
Cooperative Types for Controlling
Thread Interference in Java

Jaeheon Yi Tim Disney
UC Santa Cruz, USA

Stephen N. Freund
Williams College, USA

Cormac Flanagan
UC Santa Cruz, USA

ABSTRACT
Multithreaded programs are notoriously prone to unintended
interference between concurrent threads. To address this
problem, we argue that yield annotations in the source code
should document all thread interference, and we present a
type system for verifying the absence of undocumented in-
terference in Java programs. Under this type system, well-
typed programs behave as if context switches occur only at
yield annotations. Thus, well-typed programs can be un-
derstood using intuitive sequential reasoning, except where
yield annotations remind the programmer to account for
thread interference.

Experimental results show that yield annotations describe
thread interference more precisely than prior techniques based
on method-level atomicity specifications. In particular, yield
annotations reduce the number of interference points one
must reason about by an order of magnitude. The type sys-
tem is also more precise than prior methods targeting race
freedom, and yield annotations highlight all known concur-
rency defects in our benchmarks.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifica-
tion–formal methods, reliability ; F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs–type
structure

General Terms
Languages, Verification, Reliability

Keywords
Cooperability, concurrency, type systems

1. CONTROLLING INTERFERENCE
Developing reliable multithreaded software is challenging

due to the potential for nondeterministic interference be-
tween concurrent threads. Programmers use synchroniza-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’12, July 15-20, 2012, Minneapolis, MN, USA
Copyright 12 ACM 978-1-4503-1454-1/12/07 ...$10.00.

tion idioms such as locks to control thread interference, but
unfortunately do not document where interference may still
occur in the source code. Consequently, every programming
task (such as a feature extension, code review, etc.) may
require the programmer to manually reconstruct the actual
interference points by analyzing the synchronization idioms
in the source code.

This approach is rather problematic, since manual recon-
struction of interference points is tedious and error-prone.
Moreover, interference points are fairly sparse in practice,
and consequently programmers often simply assume that
code is free of interference — a shortcut that is sometimes
correct but that may also result in scheduler-dependent de-
fects, which are notoriously difficult to detect or eliminate.

We propose to use yield annotations to document the ac-
tual interference points in the source code, thus avoiding
the need to manually infer interference points during pro-
gram maintenance. Moreover, yield annotations enable us
to decompose the hard problem of multithreaded program
correctness under preemptive scheduling into two simpler
correctness requirements:

Cooperative-preemptive equivalence: Does the program ex-
hibit the same behavior under a cooperative scheduler (that
performs context switches only at yield annotations) as it
would under a traditional preemptive scheduler (that per-
forms context switches at arbitrary program points)?

Cooperative correctness: Is the program correct when run
under a cooperative scheduler?

In this paper, we present a static type and effect system for
Java that verifies the correctness property of cooperative-
preemptive equivalence, which indicates that all thread in-
terference is documented with yield annotations. The type
system checks that the instructions of each thread consist of
a sequence of transactions separated by yield annotations,
where each transaction is serializable according to Lipton’s
theory of reduction [25]. Consequently, any preemptive ex-
ecution of a well-typed program is guaranteed to behave as
if executing under a cooperative scheduler, where context
switches happen only at explicit yield annotations.

Cooperative scheduling provides an appealing concurrency
semantics with the following properties:

• Sequential reasoning is correct by default for code frag-
ments with no yield annotations.

• Thread interference is always highlighted with yields,
which remind the programmer to allow for the effects
of interleaved concurrent threads.

1 class TSP {
2 final Object lock;
3 volatile int shortestPathLength;
4

5 compound void searchFrom(Path path) {
6 if (path.length >= this . .shortestPathLength)
7 return;
8

9 if (path.isComplete()) {
10 . .synchronized (this .lock) {
11 if (path.length < this .shortestPathLength)
12 this.shortestPathLength = path.length;
13 }
14 } else {
15 for (Path c: path .children())
16 this. .searchFrom#(c);
17 }
18 }
19 }

Figure 1: Traveling Salesperson Algorithm

A previous user study showed that these properties provide
a distinct benefit to the programmer [33]. Specifically, the
presence of yield annotations produces a statistically signif-
icant improvement in the ability of programmers to identify
concurrency defects during code inspection.

We have developed a prototype implementation, called the
Java Cooperability Checker (jcc), of our type system for
verifying cooperative-preemptive equivalence in Java. Ex-
perimental results on a range of Java benchmarks show that
jcc requires yield annotations on only about 13 interfer-
ence points (IPs) per KLOC. In comparison, previous forms
of non-interference specifications generate significantly more
interference points per KLOC: 139 IP/KLOC using atomic
methods specifications; 95 IP/KLOC when reasoning about
race conditions; and 32 IP/KLOC when reasoning about
both races and atomic methods.

Example. To illustrate the benefits of explicit yield annota-
tions, consider the traveling salesperson algorithm shown in
Figure 1. The TSP class contains a method searchFrom that
recursively searches through all extensions of a particular
path, aborting the search whenever path.length becomes
greater than shortestPathLength (the length of the short-
est complete path found so far). To exploit multicore proces-
sors, multiple threads may concurrently invoke searchFrom
on the same TSP object. The variable shortestPathLength
is protected by the mutex lock for all writes, but racy reads
are permitted to maximize performance. Consequently, ac-
cesses to shortestPathLength on lines 6 and 12 are racy,
but the read on line 11 is race-free, since lock is held.

The code uses the notation “. .” as a lightweight syntax for
yield annotations. The “. .” on line 6 indicates that interfer-
ence may occur before the read of shortestPathLength on
line 6 (because of concurrent writes) and before the lock ac-
quire at line 10 (because a concurrent call to searchFrom
may also be trying to acquire that lock). Note that the po-
tentially racy write to shortestPathLength on line 12 does
not require a preceding yield, since a reducible transaction
may contain one racy or non-mover operation under Lipton’s
theory [25].

To facilitate modular reasoning, the method searchFrom
is declared compound, meaning that it contains internal yield
points. The method call on line 16 is highlighted with a
postfix “#” to indicate that the callee is compound, and so
invariants over shared state that hold before the call may not
hold after the call returns. That call is also a yielding call
(as indicated by the notation “. .”) because interference from
other threads may become visible in between consecutive
calls to that method at run time.

This work uses the yield annotation syntax “. .” in pref-
erence to the “yield” statements of prior work [3, 4, 6, 22,
40, 41] to more precisely characterize why interference may
occur. For example, the annotation at line 6 of Figure 1
precisely documents that interference occurs on the read of
shortestPathLength. In comparison, in the following code
the yield statement suggests that one of the subsequent
reads of path.length or shortestPathLength is interfering
or racy, but it is not immediately obvious which one.

compound void searchFrom(Path path) {
yield;
if (path.length >= shortestPathLength)
. . .

}

Contributions. This paper extends a prior type system for
checking yield annotations in an imperative variant of the
λ-calculus [40]. Adapting those ideas to a realistic object-
oriented programming language requires a number of en-
hancements and extensions, including a more flexible and
precise notion of “yield” and an effect system that reasons
about, for example, conditional effects.

We also present the first implementation of a type-based
cooperability checker. Our experimental results validate
that cooperability is an effective way to capture and reason
about thread interference, and we show that the use of yield
annotations dramatically reduces the number of interference
points that must be considered by the programmer.

In summary, the contributions of our work are as follows:

• We present a type system for verifying lightweight, pre-
cise non-interference specifications in multithreaded soft-
ware (Section 4).

• We show that this type system satisfies the standard
preservation property, and ensures that well-typed pro-
grams are cooperative-preemptive equivalent.

• We describe an implementation for Java (Section 5).

• For our benchmarks, the type system identified just 13
interference points per KLOC, a significant improve-
ment over prior non-interference specifications based
on atomic methods (139), race-freedom (95), or a com-
bination of atomic methods and race freedom (32).

• Our experimental results also show that yield anno-
tations highlight all known concurrency bugs in our
benchmark suite (Section 6).

2. THE LANGUAGE YIELDJAVA
We formalize our ideas in terms of the idealized language

YieldJava, a multithreaded subset of Java with yield anno-
tations. The YieldJava syntax is summarized in Figure 2.

P ∈ Program = defn

defn ∈ Definition ::= class c { field meth }

field ∈ Field ::= c f
meth ∈ Method ::= a c m(c x) { e }

f ∈ FieldName = Normal ∪ Final ∪Volatile
e, ` ∈ Expr ::= x | null

| eγf | eγf = e
| eγm(e) | eγm#(e)
| new c(e) | eγsync e
| fork e | let x = e in e
| if e e e | while e e

γ ∈ OptYield ::= . | . .
c, d ∈ ClassName
x, y ∈ Var
m ∈ MethodName
a ∈ Effect

Figure 2: YieldJava Syntax

A program P is a sequence of class definitions. Each defini-
tion associates a name c with a collection of field and method
declarations. A field declaration includes a type and a name.
Field names are syntactically divided into three categories:

Normal fields are mutable and free of race conditions.

Final fields are immutable and thus race-free.

Volatile fields are mutable and may have concurrent con-
flicting accesses.

We assume that race freedom for Normal fields is verified
separately by, for example, a race-free type system [7, 18,
1]. (Our implementation does support racy accesses to non-
volatile fields, as described in Section 5.)

Each method declaration a c m(c x) { e } defines a method
m with return type c that takes parameters x of type c. The
method declaration also includes an effect a, whose syntax
and semantics are described in Section 3 below.

A field read expression eγf comes in two forms, e.f and
e. .f , depending on the optional yield annotation γ, and sim-
ilarly for field writes eγf = e. The yielding read e. .f eval-
uates the subexpression e to an object reference, performs
a yield, and then reads the f field of the referenced object.
Method calls eγm(e) also include an optional yield, and
calls to compound or non-atomic methods must be marked as
eγm#(e). We also support a synchronized block e1γsync e2,
which is analogous to Java’s synchronized statement

synchronized (e1) { e2 }

and again supports an optional yield. The following table
summarizes which constructs may be annotated with yields.

Expression Form Non-Yielding Yielding

Field Read e . f e . . f
Field Write e . f = e e . . f = e
Atomic Method Call e .m(e) e . .m(e)
Non-Atomic Method Call e .m#(e) e . .m#(e)
Lock Synchronization e . sync e e . . sync e

Finally, an object allocation new c(e) creates a new object
of type c and initializes its fields to the values of the expres-
sion sequence e. We assume that all programs include an
empty class Unit. The language includes the special con-
stant null, which has any class type, including Unit.

3. EFFECTS FOR COOPERABILITY
Our effect system characterizes the behavior of each pro-

gram subexpression using two kinds of effects: mover effects
and atomicity effects.

Mover Effects. A mover effect µ characterizes the behav-
ior of a program expression in terms of how operations of
that expression commute with operations of other threads:

µ ::= f | y | m | r | l | n

f: The effect f (for functional) describes expressions whose
result does not depend on any mutable state. Hence, re-
evaluating a functional expression is guaranteed to pro-
duce the same result. (Our type system requires all lock
names to be functional to ensure that it does not confuse
distinct locks.)

y: The effect y describes yield operations, denoted as “. .”.
These expressions mark transactional boundaries where
the current transaction ends and a new one starts.

r: The effect r describes right-mover expressions such as
lock acquires. In more detail, suppose a trace contains
an acquire operation a that is immediately followed by
an operation b of a different thread. Then the two op-
erations a and b commute and can be swapped without
changing the overall behavior or final state of the trace,
as illustrated by the commuting diagram below. Thus, we
consider acquire operations to be right-movers.

a b

b a

S1 S2 S3

S1 S'2 S3

l: The effect l describes left-mover expressions such as lock
releases that commute to the left across a preceding op-
eration of a different thread (such as operation b in the
above diagram).

m: The effect m describes both-mover expressions such as
race-free variable accesses that commute both left and
right with operations by other threads.

n: The effect n describes non-mover code that may per-
form a racy access or contain right-movers followed by
left-movers (as in a synchronized block).

Suppose the sequence of instructions α performed by a thread
consists of: (1) zero or more right-movers, followed by (2)
at most one non-mover, followed by (3) zero or more left-
movers. Then, according to Lipton’s theory of reduction [25],
instructions of other threads that are interleaved into α can
be commuted out so that α executes serially, without inter-
leaved operations of other threads. In this case, we consider
α a reducible transaction, or simply a transaction.

Our type system ensures that the instructions performed
by each thread consist of reducible transactions separated
by yield annotations. The type system works by composing
the effects for individual operations according to the follow-
ing iterative closure (µ∗) and sequential composition (µ1;µ2)
operations. These operations are partial and may fail if the
code between two successive yields is not reducible (indi-
cated with a “−”). For example, the sequential composition

M

N

R L

F Y

CN

CR CL

AM

AN

AR AL

CY

CM

AF

Figure 3: Mover and Combined Effect Lattices

(l;r) is undefined, indicating code containing a left-mover
followed by a right-mover does not form a transaction.

µ µ∗

f f
y m
m m
r r
l l
n −

; f y m r l n
f f y m r l n
y y y y y l l
m m y m r l n
r r r r r n n
l l y l − l −
n n r n − n −

Composition with y is defined to capture how yielding may
be used. For example, “y;n” is l, to ensure that “n;y;n”
is permissible. Mover effects are ordered by the relation <

captured by the first lattice in Figure 3.

Atomicity Effects. Each program expression also has an
atomicity effect τ ∈ {a,c} that is either: a (for atomic)
if the expression never yields, or c (for compound) if the
expression may yield. Ordering (<), iterative closure (τ∗)
and sequential composition (τ1; τ2) for atomicity effects are
defined by:

a < c τ∗
def
= τ τ1; τ2

def
= τ1 t τ2

Combined Effects. A combined effect κ is a pair τµ of an
atomicity effect τ and a mover effect µ. Note that not all
combined effects are meaningful. In particular, ay and cf
are contradictory: an atomic piece of code may not contain a
yield, and code with yields cannot be considered functional.
We define the ordering relation and the join, iterative clo-
sure, and sequential composition operations on combined
effects in a point-wise manner, and the diagram in Figure 3
summarizes the resulting lattice of combined effects.

κ ::= τ µ

τ1 µ1 v τ2 µ2 iff τ1 v τ2 and µ1 v µ2

τ1 µ1 t τ2 µ2
def
= τ3 µ3 where τ3 = τ1 t τ2, µ3 = µ1 t µ2

τ1 µ1 ; τ2 µ2
def
= τ3 µ3 where τ3 = τ1; τ2, µ3 = µ1;µ2

(τµ)∗
def
= τ∗µ∗

Conditional Effects. As outlined above, the effect of ac-
quiring a lock m is ar, since an acquire is a right-mover
containing no yields. If the lock m is already held by the
current thread, however, then the re-entrant lock acquire is
actually a no-op and is more precisely characterized as an
atomic both-mover am.

We introduce conditional effects to capture situations like
this where the effect of an operation depends on which locks
are held by the current thread. We use ` to range over
expressions that are functional (f) and which always denote
the same lock. An effect a is then either a combined effect
κ or a conditional effect ` ? a1 : a2, which is equivalent to a1
if the lock ` is held, and is equivalent to a2 otherwise. We
extend the iterative closure, sequential composition, and join
operations to conditional effects as follows:

a ::= κ | ` ? a1 : a2

(` ? a1 : a2) t a = ` ? (a1 t a) : (a2 t a)
a t (` ? a1 : a2) = ` ? (a t a1) : (a t a2)

(` ? a1 : a2)∗ = ` ? a∗1 : a∗2
(` ? a1 : a2); a = ` ? (a1; a) : (a2; a)
a; (` ? a1 : a2) = ` ? (a; a1) : (a; a2)

We extend the effect ordering to conditional effects in a
manner similar to earlier type systems for atomicity [15]. To
decide a1 v a2, we use an auxiliary relation vhn, where h is a
set of locks known to be held by the current thread, and n is
a set of locks known not to be held by the current thread. We
define a1 v a2 to be a1 v∅∅ a2 and check a1 vhn a2 recursively
as follows:

κ1 v κ2

κ1 vhn κ2

` 6∈ n⇒ a1 vh∪{l}n a
` 6∈ h⇒ a2 vhn∪{l} a
` ? a1 : a2 vhn a

` 6∈ n⇒ κ vh∪{l}n a1
` 6∈ h⇒ κ vhn∪{l} a2
κ vhn ` ? a1 : a2

4. TYPE AND EFFECT SYSTEM
The YieldJava type system ensures that each thread con-

sists of reducible transactions separated by yields, and con-
sequently that thread interference is observable only at yield
annotations. The core of the type system is a set of rules
for reasoning about the effect of an expression, as captured
by the judgment:

P ;E ` e : c · a

where e is an expression of type c, and a is an effect describ-
ing the behavior of e. The program P is included to provide
access to class declarations, and the environment E maps
free variables in e to their types. Figure 4 presents the com-
plete set of rules for expressions, as well as auxiliary rules
to reason about methods, classes, effects, and so on. We
describe the most important rules defining these judgments:

[exp var] All variables are immutable in YieldJava and thus
have cooperability effect af, since a variable access is atomic
and evaluates to a constant value.

[exp new] The object allocation rule first retrieves the def-
inition of the class c from P and ensures the arguments
e1..n match the field types from c. The effect of the whole
expression is the composition of effects of evaluating e1..n
composed with the effect am, reflecting that new is not
functional (since re-evaluating an object allocation would
not return the same object).

[exp ref] This rule handles a read e.f of a Normal or Final
field. If f is Normal and thus race-free, the field access
has effect am as it commutes with steps by other threads.
If f is Final, the access has the more precise effect af.

[exp ref race] A racy read eγf of a volatile field may be an-
notated with a yield point (if γ = “. .”) or not (if γ = “.”).

P ;E ` e : c · a

[exp var]

P ` E
E = E1, c x, E2

P ;E ` x : c · af

[exp null]

P ` E
class c { . . . } ∈ P
P ;E ` null : c · af

[exp new]

class c { di xi i∈1..n . . . } ∈ P
P ;E ` ei : di · ai ∀i ∈ 1..n

P ;E ` new c(e1..n) : c · (a1; · · · ; an;am)

[exp ref]

P ;E ` e : c · a class c {. . . d f . . .} ∈ P
(f ∈ Normal ∧ a′ = am) ∨ (f ∈ Final ∧ a′ = af)

P ;E ` e.f : d · (a; a′)

[exp assign]

P ;E ` e : c · a P ;E ` e′ : d · a′
class c {. . . d f . . .} ∈ P f ∈ Normal

P ;E ` (e.f = e′) : d · (a; a′;am)

[exp ref race]

P ;E ` e : c · a
class c {. . . d f . . .} ∈ P f ∈ Volatile

P ;E ` eγf : d · (a; JγK;an)

[exp assign race]

P ;E ` e : c · a P ;E ` e′ : d · a′
class c { . . . d f . . . } ∈ P f ∈ Volatile

P ;E ` (eγf = e′) : d · (a; a′; JγK;an)

[exp call atomic]

P ;E ` e : c · a
class c {. . .meth . . .} ∈ P

meth = a′ c′ m(di xi i∈1..n) { e′ }
P ;E ` a′[this := e, xi := ei

i∈1..n] ↑ a′′
P ;E ` ei : di · ai ∀i ∈ 1..n a′′ v an

P ;E ` eγm(e1..n) : c′ · (a; a1; · · · ; an; JγK; a′′)

[exp call compound]

P ;E ` e : c · a
class c {. . .meth . . .} ∈ P

meth = a′ c′ m(di xi i∈1..n) { e′ }
P ;E ` a′[this := e, xi := ei

i∈1..n] ↑ a′′
P ;E ` ei : di · ai ∀i ∈ 1..n

P ;E ` eγm#(e1..n) : c′ · (a; a1; · · · ; an; JγK; a′′)

[exp sync]

P ;E `lock ` P ;E ` e : c · a
P ;E ` `γsync e : c · S(`, γ, a)

[exp fork]

P ;E ` e : c · a
P ;E ` fork e : Unit · al

[exp while]

P ;E ` e1 : c1 · a1 P ;E ` e2 : c2 · a2
P ;E ` while e1 e2 : Unit · (a1; (a2; a1)∗)

[exp if]

P ;E ` e1 : d · a1
P ;E ` ei : c · ai ∀i ∈ 2..3

a′ = a1; (a2 t a3)

P ;E ` if e1 e2 e3 : c · a′

[exp let]

P ;E ` e1 : c1 · a1
P ;E, c1 x ` e2 : c2 · a2
P ;E ` a2[x := e1] ↑ a′2

P ;E ` let x = e1 in e2 : c2 · (a1; a′2)

P ` E
[env ε]

P ` ε

[env x]

P ` E x 6∈ dom(E)
class c { . . . } ∈ P

P ` (E, c x)

P ;E ` a

[at base]

P ` E
P ;E ` κ

[at cond]

P ;E `lock `
P ;E ` ai ∀i ∈ 1..2

P ;E ` ` ? a1 : a2

P ;E `lock e

[lock exp]

P ;E ` e : c · af
P ;E `lock e

P ;E ` a ↑ a′

[lift base]

P ` E
P ;E ` κ ↑ κ

[lift lock]

P ;E ` ai ↑ a′i ∀i ∈ 1..2
P ;E `lock ` =⇒ a′′ = ` ? a′1 : a′2
P ;E 6`lock ` =⇒ a′′ = a′1 t a′2

P ;E ` (` ? a1 : a2) ↑ a′′

P ;E ` meth

[method]

P ;E, d x ` e : c · a′
P ;E, d x ` a

a′ v a
P ;E ` a c m(d x) { e }

P ` defn

[class]

field i = di fi ∀i ∈ 1..m
class di { . . . } ∈ P ∀i ∈ 1..m
P ; c this ` methi ∀i ∈ 1..n

P ` class c { field1..m meth1..n }

P ` ok

[program]

P = defn1..n P ` defni ∀i ∈ 1..n
ClassesOnce(P) FieldsOnce(P)

MethodsOnce(P)

P ` ok

Figure 4: YieldJava Type Rules

We use the auxiliary function JγK to map γ to the corre-
sponding effect, where J.K = af and J. .K = cy. Thus, if
the expression e has effect a, then the non-yielding racy
access e.f has effect (a;af;an), whereas the yielding racy
access e. .f has effect (a;cy;an).

[exp sync] The rule for the synchronized statement `γsync e
first checks that ` is a valid lock expression (P ;E `lock `),
meaning that ` must have effect af to guarantee that it
always denotes the same lock at run time.

The rule then computes the effect S(`, γ, a), where a is the
effect of e, and γ specifies whether there is a yield point.
The function S is defined as:

a S(`, γ, a)

κ ` ?κ : (JγK;ar;κ;al)
` ? a1 : a2 S(`, γ, a1)
`′ ? a1 : a2 `′ ?S(`, γ, a1) :S(`, γ, a2) if ` 6= `′

If the synchronized body e has a basic effect κ and the
lock ` is already held, then the synchronized statement
also has effect κ, since the acquire and release operations
are no-ops. Note that in this case the yield operation is
ignored, since it is unnecessary.

If e has effect κ and the lock is not already held, then the
synchronized statement has effect (JγK;ar;κ;al), since
the execution consists of a yield point, followed by a right-
mover (the acquire), followed by κ (the body), followed by
a left-mover (the release).

If e has conditional effect ` ? a1 : a2, where ` is the lock
being acquired by this synchronized statement, then we
ignore a2 and recursively apply S to a1, since ` is held
within e.

Finally, if e has an effect that is conditional on some other
lock `′, then we recursively apply S to both branches.

[exp let] This rule for let x = e1 in e2 infers effects a1 and
a2 for e1 and e2, respectively. Care must be taken when
constructing the effect for the let-expression because a2
may refer to the let-bound variable x. For example, the
body of the following let expression produces an effect
that is conditional on whether the lock x is held.

let x = e1 in x.sync . . .

Thus, we apply the substitution [x := e1] to yield a corre-
sponding effect a2[x := e1] that does not mention x. How-
ever, e1 may not have effect af, in which case a2[x := e1]
may not be valid (because it could contain e1 as part
of a non-constant lock expression). As in our previous
work [15], we use the judgment

P ;E ` a2[x := e1] ↑ a′2

to lift the effect a2[x := e1] to a well-formed effect a′2 that
is greater than or equal to a2[x := e1].

[exp call atomic] This rule handles calls to atomic methods.
The callee’s declared effect a′ may refer to this or param-
eters x1..n. Therefore, we substitute

• the actual receiver e for this and

• the actual arguments e1..n for the parameters x1..n

to produce the effect a′[this := e, xi := ei
i∈1..n], and

ensure that the resulting effect is valid by lifting it to an
effect a′′ that is well-formed in the current environment.
Effect a′′ must be an atomic effect and less than or equal
to an.

The rule for a compound method invocation eγm#(e1..n)
is similar, but removes the requirement that the computed
effect a′′ is atomic.

[exp fork] A fork expression fork e creates a new thread to
evaluate e. Since a fork operation cannot commute past
the operations of its child thread, fork operations are left
movers.

[method], [class], and [prog] These rules verify the basic well-
formedness requirements of methods, classes, and programs.
The [prog] rule uses additional predicates to ensure no
class is declared twice (ClassesOnce(P)), no field name is
declared twice in a class (FieldsOnce(P)), and no method
name is declared twice in a class (MethodsOnce(P)). These
are defined more precisely in [17].

Correctness. The extended version of this paper presents a
formal semantics for YieldJava [39]. A run-time state σ ex-
tends the program’s source code with dynamically allocated
objects and dynamically created threads. We present two
variants of our operational semantics: a preemptive seman-
tics (→) that context switches at arbitrary program points,
and a cooperative semantics (→c) that context switches only
at yield annotations. As expected, the cooperative seman-
tics is more restrictive than the preemptive, thus and (→c

) ⊂ (→). Both satisfy the standard preservation property
that evaluation preserves well-typing (under an appropriate
extension of the type system to run-time states, denoted
` σ).

Theorem 1 (Preservation) If ` σ and σ→σ′ then ` σ′.

The more interesting correctness theorem is that a well-
typed program exhibits equivalent behavior under both se-
mantics. We say a state σ is yielding if no thread in σ is in
the middle of a transaction. If a well-typed yielding state
σ can reach a yielding state σ′ under the preemptive se-
mantics, it can also reach that state under the cooperative
semantics.

Theorem 2 (Cooperative-Preemptive Equivalence)

If ` σ and σ →∗ σ′ then σ →∗c σ′, provided σ and σ′ are
yielding.

Therefore, we can reason about the correctness of well-typed
programs under the simpler cooperative semantics (→c),
since this correctness result also applies to executions un-
der the preemptive semantics (→). Note that the converse
to this theorem also holds, since (→c) ⊂ (→).

5. IMPLEMENTATION
We have developed an implementation called jcc that ex-

tends the YieldJava type system to support the Java lan-
guage.1 jcc uses the standard Java modifiers final and

1Our implementation does not currently support generic
classes due to limitations in the front-end checker upon
which jcc is built, but supporting generic types is not fun-
damentally problematic.

volatile to classify fields as either Final or Volatile; all
other fields are considered Normal. We introduce one new
modifier, racy, to capture intentionally racy Normal fields.
jcc assumes that correct field annotations are provided for
the input program. Such annotations could be generated us-
ing Rcc/Java [1] or any other analysis technique. For our
experiments, we leveraged that tool, as well as the Fast-
Track [14] race detector, to identify racy fields.

jcc supports annotations on methods to describe their
effects. The following three effect keywords are sufficient to
annotate most methods:

atomic: an atomic non-mover method with effect an.

mover: an atomic both-mover method with effect am.

compound: a compound non-mover method with effect cn.

We support annotations to describe all elements of the condi-
tional effect lattice, such as (atomic left-mover), as well.
These effect annotations may be combined to form condi-
tional effects, as in (this ? mover : compound). Method
effect annotations appear alongside standard method modi-
fiers, as in the following illustrative examples:

atomic void m1() { . . . }

atomic left-mover void m2() { . . . }

lock ? mover : atomic void m3() { . . . }

lock ? (atomic left-mover) : (compound non-mover)
void m4() { . . . }

As in YieldJava, field accesses and method invocations
may be written using “..” in place of “.” to indicate inter-
ference points. Yielding synchronized statements use the
syntax “..synchronized(e) { . . . }”.

Given a program with cooperability annotations, jcc re-
ports a warning whenever interference may occur at a pro-
gram point not corresponding to a yield, and whenever a
method’s specification is not satisfied by its implementation.

Type System Extensions. jcc extends YieldJava to
support subtyping, subclassing, and method overriding. It
allows the effect of an overriding method to change covari-
antly, and so requires that b v a in the following:

class C { a t m() { . . . } }
class D extends C { b t m() { . . . } }

To reduce the burden of annotating code with cooperabil-
ity effects, jcc uses carefully chosen defaults when annota-
tions are absent. In particular, unannotated fields are race
free, and unannotated methods are atomic both-movers.

Although data races should in general be avoided, large
programs often have some intentional races, which jcc sup-
ports via a racy annotation on Normal fields. A read from
a racy field must be written as e. .f#. Here, the double dots
as usual indicate a yield point, and the trailing # identi-
fies the racy nature of the read (and that the programmer
needs to consider the consequences of Java’s relaxed memory
model [26]). The overall effect of e. .f# is the composition
of a yield and a non-mover memory access: (cy;an) = cl.
Writes are similar.

The YieldJava checker handles array accesses similar to
Normal fields. Note that in Java, array elements are never

Table 1: Effects for Other Access Forms.

Access Type Syntax Effect

racy read e1. .f# a1;cl
racy write e1. .f# = e2 a1; a2;cl
race-free array read e1[e2] a1; a2;am
race-free array write e1[e2] = e3 a1; a2; a3;am
racy array read e1[e2]# a1; a2;cl
racy array write e1[e2]# = e3 a1; a2; a3;cl
write-guarded read

e1.f a1;am
with lock held
write-guarded read

e1. .f a1;an
without lock held
write-guarded write

e1.f = e2 a1; a2;an
with lock held

final or volatile. Racy array accesses must be annotated
with “#” and are assumed to be yield points.
YieldJava also supports write-guarded fields (such as

shortestPathLength from Figure 1) for which a protecting
lock is held for all writes but not necessarily for reads. In
this case, a read while holding the protecting lock is a both-
mover, since there can be no concurrent writes. However, a
write with the lock held is a non-mover, since there may be
concurrent reads that do not hold the lock. We summarize
these extra rules in Table 1.

6. EXPERIMENTAL EVALUATION
We applied jcc to benchmark programs including a num-

ber of standard library classes from Java 1.4; sparse, ray-
tracer, sor, and moldyn from the Java Grande suite [23];
tsp, a solver for the traveling salesman problem [36]; and
elevator, a real-time discrete event simulator [36]. These
programs use a variety of synchronization idioms, and pre-
vious work has revealed a number of interesting concur-
rency bugs in these programs. Thus, they show the abil-
ity of our annotations to capture thread interference un-
der various conditions and to highlight unintended, prob-
lematic interference. Three of these programs (raytracer,
sor, and moldyn) use broken barrier implementations [14].
We discuss those problems below and use versions with cor-
rected barrier code (named raytracer-fixed, sor-fixed,
and moldyn-fixed) in our experiments. We performed all
experiments on a 2 GHz dual-core computer with 3 GB
memory, using the Java 1.6.0 HotSpot 64-bit Server VM.
The checker analyzed each benchmark in under 2 seconds.

Figure 2 shows the size of each benchmark program, the
time required to manually insert jcc annotations, and the
number of annotations required to enable successful type
checking. This count includes all racy field annotations,
method specifications, and occurrences of “. .”and“#”. Even
for programs comprising several thousand lines, the annota-
tion burden is quite low. Each program was annotated and
checked in about 10 to 30 minutes, and roughly one anno-
tation per 30 lines of code was required. We did have some
previous experience using these programs, which facilitated
the annotation process, but since we intend jcc to be used
during development, we believe our experience reflects the
cost incurred by the intended use of our technique.

Table 2: Interference Points and Unintended Yields

Program Size
(lines)

Annotation
Time (min)

Annotation
Count

Interference Points

Unintended
YieldsN

o
S
p

ec

R
a
ce

A
to

m
ic

A
to

m
ic

R
a
ce

Y
ie

ld
s

java.util.zip.Inflater 317 9 4 36 12 0 0 0 0
java.util.zip.Deflater 381 7 8 49 13 0 0 0 0
java.lang.StringBuffer 1,276 20 10 210 81 9 2 1 1
java.lang.String 2,307 15 5 230 87 6 2 1 0
java.io.PrintWriter 534 40 109 73 99 130 97 26 9
java.util.Vector 1,019 25 43 185 106 44 24 4 1
java.util.zip.ZipFile 490 30 62 120 105 85 53 30 0
sparse 868 15 19 329 98 48 14 6 0
tsp 706 10 45 445 115 437 80 19 0
elevator 1,447 30 64 454 146 241 60 25 0
raytracer-fixed 1,915 10 50 565 200 105 39 26 2
sor-fixed 958 10 32 249 99 128 24 12 0
moldyn-fixed 1,352 10 39 983 130 657 37 30 0
Total 13,570 231 490 3,928 1,291 1,890 432 180 13
Total per KLOC 17 36 289 95 139 32 13 1

6.1 Non-Interference Specifications
Yield annotations provide a convenient and precise speci-

fication of exactly where thread interference may occur. We
experimentally compare yield annotations with prior non-
interference specifications based on atomic methods and on
identifying race conditions. Specifically, we count the thread
interference points in each benchmark under five different
approaches for specifying non-interference as follows:

The NoSpec non-interference specification provides no in-
formation about thread interference, and so we must as-
sume that interference might occur on any field access or
any lock acquire, since these operations may conflict with
operations of concurrent threads. We exclude operations
that never cause interference, such as accesses to local vari-
ables, lock releases, method calls, etc. from this count.

The Race non-interference specification identifies fields with
race conditions. Interference may occur only on accesses to
these racy field or on lock acquires.

The Atomic non-interference specification identifies atomic
methods. Thread interference may occur only in non-atomic
methods, at field accesses, lock acquires, and also calls to
an atomic method from a non-atomic context.

The AtomicRace non-interference specification identifies
both race conditions and atomic methods. Thread inter-
ference may occur only in non-atomic methods, at racy
accesses, lock acquires, and calls to atomic methods.

The Yield non-interference specification uses yield anno-
tations to identify exactly those program points at which
interference may occur.

Table 2 shows the number of interference points (IPs)
in each benchmark under each non-interference specifica-
tion. Benchmarks in which all methods are atomic, such
as Inflater, have zero interference points under both the

Atomic and Yield specifications. The results confirm that
both Race (95 IP/KLOC) and Atomic (139 IP/KLOC) are
useful non-interference specifications that significantly re-
duce the number of interference points in comparison to the
base-case NoSpec (289 IP/KLOC). AtomicRace (32 IP/K-
LOC) combines complementary benefits from both Atomic
and Race, and is significantly better than either of these ap-
proaches in isolation. Finally, Yield (13 IP/KLOC) provides
a significant improvement over these prior approaches.

We sketch two situations illustrating why yield annota-
tions, and the reasoning performed by our type system,
are significantly more precise than AtomicRace. First, for
the TSP algorithm from Figure 1, AtomicRace requires an
interference point before each call to the atomic methods
path.isComplete() and path.children() from within a
non-atomic method. In contrast, our type system identi-
fies that these two methods are more precisely characterized
as both movers that do not interfere with other threads, and
so no yield point is necessary at these calls.

As a second example, consider the method append from
StringBuffer in Figure 5. This non-atomic method in turn
calls two methods sb.length() and sb.getChars(), both of
which are atomic (since the lock sb is not held at these call
sites). Under AtomicRace, an interference point must be as-
sumed before each of these calls to an atomic method from a
non-atomic context. In contrast, our type system can verify
that the lock acquire of this at the start of append() can
move right to just before the sb.length() call, so no yield
is required at the call to sb.length(). Thus, AtomicRace
requires two interference points in this method, whereas our
type system requires just one.

These two examples illustrate why the notions of race con-
ditions and atomic methods are not by themselves sufficient
to identify interference points in a precise manner, and the
experimental results confirm that the cooperative type and
effect system is significantly more precise that these prior
approaches in its ability to verify interference points.

public final class StringBuffer · · · {
(this ? mover : atomic) int length() { . . . }
(this ? mover : atomic) void getChars(. . .) { . . . }

compound synchronized
StringBuffer append(StringBuffer sb) {
. . .
int len = sb .length();
int newcount = count + len;
if (newcount > value.length) {

expandCapacity(newcount);
}
sb. .getChars(0, len, value, count);
count = newcount;
return this;

}
}

Figure 5: StringBuffer

6.2 Examples of Defects
The primary purpose of yield annotations is to to facilitate

formal and informal reasoning about higher-level correctness
properties. At the same time, yield annotations also facili-
tate recognizing concurrency errors. To explore this aspect,
the final column in Table 2 shows the number of unintended
yields in each program, where we determined based on man-
ual code inspection that thread interference is unintentional
and erroneous. These unintended yields highlight concur-
rency bugs, including some atomicity violations and data
races [13, 15] that could also be detected with prior tools.

StringBuffer and Vector. The yield annotation shown
in Figure 5 highlights that other threads may concurrently
modify sb, potentially causing append() to crash, in vio-
lation of its specified thread-safe behavior under JDK 1.4.
A constructor in the Vector class suffers from a similar de-
fect. Similar pitfalls occur in Vector’s inherited methods
removeAll(c) and retainAll(c) [15]. In this experiment,
we did not verify the correctness of inherited code, but jcc
readily catches those errors when that code is checked.

RayTracer. The raytracer benchmark uses a barrier br
to coordinate several rendering threads, as shown in Fig-
ure 6. After rendering, each thread acquires the lock scene
before adding its local checksum to the global shared vari-
able checksum1. However, each thread creates its own scene
object, and thus acquiring scene fails to ensure mutual ex-
clusion over the updates to checksum1. This is made clear
by the explicit yields on the reads and writes of checksum1.2

SOR and Moldyn. In sor (see Figure 7), the computation
threads synchronize on a barrier implemented as a shared
two-dimensional array sync. Unfortunately, the barrier is
broken, since the volatile keyword applies only to the ar-
ray reference, not the array elements. Thus, the barrier
synchronization code at the bottom of the main processing
loop may not properly coordinate the threads, leading to
races on the data array G. This problem is obvious when us-
ing jcc because racy annotations must be added in dozens

2We also note that if jcc were extended to identify locks
used only by a single thread, we could remove the yield on
the synchronized operation.

class RayTracerRunner implements Runnable {
int id;

compound public void run() {
// init
br.DoBarrier#(id);
// render
. .synchronized (scene) {
for(int i=0;i<JGFRayTracerBench.nthreads;i++)

if (id == i)
JGFRayTracerBench. .checksum1 =

JGFRayTracerBench. .checksum1
+ checksum;

}
br.DoBarrier#(id);
// cleanup

}
}

Figure 6: RayTracer

of places, essentially to all accesses of sync and G. When
the barrier is fixed, we obtain much cleaner code: the yield
count decreases from 40 to 12. In particular, the accesses
to G between barrier calls are free of yields, signifying that
between barriers, sequential reasoning is applicable.

The moldyn benchmark uses a barrier object with a simi-
lar error in the use of volatiles and arrays. This bug leads
to potential races on all data accesses intended to be syn-
chronized by the barrier, and a large number (58) of yield
annotations were necessary to document all such cases.

7. RELATED WORK
Cooperative multithreading is a thread execution model in

which context switching between threads may occur only
at yield statements [3, 4, 6]. That is, cooperative mul-
tithreading permits concurrency but disallows parallel ex-
ecution of threads. In contrast, cooperability guarantees
behavior equivalent to cooperative multithreading, but ac-
tually allows execution in a preemptive manner, enabling
full use of modern multicore hardware.

Automatic mutual exclusion (AME) is an execution model
ensuring mutual exclusion by default [22]; yield statements
demarcate where thread interference is permitted. A key
difference is that AME enforces serializability at run time
via transactional memory techniques; in contrast, jcc guar-
antees serializability statically.

In prior work, we explored a simpler type system for coop-
erability [40], and dynamic analyses for checking cooperabil-
ity and inferring yield annotations for legacy programs [41].
Others have explored task types, a data-centric approach to
obtaining pervasive atomicity [24], a notion closely related to
cooperability. Atomic sets are a useful, but complementary,
technique for specifying groups of fields that must always
be updated atomically. In contrast to cooperability, that
approach enforces atomicity requirements by automatically
inserting synchronization operations.

There is extensive literature on how to find and fix data
races efficiently. Dynamic detectors may track the happens-
before relation [14], implement the lockset algorithm [34], or
combine both [28]. Static race detectors may make use of a

class SORRunner implements Runnable {
double G[][];
volatile long sync[][];

compound public void run() {
. . .
for (int p = 0; p < 2*num_iterations; p++) {

for (int i=ilow+(p%2); i < iupper; i=i+2) {
. . .
for (int j=1; j < Nm1; j=j+2){

G[i][j]# = omega_over_four *
(G[i-1][j]# + G[i+1][j]# +

G[i][j-1]# + G[i][j+1]#) +
one_minus_omega * G[i][j]#;

. . .
}

}

sync[id][0]# = sync[id][0]# + 1;
if (id > 0)

while (sync[id-1][0]# < sync[id][0]#) ;
if (id < JGFSORBench.nthreads-1)

while (sync[id+1][0]# < sync[id][0]#) ;
}

}
}

Figure 7: Original SOR Algorithm

type system [7, 1], implement a static lockset algorithm [27,
30], or use model checking [31]. Data races often reflect prob-
lems in synchronization, and expose a weak memory model
to programmers, compromising software reliability. Data
race freedom remedies this issue by guaranteeing behavior
equivalent to executing with sequentially consistent [2].

Atomicity is an analysis approach that checks if atomic
blocks are serializable. Both static [15, 20, 37] and dynamic
tools [12, 38, 16, 11] have been developed to check atomic-
ity, as well as transactional memory techniques that enforce
serializability at run time [21, 10, 35, 19]. While the notion
of atomicity is very beneficial when reasoning about atomic
methods, it is less helpful in documenting thread interference
in non-atomic methods [40]. Moreover, atomicity introduces
a form of bimodal reasoning, combining sequential reasoning
inside atomic blocks with traditional multithreaded reason-
ing outside atomic blocks. In contrast, cooperative concur-
rency provides a uniform semantics for reasoning about the
correctness of all code in a multithreaded system.

Deterministic parallelism generalizes atomicity to guaran-
tee that the result of executing multiple threads is invariant
across thread schedules. There are various approaches to en-
sure deterministic parallelism, including static analyses [5],
dynamic analyses [32, 8], and run-time enforcement [29, 9].

8. SUMMARY
Reasoning about multithreaded software correctness is no-

toriously difficult under the preemptive semantics provided
by multicore architectures. This paper proposes an approach
where the programmer writes software with traditional syn-
chronization idioms, and also explicitly documents intended
sources of thread interference with yield annotations. Any

annotated program verified by our type system behaves as
if it is executing under a cooperative semantics where con-
text switches between threads happen only at specified yield
points.

This cooperative semantics provides a nicer foundation for
reasoning about program behavior and correctness. In par-
ticular, intuitive sequential reasoning is now valid, except at
yield annotations, and prior user studies have shown that
yield annotations makes it significantly easier for program-
mers to identify defects during code reviews [33].

An important problem for future work is developing a
type inference system that could infer the effect of each
method, perhaps adapting ideas from earlier type inference
algorithms for atomicity [15]. A related inference problem
is identifying where to insert yield annotations into exist-
ing, unannotated program. Other interesting avenues for
future work are to incorporate cooperative reasoning into a
proof system, such as rely-guarantee reasoning, or to extend
cooperability to reason about determinism properties.

9. ACKOWLEDGEMENTS
This work was supported by the NSF under grants CNS-

0905650, CCF-1116883 and CCF-1116825.

10. REFERENCES
[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for

safe locking: Static race detection for Java.
Transactions on Programming Languages and
Systems, 28(2):207–255, 2006.

[2] S. V. Adve and K. Gharachorloo. Shared memory
consistency models: A tutorial. IEEE Computer,
29(12):66–76, 1996.

[3] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and
J. R. Douceur. Cooperative task management without
manual stack management. In Annual Technical
Conference, pages 289–302, 2002.

[4] R. M. Amadio and S. D. Zilio. Resource control for
synchronous cooperative threads. In International
Conference on Concurrency Theory, pages 68–82,
2004.

[5] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Simmons,
H. Sung, and M. Vakilian. A type and effect system
for Deterministic Parallel Java. In Object-Oriented
Programming, Systems, Languages, and Applications,
pages 97–116, 2009.

[6] G. Boudol. Fair cooperative multithreading. In
International Conference on Concurrency Theory,
pages 272–286, 2007.

[7] C. Boyapati and M. Rinard. A parameterized type
system for race-free Java programs. In Object-Oriented
Programming, Systems, Languages, and Applications,
pages 56–69, 2001.

[8] J. Burnim and K. Sen. Asserting and checking
determinism for multithreaded programs. In
International Symposium on Foundations of Software
Engineering, pages 3–12, 2009.

[9] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP:
deterministic shared memory multiprocessing. In
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 85–96, 2009.

[10] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early
experience with a commercial hardware transactional
memory implementation. In Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 157–168, 2009.

[11] A. Farzan and P. Madhusudan. Monitoring atomicity
in concurrent programs. In Computer Aided
Verification, pages 52–65, 2008.

[12] C. Flanagan and S. N. Freund. Atomizer: A dynamic
atomicity checker for multithreaded programs. In
Symposium on Principles of Programming Languages,
pages 256–267, 2004.

[13] C. Flanagan and S. N. Freund. Adversarial memory
for detecting destructive races. In Conference on
Programming Language Design and Implementation,
pages 244–254, 2010.

[14] C. Flanagan and S. N. Freund. FastTrack: efficient
and precise dynamic race detection. Commun. ACM,
53(11):93–101, 2010.

[15] C. Flanagan, S. N. Freund, M. Lifshin, and S. Qadeer.
Types for atomicity: Static checking and inference for
Java. ACM Trans. Program. Lang. Syst., 30(4), 2008.

[16] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A
sound and complete dynamic atomicity checker for
multithreaded programs. In Conference on
Programming Language Design and Implementation,
pages 293–303, 2008.

[17] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes
and mixins. In Symposium on Principles of
Programming Languages, pages 171–183, 1998.

[18] D. Grossman. Type-safe multithreading in Cyclone. In
Types in Language Design and Implementation, pages
13–25, 2003.

[19] T. Harris and K. Fraser. Language support for
lightweight transactions. In Object-Oriented
Programming, Systems, Languages, and Applications,
pages 388–402, 2003.

[20] J. Hatcliff, Robby, and M. B. Dwyer. Verifying
atomicity specifications for concurrent object-oriented
software using model-checking. In Conference on
Verification, Model Checking, and Abstract
Interpretation, pages 175–190, 2004.

[21] M. Herlihy and J. E. B. Moss. Transactional memory:
architectural support for lock-free data structures. In
International Symposium on Computer Architecture,
pages 289–300, 1993.

[22] M. Isard and A. Birrell. Automatic mutual exclusion.
In Workshop on Hot Topics in Operating Systems,
pages 1–6, 2007.

[23] Java Grande Forum. Java Grande benchmark suite.
Available at http://www.javagrande.org, 2008.

[24] A. Kulkarni, Y. D. Liu, and S. F. Smith. Task types
for pervasive atomicity. In Object-Oriented
Programming, Systems, Languages, and Applications,
pages 671–690, 2010.

[25] R. J. Lipton. Reduction: A method of proving
properties of parallel programs. Communications of
the ACM, 18(12):717–721, 1975.

[26] J. Manson, W. Pugh, and S. V. Adve. The Java
memory model. In Symposium on Principles of
Programming Languages, pages 378–391, 2005.

[27] M. Naik, A. Aiken, and J. Whaley. Effective static
race detection for Java. In Conference on
Programming Language Design and Implementation,
pages 308–319, 2006.

[28] R. O’Callahan and J.-D. Choi. Hybrid dynamic data
race detection. In Symposium on Principles and
Practice of Parallel Programming, pages 167–178,
2003.

[29] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo:
efficient deterministic multithreading in software. In
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 97–108, 2009.

[30] P. Pratikakis, J. S. Foster, and M. Hicks.
Context-sensitive correlation analysis for detecting
races. In Conference on Programming Language
Design and Implementation, pages 320–331, 2006.

[31] S. Qadeer and D. Wu. Kiss: keep it simple and
sequential. In Conference on Programming Language
Design and Implementation, pages 14–24, 2004.

[32] C. Sadowski, S. N. Freund, and C. Flanagan.
SingleTrack: A dynamic determinism checker for
multithreaded programs. In European Symposium on
Programming, pages 394–409, 2009.

[33] C. Sadowski and J. Yi. Applying usability studies to
correctness conditions: A case study of cooperability.
In Onward! Workshop on Evaluation and Usability of
Programming Languages and Tools, 2010.

[34] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. E. Anderson. Eraser: A dynamic data race detector
for multi-threaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, 1997.

[35] N. Shavit and D. Touitou. Software transactional
memory. In ACM Symposium on Principles of
Distributed Computing, pages 204–213, 1995.

[36] C. von Praun and T. Gross. Static conflict analysis for
multi-threaded object-oriented programs. In
Conference on Programming Language Design and
Implementation, pages 115–128, 2003.

[37] C. von Praun and T. Gross. Static detection of
atomicity violations in object-oriented programs. In
Workshop on Formal Techniques for Java-like
Programs, 2003.

[38] L. Wang and S. D. Stoller. Runtime analysis of
atomicity for multithreaded programs. IEEE
Transactions on Software Engineering, 32:93–110,
2006.

[39] J. Yi, T. Disney, S. N. Freund, and C. Flanagan.
Types for precise thread interference. Technical Report
UCSC-SOE-11-22, The University of California at
Santa Cruz, 2011. At http://www.soe.ucsc.edu/
research/technical-reports/ucsc-soe-11-22.

[40] J. Yi and C. Flanagan. Effects for cooperable and
serializable threads. In Types in Language Design and
Implementation, pages 3–14, 2010.

[41] J. Yi, C. Sadowski, and C. Flanagan. Cooperative
reasoning for preemptive execution. In Symposium on
Principles and Practice of Parallel Programming,
pages 147–156, 2011.

