Work

In addition to REDCARD and SLIMSTATE, described ear-

lier, much work has focused on improving the performance

of dynamic race detection. Many precise tools, such as
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Base

Mem

(MB)

Space Overhead

Program
FT

Base

(

RC

FT

) (

SS

FT

)(

SC

FT

)(

BF

FT

)

crypt 193.76 26.27 (0.97) (0.04) (0.04) (0.04)

series 22.01 4.45 (1.02) (0.58) (0.59) (0.57)

lufact 32.15 10.16 (1.00) (1.10) (1.10) (1.11)

moldyn 16.20 5.44 (0.82) (0.91) (0.80) (0.82)

montecarlo 622.83 3.67 (1.00) (0.30) (0.30) (0.30)

sparse 98.11 5.64 (1.01) (1.44) (1.05) (0.79)

sor 32.12 5.11 (1.00) (1.40) (1.40) (2.48)

batik 44.74 3.78 (0.99) (0.75) (0.95) (1.00)

raytracer 16.42 3.67 (0.96) (0.60) (0.57) (0.60)

tomcat 19.59 4.81 (0.99) (0.98) (0.99) (1.14)

sunflow 10.42 9.50 (0.91) (0.93) (0.88) (0.86)

luindex 6.15 16.3 (0.98) (0.96) (0.96) (0.52)

pmd 30.24 6.02 (1.05) (1.02) (1.03) (1.09)

fop 28.07 6.35 (1.00) (0.98) (0.97) (0.99)

lusearch 12.04 7.00 (1.00) (0.57) (0.57) (0.57)

avrora 2.09 15.22 (1.01) (1.01) (1.01) (1.01)

jython 24.06 5.97 (1.03) (0.96) (0.96) (1.02)

xalan 8.20 11.00 (1.00) (0.84) (0.84) (0.82)

h2 259.71 3.90 (1.06) (1.10) (1.10) (0.93)

Geo Mean 6.84 (0.99) (0.73) (0.74) (0.72)

Table 2. Checker space overhead relative to FASTTRACK.

DJIT+ [40], use vector clocks [35], which are expensive.

FASTTRACK introduced epochs [25] to reduce these over-

heads. A common approach for further reducing overhead

is to use a single shadow location for whole arrays and ob-

jects [9, 13, 23, 39, 40, 51], although this may generate false

alarms, motivating additional technology to see if a reported

warning reflects a real race [11, 21].

Another approach for reducing overheads is to use sam-

pling [8, 20, 22], again with some loss of soundness. Eraser

verifies race-freedom for data that is thread-local, read-shared,

or lock protected [44], and has been extended to produce

fewer false alarms [11, 21, 39, 47, 57].

Several dynamic checkers defer the processing of access-

esRecPlay [43] records all locations accessed within each

synchronization-free region and then verifies that concurrent

regions access disjoint locations during replay. DRD [17]

and ThreadSanitizer [46] similarly buffer accesses but do not

infer patterns or compress shadow state. ThreadSanitizer also

Similar buffering is also common in transactional memory

systems [48]. Other work [49] uses a single shadow location

for contiguous memory locations accessed within the same

critical sections. However, only the first two critical sections

accessing a location are considered, resulting in potential

false alarms if later accesses are not correlated.

Many static analyses for identifying races have also been

explored, including type-based systems [1, 2, 31], model

checking [12, 36, 58] and dataflow analyses [21], as well as

whole-program analyses [37, 53]. Many of the mentioned

static analyses are unsound by design or unsound in their

implementations to reduce the number of spurious warnings

(see, e.g., [1, 21]). Their focus on identifying race-free

accesses rather than redundant checks also lead to different

design choices in terms of precision and scalability.

Gross et al. present a global static analysis to improve the

precision and performance of a LockSet-based detector [52].

It is primarily designed to identify objects on which no races

can occur and requires global aliasing information, as well

as a static approximation of the happens-before graph for

the whole program. Moreover, their reliance on an imprecise

race detector leads their system to both miss races and report

spurious warnings. They also do not support arrays. Choi

et al. present a different global analysis for removing run-

time race checks for accesses guaranteed to be race-free [14].

Their analysis eliminates some redundant checks via a simple

intra-procedural forward analysis.

Properties related to accesses or checks within release-free

spans have been used in other settings. For example, the IFRit

race detector uses similar insights in its notion of interference-

free regions [20], which were originally designed to facili-

tate compiler optimizations for race-free programs [19]. The

IFRit race detector monitors execution and reports a data race

when multiple concurrently executing interference-free re-

gions access the same variable. IFRit prioritizes performance

over precision, and so may possibly miss races (but nicely

guarantees no false alarms). IFRit uses a static analysis to

insert and minimize monitor start/stop calls, which is anal-

ogous to BigFoot’s check insertion algorithm. BIGFOOT’s

approach necessitates a more complex static analysis to en-

sure sufficient precision to perform check motion, and so is

at a different point in the design space.

8. Summary

BIGFOOT leverages our theory of precise check placement

to substantially improve the efficiency of dynamic data race

detection. This work may enable more wide-spread use of

data race detectors, and it opens the door for further studies

on statically optimizing dynamic concurrency analyses.

One interesting direction is to extend our techniques to

compress memory locations across multiple arrays or objects,

which could yield further time and space savings. Another

important avenue for future work is to improve STATICBF’s

performance by adapting it to be modular or incremental and

by tailoring its data structures and decision procedures to the

most common cases encountered in practice.
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