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Abstract
Multithreaded programs are notoriously prone to race conditions,
a problem exacerbated by the widespread adoption of multi-core
processors with complex memory models and cache coherence pro-
tocols. Much prior work has focused on static and dynamic analy-
ses for race detection, but these algorithms typically are unable to
distinguish destructive races that cause erroneous behavior from
benign races that do not. Performing this classification manually is
difficult, time consuming, and error prone.

This paper presents a new dynamic analysis technique that uses
adversarial memory to classify race conditions as destructive or
benign on systems with relaxed memory models. Unlike a typi-
cal language implementation, which may only infrequently exhibit
non-sequentially consistent behavior, our adversarial memory im-
plementation exploits the full freedom of the memory model to re-
turn older, unexpected, or stale values for memory reads whenever
possible, in an attempt to crash the target program (that is, to force
the program to behave erroneously). A crashing execution provides
concrete evidence of a destructive bug, and this bug can be strongly
correlated with a specific race condition in the target program.

Experimental results with our JUMBLE prototype for Java
demonstrate that adversarial memory is highly effective at identi-
fying destructive race conditions, and in distinguishing them from
race conditions that are real but benign. Adversarial memory can
also reveal destructive races that would not be detected by tradi-
tional testing (even after thousands of runs) or by model checkers
that assume sequential consistency.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification–reliability; D.2.5 [Software
Engineering]: Testing and Debugging–monitors, testing tools;
F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs

General Terms Languages, Algorithms, Verification

Keywords Race conditions, concurrency, dynamic analysis, re-
laxed memory models

1. Introduction
Multithreaded software systems are notoriously prone to race con-
ditions, which occur when two threads access the same memory lo-
cation at the same time without synchronization, and at least one of
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these accesses is a write. Race conditions are particularly problem-
atic because they often cause errors only on certain rare executions,
which makes them difficult to detect, reproduce, and eliminate. The
widespread adoption of multi-core processors significantly exacer-
bates these problems, both by increasing the degree of thread inter-
leaving and by making memory model and cache coherence issues
much more prevalent. In particular, relaxed memory models cause
programs with intentional race conditions to behave in ways that
even experienced programmers find subtle, complex, and counter-
intuitive.

The insidious nature of race conditions has motivated much
prior work on race detection analyses, both static [1, 4, 5, 8, 16,
20, 28, 38, 43] and dynamic [14, 15, 30, 33, 35, 41, 45], as well
as via post-mortem analysis [3, 13, 34]. While many of these
race detectors are effective at locating potential races, they tend
to report a large number of warnings. A substantial first task for a
programmer using these tools is to manually classify the reported
potential race conditions into the following categories:

• False alarms that are caused by analysis imprecisions.
• Benign races that exist but do not cause erroneous behavior.
• Destructive races that can cause erroneous behavior and should

be fixed.

In practice, large software applications typically include a num-
ber of intentional and hopefully benign race conditions to mitigate
performance concerns. While precise race detectors (e.g., [14, 17])
facilitate race classification by guaranteeing that they never pro-
duce false alarms, they still fail to distinguish between benign and
destructive race conditions.

Correct classification is critical, since attempts to “fix” benign
races may introduce additional real bugs (such as deadlocks) or per-
formance bottlenecks (due to unnecessary synchronization). More-
over, warnings of destructive races could be ignored by the pro-
grammer on the mistaken assumption that the races are benign or
that the memory model ensures sequentially consistent behavior.
Classification by hand is also quite difficult and time consuming
and requires a deep understanding of the target code base. Overall,
therefore, this classification problem significantly limits the usabil-
ity and utility of race detection algorithms.

Adversarial Execution. This paper presents a dynamic analysis
technique that facilitates precisely identifying destructive race con-
ditions. We first use a standard precise race detector to identify pro-
gram variables that have (benign or destructive) race conditions.
For each “racy” variable, we then attempt to generate an execu-
tion in which that race condition causes the program to behave
incorrectly. An erroneous execution is one that exhibits incorrect
observable behavior, such as a crash, an uncaught exception, incor-
rect output, divergence, etc. If this approach generates an erroneous
execution, then we can guarantee that the target program is buggy



Figure 1. Racy initialization. Initially x == null.

Thread 1 Thread 2

x = new Circle(); if (x != null) { x.draw(); }

and we have strong evidence for classifying that race condition as
destructive. This approach of adversarial execution provides two
benefits: it only warns the programmer about real errors in the soft-
ware (that is, no false alarms); and it provides a concrete execution
as a witness to that error.

1.1 Memory Models
The essence of our approach to adversarial execution is to exploit
the full range of possible behaviors permitted by the relaxed mem-
ory models found in most current architectures. In general, a mem-
ory model specifies what values may be returned for each read op-
eration in a trace.

The sequentially consistent memory model (SCMM) [22] re-
quires each read from an address to return the value of the most
recent write by any thread to that address. Although sequential con-
sistency is an intuitive memory model, it significantly limits the
optimizations used by the compiler, virtual machine, or hardware.

Relaxed memory models [2, 19], such as the Java Memory
Model (JMM) [25] or x86-TSO [31], admit additional optimizations
by imposing fewer constraints on the value returned from read op-
erations. For data-race-free programs, each read returns the same
value as under SCMM. For programs with (intentional or uninten-
tional) races, however, a read operation could return multiple val-
ues, as illustrated by the following two examples.

Racy Initialization Example. In this program, Thread 1 initial-
izes x while Thread 2 checks x!=null and then calls x.draw().
Both reads of x by Thread 2 are in a race with the write by Thread 1.
Nevertheless, under SCMM, all interleavings of this program behave
correctly, since once x is initialized as non-null it stays non-null.

Under the Java relaxed memory model, however, each read of
x could independently read either null or an initialized reference.
Hence the check x!=null could succeed (by reading the initialized
value) after which the call x.draw() could read null and fail with
a NullPointerException. 1

Double-Checked Locking Example. As a more interesting exam-
ple, consider the Java program in Figure 2. The class Point con-
tains a static field p referring to a singleton Point object. This static
field is initialized lazily on the first call to get(), via a double-
checked initialization pattern. Prior precise race detectors such as
FASTTRACK [17] and DJIT+ [33] can identify race conditions on
three fields (p, p.x, and p.y), but they do not identify which of
these race conditions are destructive.

We first consider the race condition on p. Line 8 reads p into
a local variable t, so the return value of get() is never null.
Reading stale null values at line 8 only causes extra executions of
the synchronized block, so the race on p is not destructive.

We next consider the race between the write of x at line 5 and
the read at line 17. These accesses never overlap because of the
initialization logic in get(). Nevertheless, a thread calling get()
could return the initialized value of p without synchronization,
meaning that there is no happens-before edge between a different
thread’s initialization of x and that thread’s read of x. Hence, the
read at line 17 could return the default initial value of zero for

1 Note that specific JVM implementations may not exhibit all behaviors
permissible by the Java Memory Model, and so a specific JVM on specific
hardware might never reorder reads in a way that exposes this bug.

Figure 2. Double-checked locking.

1 class Point {
2 double x, y;
3 static Point p;
4

5 Point() { x = 1.0; y = 1.0; }
6

7 static Point get() {
8 Point t = p;
9 if (t != null) return t;

10 synchronized (Point.class) {
11 if (p==null) p = new Point();
12 return p;
13 }
14 }
15

16 static double slope() {
17 return get().y / get().x;
18 }
19

20 public static void main(String[] args) {
21 fork { System.out.println( slope() ); }
22 fork { System.out.println( slope() ); }
23 }
24 }

x, causing an immediate DivisionByZeroException at line 17.
Thus, the race on x is destructive.

Similarly, the read of y at line 17 could also return a stale
zero value, causing incorrect printouts. Therefore, this race is also
destructive.

1.2 Adversarial Memory
A key difficulty in detecting destructive race conditions like those
above via testing alone is that the memory system is likely to
exhibit sequentially-consistent behavior most of the time. Unex-
pected values will be read from memory only in certain unlucky
circumstances (such as when two conflicting accesses are sched-
uled closely together on cores without a shared cache, or when
two object are allocated at addresses that cause cache conflicts).
Thus, even though the memory system is always allowed to exhibit
counter-intuitive “relaxed” behavior, the fact that it behaves nicely
most of the time makes testing problematic.

To overcome this limitation, we have developed an adversarial
memory system, JUMBLE, that continually exploits the full flexibil-
ity of the relaxed memory model to try to crash the target applica-
tion.2 Essentially, JUMBLE stress-tests racy programs by returning
older (but still legal) values for read operations whenever possi-
ble. To determine which values are legal under the memory model,
JUMBLE monitors memory and synchronization operations of the
target program and keeps a write buffer recording the history of
write operations to each racy shared variable. For each read oper-
ation, JUMBLE computes the set of visible values in that variable’s
write buffer that can be legally returned according to the memory
model. This visible set always contains at least the value of the last
write to that variable, but may also contain older values. JUMBLE
attempts to heuristically pick an element likely to trigger a program
crash and thus provide evidence of a destructive race condition.

To provide a formal foundation for our approach, we first de-
velop an operational specification for a subset of the Java Memory
Model. This operational specification expresses the inherent non-
determinism of the memory model in terms of familiar data struc-

2 JUMBLE targets Java programs, but adversarial memory can be used in
any system with a relaxed memory model.



tures such as vector clocks and write buffers. The JUMBLE adver-
sarial memory implementation then reifies this non-deterministic
operational specification using heuristics to choose read values that
expose destructive races.

Fairness. JUMBLE uses a variety of heuristics to choose which
visible value to return for each read operation of the target pro-
gram. Our simplest heuristic returns the oldest or “most stale” vis-
ible value for each read. Interestingly, this heuristic violates fair-
ness properties typically assumed by applications. For example,
consider the following busy-waiting loop, which contains an in-
tentional race on the non-volatile boolean variable done.

while (!done) { yield(); }

Even after a concurrent thread sets done to true via a racy write,
our “oldest” heuristic continued to return the original (and still
visible) false value for done, resulting in an infinite loop.

There is some tension between memory model fairness (which
helps applications behave correctly) and adversarial memory (which
tries to crash applications). Although JMM does not mandate a par-
ticular notion of fairness, our implementation guarantees that any
unbounded sequence of reads to a particular variable will some-
times return the most recently-written value. This fairness guaran-
tee proved sufficient on all our experiments.

Experimental Results. Experimental results on a range of mul-
tithreaded benchmarks show that adversarial memory, although a
straightforward concept, is highly effective at exposing destructive
races. Each destructive race typically causes incorrect behavior on
between 25% and 100% of test runs, as compared to essentially 0%
under normal testing. For the example program of Figure 1, JUM-
BLE reveals this destructive race on roughly every other run, while
traditional testing failed to reveal this bug after 10,000 runs.

Much prior work (see, for example, [27, 29, 36, 40]) developed
tools that explore multiple interleavings of multithreaded programs,
in an attempt to identify defects, including destructive races. Inter-
estingly, because these tools assume sequentially consistency, they
cannot detect destructive race conditions, such as those in Figures 1
and 2 and in several of our benchmarks, which only appear under
relaxed memory assumptions. Conversely, JUMBLE does not ex-
plore all interleavings, and so may not detect destructive races that
cause problems only under some interleavings. In general, multi-
threaded Java programs are prone to both scheduling nondetermin-
ism and memory-model nondeterminism, and model checkers need
to exhaustively explore both sources of nondeterminism in order to
detect all errors.

1.3 Contributions
In summary, this paper:

• introduces the concept of adversarial memory for detecting
destructive races;
• formalizes an operational specification for a subset of the JMM,

providing a foundation for our approach (Section 4);
• proves that this operational specification is sound with respect

to its declarative specification (Section 4.2);
• describes our adversarial memory implementation and its

heuristics for exposing destructive races (Section 5); and
• presents experimental results demonstrating that this approach

is effective at identifying destructive race conditions, with mod-
est performance overhead (Section 6).

2. Multithreaded Program Traces
To provide a sound basis for our development, we begin by for-
malizing multithreaded program traces. A multithreaded program

Figure 3. Multithreaded program traces.

α ∈ Trace ::= Operation∗

a, b ∈ Operation ::= rd(t, x, v) | wr(t, x, v)
| acq(t,m) | rel(t,m)
| fork(t, u) | join(t, u)

s, t, u ∈ Tid x, y ∈ Var m ∈ Lock v ∈ Value

consists of a number of concurrently executing threads, each with
a thread identifier t ∈ Tid . These threads manipulate variables
x ∈ Var and locks m ∈ Lock . A trace α captures an execution
of a multithreaded program by listing the sequence of operations
performed by the various threads in the system. We ignore control
operations (branches, looping, method calls, etc) and local compu-
tations, as they are orthogonal to memory model issues. Thus, the
set of operations that a thread t can perform are:

• rd(t, x, v) and wr(t, x, v), which read and write a value v from
a variable x;
• acq(t,m) and rel(t,m), which acquire and release a lock m;
• fork(t, u), which forks a new thread u; and
• join(t, u), which blocks until thread u terminates.

This set of operations suffices for an initial presentation of our anal-
ysis; our implementation supports a variety of additional synchro-
nization constructs, including wait, notify, volatile variables, etc.

The happens-before relation <α for a trace α is the smallest
transitively-closed relation over the operations3 in α such that the
relation a <α b holds whenever a occurs before b in α and one of
the following holds:

• [PROGRAM ORDER] Both operations are by the same thread.
• [LOCKING ORDER]: a releases a lock that is later acquired by b.
• [FORK ORDER]: a is fork(t, u) and b is by thread u.
• [JOIN ORDER]: a is by thread u and b is join(t, u).

If a happens before b, then we also say that b happens after a. If two
operations in a trace are not related by the happens-before relation,
then they are considered concurrent. Two memory access conflict
if they both access (read or write) the same variable, and at least
one of the operations is a write. Using this terminology, a trace has
a race condition if it has two concurrent conflicting accesses.

3. Memory Models
A memory model specifies what values can be returned for each
read operation in a program trace. A trace α is legal under a
memory model if the value v produced by each read operation
rd(t, x, v) in the trace α is permitted under that memory model.
The simplest memory model is sequential consistency:

Sequential Consistent Memory Model (SCMM): A read
operation a = rd(t, x, v) in a trace α may only return the
value of the most recent write to that variable in α.

Although sequential consistency is intuitive, it limits the optimiza-
tions that may be performed by the compiler, the virtual machine,

3 In theory, a particular operation a could occur multiple times in a trace. We
avoid this complication by assuming that each operation includes a unique
identifier (often called an issue index [31]), but, to avoid clutter, we do not
include this unique identifier in the concrete syntax of operations.



Figure 4. A trace with a read-then-write race on x. The assertion
can fail under JMM and HBMM but not under PJMM. Initially
x == y == 0.

Thread 1 Thread 2
assert (x == 0);
y = 1;

while (y == 0) { };
x = 1;

or by the hardware itself. The desire for additional optimization op-
portunities motivated the introduction of a variety of relaxed mem-
ory models, which impose weaker constraints on the values re-
turned for read operations in the presence of race conditions [2, 19].

The happens-before memory model relaxes the requirements on
which value is returned by a read operation:

Happens-Before Memory Model (HBMM): A read oper-
ation a = rd(t, x, v) in a trace α may return the value v
written by any write operation b = wr(u, x, v) provided:

1. b does not happen after a (i.e., b happens before or is
concurrent with a), and

2. there is no intervening write c to x where b <α c <α a.

Condition (1) is quite permissive, and it allows a read operation to
“look into the future”, as in the following trace where the operation
rd(t1, x, 1) reads the value 1 from the write wr(t2, x, 1) that ap-
pears later in the trace (but which is considered a concurrent write
by the happens-before relation):

wr(t1, x, 0).rd(t1, x, 1).wr(t2, x, 1)

This permissiveness introduces the potential for out-of-thin-air vio-
lations, as described in the Java Memory Model Specification [25].
We briefly illustrate this problem via the following program in
which each thread copies one variable into another:

x := y || y := x

Even if x and y are zero-initialized, this program can generate the
following trace under HBMM for any value of v, since the first read
reads the second write, etc.

rd(t1, x, v).wr(t1, y, v).rd(t2, y, v).wr(t2, x, v)

Out-of-thin-air violations are problematic for garbage-collected
languages (since the “out of thin air” value v could be an invalid
pointer) and they introduce potential security loopholes. To avoid
out-of-thin-air violations, the Java Memory Model [25] (JMM) ex-
tends the happens-before memory model with a complex causality
requirement, essentially precluding nonsensical traces such as the
one shown above. In our setting, this causality requirement is un-
necessary because our dynamic online analysis is unable to “look
into the future”. Thus, in the following section we formalize our
analysis for a restriction of the JMM, called the Progressive Java
Memory Model, that removes this ability.

4. The Progressive Java Memory Model
The Progressive Java Memory Model is a slight restriction of the
Happens-Before Memory Model that removes the ability for a read
operation to see a write operation that has not happened yet.

Progressive Java Memory Model (PJMM): A read opera-
tion a = rd(t, x, v) in trace α may return the value v writ-
ten by any write operation b = wr(u, x, v) provided that

1. b executes before a in the trace α; and

Adversarial Memory Implementation

Happens-Before Memory Model
Java Memory Model

Progressive Java Memory Model

Sequentially Consistent Memory Model

Typical JVM

Figure 5. An illustration of four memory models and two memory
implementations, including a typical JVM.

2. there is no intervening write c to x where b <α c <α a.

Here, condition 1 permits only reading past writes, and is more
restrictive than HBMM for traces involving read-then-write race
conditions, where a read is in a race with a later write. Under HBMM
and JMM, the read can “see” the later write; under PJMM, it can not.

Figure 4 illustrates such a trace with a read-then-write race on
x, where the assertion of Thread 1 can read a future value for x and
thus fail under HBMM and JMM, but the assertion cannot fail under
PJMM. Excluding such traces from PJMM greatly simplifies our
JUMBLE implementation, without in practice significantly limiting
its ability to expose destructive races.

We illustrate the relationship between these four memory mod-
els discussed so far (HBMM, JMM, PJMM, and SCMM) via the Venn
diagram of Figure 5. The more flexible memory models permit a
greater set of program behaviors than the more restrictive. This di-
agram also roughly sketches the memory model behaviors exposed
by two implementations: a typical Java Virtual Machine (JVM) im-
plementation, and by our adversarial memory implementation. A
typical JVM running on commodity hardware exposes behaviors
that are not sequentially consistent relatively infrequently, because,
for example, those platforms do not perform all optimizations per-
missible under the JMM. In contrast, JUMBLE explores a larger (and
more “adversarial”) fraction of the behavior permitted by the JMM,
thereby exposing more destructive races.

4.1 An Operational Specification of the PJMM

To guide our implementation of an adversarial memory system, we
now present an operational formulation of the PJMM, called the
Operational PJMM.4 In particular, whereas the above PJMM defi-
nition is expressed in terms of a mathematical characterization of
the happens-before relation, the Operational PJMM is expressed in
terms of data structures analogous to those used in our implemen-
tation: vector clocks that represent the happens-before relation and
write buffers that record the history of writes to each variable.

A vector clock K : Tid → Nat records a clock for each
thread in the system [26]. Vector clocks are partially-ordered (v)
in a point-wise manner, with an associated join operation (t) and
minimal element (⊥). The helper function inct increments the t-

4 The Operational PJMM is motivated by similar goals as [7], but is less
complex as we only provide a semantics for traces, not programs.



component of a vector clock:

K1 v K2 iff ∀t. K1(t) ≤ K2(t)

K1 tK2
def
= λt. max (K1(t),K2(t))

⊥ def
= λt. 0

inct(K )
def
= λu. if u = t then K (u) + 1 else K (u)

We express the Operational PJMM as an online analysis that
maintains a memory state σ. This memory state is updated by each
operation a in the observed trace via the relation:

σ ⇒a σ′

This relational formulation naturally supports non-deterministic
reads: for a read of x by thread t from σ, it may be possible to
conclude both σ ⇒rd(t,x,v1) σ and σ ⇒rd(t,x,v2) σ, indicating
that the read may return either v1 or v2. (Note that read operations
do not affect the memory state σ.)

Memory State. A memory state σ is a tuple (C,L,W ), where:

• C : Tid → K identifies the current vector clock of each
thread t. Initially, each thread t starts with the vector clock
C(t) = inct(⊥), indicating that this thread has performed one
clock tick.
• L : Lock → K is the vector clock of the last release of each

lock. Each lockL(m) is initially⊥, indicating that the lock was
never acquired.
• W : Var → WriteBuffer contains a non-empty write

buffer for each variable in the program. A WriteBuffer =
(Value@K )+ records the sequence of values written to that
variable together with a vector clock timestamp for each write.
Initially, each write buffer W (x) contains a single entry 0@⊥,
reflecting that memory is zero-initialized before execution.

Thus, the initial memory state is:

σ0
def
= (λt.inct(⊥), λm.⊥, λx.(0@⊥))

Transition Rules. Figure 6 describes how the Operational PJMM
handles each operation of the observed trace.

[ACQUIRE]: The rule for acq(t,m) updates the vector clock Ct
to reflect that subsequent operations of thread t happen after the
last release of lock m, which happened at time Lm. Here, C
is a function, Ct abbreviates the function application C(t), and
C[t := b] denotes the function that is identical to C except that
it maps t to b.

[RELEASE]: The rule for rel(t,m) updates Lm with the current
vector clockCt of thread t, and then increments the t-component
of Ct, so that the vector clocks can distinguish operations by
thread t that happen before and after that release operation.

[FORK]: The rule for fork(t, u) updates Cu to be after Ct (reflect-
ing that the first operation of the forked thread u happens after
this fork operation) and increments the t-component of Ct.

[JOIN]: The rule for join(t, u) updatesCt to be afterCu (reflecting
that this join operation of thread t happens after the last operation
of the joined thread u). As a technical device to simplify proof
invariants, this rule also increments the u-component of Cu.

[WRITE]: The rule for wr(t, x, v) extends the write bufferWx with
an entry v@Ct recording that the value v was written at time Ct.

[READ]: The rule for rd(t, x, vi) non-deterministically picks some
value vi from the current write buffer, which in general has the
form:

Wx = v1@K1 · v2@K2 · . . . · vn@Kn

Figure 6. The Operational Progressive Java Memory Model.

[ACQUIRE]
C′ = C[t := (Ct t Lm)]

(C,L,W )⇒acq(t,m) (C′, L,W )

[RELEASE]
L′ = L[m := Ct] C′ = C[t := inct(Ct)]

(C,L,W )⇒rel(t,m) (C′, L′,W )

[FORK]
C′ = C[u := Cu t Ct, t := inct(Ct)]

(C,L,W )⇒fork(t,u) (C′, L,W )

[JOIN]
C′ = C[t := Ct t Cu, u := incu(Cu)]

(C,L,W )⇒join(t,u) (C′, L,W )

[WRITE]
W ′ = W [x := Wx · v@Ct]

(C,L,W )⇒wr(t,x,v) (C,L,W ′)

[READ]

Wx = (vj@Kj)
j∈1..n i ∈ 1..n

∀j ∈ i+ 1..n. ¬(Ki v Kj v Ct)
(C,L,W )⇒rd(t,x,vi) (C,L,W )

[GC1]

Wx = (vj@Kj)
j∈1..n i ∈ 1..n

∀t ∈ Tid . ∃j ∈ i+ 1..n. Ki v Kj v Ct
W ′ = W [x := (vj@Kj)

j∈1..i−1 · (vj@Kj)
j∈i+1..n]

(C,L,W )⇒ε (C,L,W ′)

[GC2]

Wx = (vj@Kj)
j∈1..n

vi = vm Ki = Km 1 ≤ i < m ≤ n
W ′ = W [x := (vj@Kj)

j∈1..i−1 · (vj@Kj)
j∈i+1..n]

(C,L,W )⇒ε (C,L,W ′)

[REMOVE OLDEST]

Wx = (vj@Kj)
j∈1..n n > 1

W ′ = W [x := (vj@Kj)
j∈2..n]

(C,L,W )⇒ε (C,L,W ′)

To yield a legal PJMM trace, that rule ensures there is no subse-
quent write vj@Kj in the buffer at position j ∈ i+ 1..n that

1. happens after the write of vi (so Ki v Kj) and

2. that happens before this read operation (so Kj v Ct).
If there is no such j, then this read operation can legally return
the value vi.

Note that [READ] always permits the most recent value vn to be
returned, and possibly older writes as well. If there are multiple en-
tries in the write buffer that satisfy the requirements of the [READ]
rule, then we say that the read operation has an sequential consis-
tency violation, since it could return values that are not permitted
under the SCMM.

As an example, entries i and m in the write buffer

. . . · vi@Ki · . . . · vm@Km · . . .

could both be read provided that either (1) the second write is in a
race with the first write (Ki 6v Km) or (2) the second write is in a
race with the read (Km 6v Ct). Thus, even if the read operation
is race-free (Ki v Ct and Km v Ct), it can still produce a
sequential consistency violation if the previous write operations are
racy (Ki 6v Km).

Conversely, if the trace has no race conditions on a particular
variable, then all accesses are totally ordered, and so are the vector



Figure 7. Example execution trace.

⟨5,0⟩

⟨4,7⟩

⟨0,7⟩

⟨4,7⟩

acq(1,m)

rd(1,x,v')

⟨4,0⟩

⟨4,0⟩

⟨4,0⟩

C0 Lm WxC1

⟨5,0⟩

⟨5,0⟩

⟨0,7⟩ ⊥ 0@⊥ · 13@⟨4,0⟩ · 42@⟨4,0⟩⟨4,0⟩

⟨0,7⟩ ⊥ 0@⊥ · 13@⟨4,0⟩⟨4,0⟩

⟨0,7⟩ ⊥⟨4,0⟩
wr(0,x,13)

rel(0,m)

0@⊥ · 13@⟨4,0⟩ · 42@⟨4,0⟩

0@⊥ · 13@⟨4,0⟩ · 42@⟨4,0⟩

0@⊥ · 13@⟨4,0⟩ · 42@⟨4,0⟩

⟨4,0⟩ 0@⊥ · 13@⟨4,0⟩ · 42@⟨4,0⟩⟨0,7⟩
rd(1,x,v)

⟨5,0⟩

0@⊥

⟨0,7⟩ ⊥⟨4,0⟩
acq(0,m)

0@⊥

wr(0,x,42)

clocks K1 v K2 v · · · v Kn v Ct. Hence, any read will return
the value vn of the most recent write.

Example. The example trace in Figure 7 illustrates the key points
of the Operational PJMM, including the need for ordered write
buffers. That figure includes the relevant parts of the memory state
σ: the vector clocksC0 andC1 of Thread 0 and Thread 1; the vector
lock Lm of the lock m; and the write buffer Wx for the variable x.

• The first write wr(0, x, 13) at time C0 = 〈4, 0〉 extends the
write buffer Wx with a second entry 13@〈4, 0〉.
• The next write adds a third entry 42@〈4, 0〉. Note that the last

two entries in the write buffer now contain identical vector
clocks. Nevertheless, the order of the write buffer entries still
indicates that 42 was written sometime after 13.
• The release rel(0,m) updates Lm to 〈4, 0〉.
• The first read rd(1, x, v) then reads x without holding the lock.

The [READ] rule enables us to determine which of the three
entries in Wx are visible to that read at time C1 = 〈0, 7〉:

42@〈4, 0〉 is visible: it is the last entry in the write buffer.

13@〈4, 0〉 is visible: the later entry 42@〈4, 0〉 is concurrent
with the current clock C1 since 〈4, 0〉 6v 〈0, 7〉 = C1.

0@⊥ is also visible: again, the later entries at time 〈4, 0〉 are
concurrent with the current clock C1.

Thus, the read operation rd(1, x, v) can return any value in
the write buffer (0, 13, or 42) as v, resulting in a sequential
consistency violation.
• The acquire acq(1,m) increases C1 to be at least Lm, reflect-

ing the happens-before edge from the release to the acquire.
• The second read operation rd(1, x, v′) now reads x in a race-

free manner, and the [READ] rule again enables us to determine
which entries inWx are visible to that read at timeC1 = 〈4, 7〉:

42@〈4, 0〉 is visible: it is the last entry in the write buffer.

13@〈4, 0〉 is not visible: the later entry 42@〈4, 0〉 now
prevents Thread 1 from seeing this value, since 〈4, 0〉 v
〈4, 7〉 = C1. Note that the order of write buffer entries al-
lows us to correctly distinguish between these two entries
(13 and 42) that have the same vector clock.

0@⊥ is not visible: due to the later entries at time 〈4, 0〉.
Thus, the second read rd(1, x, v′) must return 42, not 13 or 0,
and thus does not have a sequential consistency violation.

Write Buffer Compression. Our operational memory model in-
cludes three additional rules to prevent write buffers from becom-
ing arbitrarily large.

[GC1]: This rule discards an entry vi@Ki from a write buffer

Wx = v1@K1 · v2@K2 · . . . · vn@Kn

provided vi is not visible to any thread. To ensure this “invisi-
bility” property, the rule checks that, for each thread t, there is
some intervening write vj@Kj such that Ki v Kj v Ct. In this
situation, removing the entry vi@Ki from the write buffer does
not change the set of traces accepted from the current state.
For the final memory state of Figure 7, this rule can remove the
entries 0@⊥ and 13@〈4, 0〉, since the last write 42@〈4, 0〉 serves
an an intervening write in both cases.

[GC2]: This rule identifies situations where some thread t writes
a value v to a variable x twice in a row, with no intervening
synchronization operations, yielding a write buffer of the form:

Wx = . . . · v@Ct · . . . · v@Ct · . . .
The first occurrence of v@Ct is now redundant. If thread t reads
from x, the first write is hidden due to program order. If a
different thread reads from x and the first write by t is visible,
then the second write by t is also visible. Thus we can remove
the earlier write from the write buffer without changing the set of
traces accepted from the current state.

[REMOVE OLDEST]: The previous two techniques work well in
practice most of the time, but races on frequently modified vari-
ables could still cause buffers to grow quite large. The final rule
allows the oldest entry to be dropped from the write buffer at
any point, provided that there is still at least one write remain-
ing. This rule is sound, in the sense that it will never accept an
invalid trace, but it limits the subsequent freedom of our adversar-
ial memory implementation to return stale values that are likely
to cause crashes. Hence, we apply this rule only when necessary,
that is, when write buffers would otherwise grow too large. Us-
ing a maximum buffer size of 32 did not impact the precision
of JUMBLE for those programs requiring much larger buffers to
hold the entire visible history.

4.2 Correctness of the Operational PJMM

We now address the correctness of the Operational PJMM. Suppose
the target program P behaves incorrectly on a trace α that is legal
under the Operational PJMM. Theorem 1 below implies that α
is also a legal PJMM trace. The PJMM is essentially a restriction
of JMM, and follows a similar specification style based on the
happens-before relation, indicating that α is therefore also a legal
JMM trace, and so P could also behave incorrectly on a JVM.

Before proving Theorem 1, we first introduce some additional
notation. For any transition σ ⇒a σ′, we use Ca, La, and W a to
denote the components of σ, and we use Caa to abbreviate Catid(a),
which denotes the clock vector of the thread executing a just before
that operation is executed.

We restrict our attention to feasible traces that respect the fol-
lowing expected constraints on forks, joins, and locking operations.



1. There can be no instructions of thread u preceding an instruc-
tion fork(t, u) or following an instruction join(t, u).

2. No thread can release a lock it did not previously acquire.

3. No thread can acquire a lock previously acquired but not re-
leased by another thread.

THEOREM 1. If σ0 ⇒α σ then α is a legal PJMM trace.

PROOF A commuting argument [23] can be used to show that
the garbage collection rules ([GC1], [GC2], [REMOVE OLDEST]) all
“right-commute” with the other rules. Hence, applications of the
GC rules can be moved to the end of the trace, yielding a trace
prefix β that does not include any GC rules. We now show that this
theorem holds for β.

Consider any read a = rd(t, x, v) ∈ β in a memory state where
the write buffer has the form:

W a
x = v1@K1 · · · vi@Ki · · · vn@Kn

The rule [READ] implies that v = vi for some i, and that:

∀j ∈ i+ 1..n. ¬(Ki v Kj v Caa )

From an inspection of the rules, the write buffer entry vi@Ki must
have been added to Wx by the rule [WRITE] for some operation
b = wr(u, x, v) ∈ β, where Ki = Cbb .

Now suppose there was an intervening write c = wr(u′, x, v′) ∈
β with b <β c <β a. By Lemma 1 below, we have that
Cbb v Ccc v Caa . Also, c occurs between b and a in the trace,
meaning the entry v′@Ccc must have been added to the write buffer
after b. Thus there exists j ∈ i + 1..n such that Kj = Ccc . Hence,
we have that:

Ki v Kj v Caa ,
which is a contradiction. Thus, there is no intervening write c such
that b <β c <α a, and the operation a can thus read the value
written by b under PJMM. 2

The following lemma clarifies that vector clocks correctly represent
the happens-before relation. Previous work proves a similar lemma
by induction [17].

LEMMA 1 (Happens-Before implies Vector Clocks).
Suppose σ0 ⇒α σ and a, b ∈ α are both read or write operations.
If a <α b then Caa v Cbb .

5. Adversarial Memory Implementation
The Operational PJMM expresses the inherent non-determinism
of the memory model in an operational manner. The JUMBLE
adversarial memory implementation resolves this non-determinism
in a manner designed to expose destructive races.

Suppose we have previously identified data races on a specific
variable x in our target program. JUMBLE executes that program
in a special environment where all writes to x are recorded in a
write buffer, and all reads from x are adversarial in that JUMBLE
attempts to pick visible values that are likely to trigger erroneous
behavior. If the target program behaves erroneously under such
adversarial reads on x, then we characterize that race condition on
x as being destructive.

5.1 Heuristics

In more detail, consider a read operation rd(t, x, ) performed in a
memory state σ = (C,L,W ) where the write buffer for x is:

Wx = v1@K1 · v2@K2 · . . . · vn@Kn

By the [READ] rule, the read operation can return any value vi in
the write buffer that does not have an intervening write vj with

Figure 8. Racy initialization revisited. Initially x == null.

Thread 1 Thread 2

x = new Circle(); for(int i=0; i<10; i++) {
if (x != null) { x.draw(); }

}

Ki v Kj v Ct. Thus, the set Vis of visible values is:

Vis
def
= {vi | i ∈ 1..n and ∀j ∈ i+ 1..n. ¬(Ki v Kj v Ct)}

This set always contains the most recent write vn, but possibly
additional values as well. We have implemented five heuristics for
resolving this non-determinism in the case where Vis is not the
singleton set {vn}.

• Sequentially-Consistent. This heuristic always returns the most
recently written value vn, and provides a baseline with which to
compare our more adversarial heuristics.

• Oldest. This heuristic picks the oldest element of V , based on the
intuition that this “most stale” value is likely to induce bad behav-
ior. Occasionally, this heuristic returns the most recently written
value vn instead, in order to satisfy fairness properties assumed
by busy-waiting loops, as mentioned in the introduction.

• Oldest-But-Different. Consider the example of Figure 8, in which
a for loop encloses the check-then-dereference idiom from Fig-
ure 1:

if (x != null) { x.draw(); }

For this program, the Oldest heuristic consistently returns the
same value for all reads of x, and thus fails to expose this destruc-
tive race. In contrast, the Oldest-But-Different heuristic picks the
oldest element of Vis that is different from the last value read
from that variable. Once the write buffer contains the write to x
from Thread 1, Oldest-But-Different alternately returns null and
non-null pointers and detects this destructive race on essentially
every execution. (No error was detected on traces in which the
initialization happened only after the loop terminated.)

• Random. Pick a random value from Vis .

• Random-But-Different. Pick a random value from Vis that is
different from the last value read for that variable.

Section 6 presents an experimental comparison of these heuristics.

5.2 JUMBLE Implementation Details
Our JUMBLE implementation is based on the ROADRUNNER
framework [17, 18]. ROADRUNNER inserts instrumentation code
into the target bytecode program at load time that will generate a
stream of events for synchronization operations, field accesses, etc,
and JUMBLE processes this event stream as it is generated.

Our implementation supports additional synchronization primi-
tives not described in our memory model, including wait/notify,
and volatile variables. Extending a happens-before analysis based
on vector clocks to handle these cases is straightforward, as de-
scribed in [17]. For simplicity, re-entrant lock acquires and releases
(which are redundant) are filtered out by ROADRUNNER and are
never passed to JUMBLE.

JUMBLE is configurable to record write buffers for the memory
locations corresponding to any set of syntactic fields in the source
program. While we could record write buffers for all memory
locations used by a program, we have found it more useful during
our initial experiments to configure it to analyze instances of only
one syntactic field (identified earlier by a precise race detector) at a



time. If crashes occur only under those conditions, the underlying
cause is most likely a destructive race condition on the field being
“jumbled”. Tracking only a single syntactic field at a time may miss
some errors that involve multiple fields, as described in [24, 39], but
we leave tracking multiple fields for future work.

JUMBLE State. JUMBLE associates with each thread in the target
program a vector clock represented by an array of 32-bit integers.5

JUMBLE also maintains a write buffer of value/clock-vector pairs
for each monitored memory location. When a read occurs, JUMBLE
uses the reading thread’s vector clock to identify which writes
are visible, and applies one of the previously-described heuristics
to choose among them. The JUMBLE implementation limits write
buffers to contain a bounded number of entries, typically 32.

Non-Atomic Longs and Doubles. JUMBLE follows the Java
memory model specification in treating reads from 8-byte longs
and doubles as non-atomic, and it implements them as two separate
4-byte reads. That is, when JUMBLE performs a read from a loca-
tion storing a 8-byte value, it extracts two distinct, visible writes
from that location’s write buffer, using the top part of one and the
bottom part of the other to construct the value returned to the pro-
gram. In this manner, racy reads from 8-byte locations often return
corrupted values that are likely to result in erroneous executions.

Arrays. JUMBLE can also jumble the values returned by array
reads. To avoid high overheads on array intensive programs with
huge numbers of array accesses, JUMBLE incorporates a sampling
technique. We use a precise race detector to identify the array in-
dices at which data races occur. JUMBLE then tracks values associ-
ated with a small subset of those indices for every array created by
the target. This approach proved quite effective in practice — JUM-
BLE induced crashes for our test programs with array races when
only jumbling accesses to arrays at index 0 or 1. The overhead was
usually higher than when tracking a single syntactic field, but still
acceptable.

6. Experimental Results
We used JUMBLE to examine all 10 race conditions detected by
the FASTTRACK precise race detector [17] in a variety of multi-
threaded benchmarks.6

The programs examined include jbb, the SPEC JBB2000 busi-
ness object simulator [37]; montecarlo, sor, lufact, moldyn,
and raytracer from the Java Grande benchmark suite [21];
mtrt, a multithreaded ray-tracing program from the SPEC JVM98
benchmark suite [37]; and tsp, a Traveling Salesman Problem
solver [42]. Their sizes, number of threads, and running times are
shown in Figure 10. Experiments were performed on an Apple
Mac Pro with dual 3GHz quad-core Pentium Xeon processors and
12GB of memory, running OS X 10.5.8 and Sun’s Java HotSpot
64-bit Server VM version 1.6.0.

6.1 Effectiveness of Adversarial Memory
We compared the behavior of JUMBLE under six different memory
implementations: No Jumble (in which the target program is exe-
cuted directly by the HotSpot JVM) and the five JUMBLE heuris-
tics described in Section 5. For each of the races and each of the
six configurations, we ran 100 tests to detect how often that race

5 While 32-bit integers were sufficient for our tests, switching to 64-bits
would enable JUMBLE to handle larger clocks, but with additional overhead.
6 The reported races on these programs differ slightly from our earlier
published results [17] due to changes in the FASTTRACK implementation,
including improvements in how it creates happens-before edges for calls to
Thread.interrupt().

condition caused erroneous behavior. For races on fields, we jum-
bled reads from all instances of that field. For races on arrays, we
jumbled reads from all arrays at index 0 and 1, as described above.

Figure 9 summarizes the results for our benchmark programs,
and also for the example programs in Figures 2 and 8. The last
column of that figure presents the results of our manual (and time-
consuming) classification of each race condition as benign or de-
structive. We classified a race as destructive only if we could ob-
serve deviant program behavior by doing nothing more than insert-
ing Thread.sleep() operations to guide the scheduler to poten-
tially bad interleavings.

The No Jumble heuristic exposed none of the destructive races,
which confirms the conventional folklore that race conditions are
extremely difficult to detect via traditional testing alone. The
Sequentially-Consistent heuristic demonstrates that our instru-
mentation and monitoring framework, while invariably impacting
thread scheduling, does not in itself expose destructive behaviors.

The remaining columns demonstrate that the other JUMBLE
heuristics are highly effective at exposing destructive race condi-
tions. Seven of the nine race conditions were destructive, and each
destructive race condition is detected by at least one heuristic with
high probability. We again examined program behavior manually
to identify incorrect behavior.

As expected by the correctness arguments of Section 4.2, none
of the benign races caused incorrect behavior under any of the
configurations. We discuss each race condition in turn:

Programs in Figures 8 and 2: Under JUMBLE, the code in
Figure 8 generated a “null pointer exception.” Two values become
visible in the write buffer for x after the initialization in Thread 1
occurs: the new, non-null value, and the original null value.

As previously mentioned, the Oldest heuristic fails to uncover
the error because it always returns the same null value for every
access. In contrast, the Oldest-But-Different heuristic causes the
crash with high probability. The random schemes are also effective
in this case. No crash occurs only on traces in which Thread 1
writes to x only after Thread 2 has finished.

Similarly, the destructive races previously described for the
program in Figure 2 are detected with fairly high probability, but
the benign race triggers no visible errors.

Program jbb, Company.elapsed time: The main thread reads
each company’s elapsed time field while computing timing data.
However, due to the lack of synchronization, multiple values are
visible in the write buffer, including the initial value of 0. Since this
field is a long, JUMBLE merges 4-byte words from different writes,
causing corrupted statistics to be reported. Since some values con-
structed in this way result in “reasonable” output for the program,
the Oldest-But-Different and random heuristics do not uncover the
errors 100% of the time.

Program jbb, Company.mode: This variable records the state of
a company object during simulation. The transaction manager tests
whether mode is RAMP DOWN to decide whether to wake up a waiting
object. If a stale value is read, the waiting object will never awaken,
and the program fails to terminate.

Program montecarlo, Universal.UNIVERSAL DEBUG: During
the test runs, all writes to this global debugging flag wrote the same
value, so no difference in behavior could be discerned by JUMBLE,
and we considered this race benign.

Program mtrt, RayTracer.threadCount: In this program a
RayTracer object creates a group of Runner worker threads
that all refer to the RayTracer as parent. The parent increments
threadCount each time a runner is created, and each Runner
decrements that variable without synchronization upon completion.
JUMBLE causes the threadCount variable to become corrupted,



Erroneous Behavior Observation Rate (%)
JUMBLE Configurations

Program Field No
Jumble

Sequentially
Consistent Oldest Oldest-But-

Different Random Random-But-
Different

Destructive
Race?

Figure 8 x 0 0 0 83 84 92 Yes
Figure 2 p 0 0 0 0 0 0 No
Figure 2 p.x 0 0 60 52 32 30 Yes
Figure 2 p.y 0 0 48 53 27 30 Yes
jbb Company.elapsed time 0 0 100 0 15 5 Yes
jbb Company.mode 0 0 100 100 95 98 Yes
montecarlo Universal.UNIVERSAL DEBUG 0 0 0 0 0 0 No
mtrt RayTracer.threadCount 0 0 0 0 0 0 No
raytracer JGFRayTracerBench.checksum1 0 0 100 100 100 100 Yes
tsp TspSolver.MinTourLen 0 0 100 100 100 100 QoS
sor array index [0] and [1] 0 0 100 100 100 100 Yes
lufact array index [0] and [1] 0 0 100 100 100 100 Yes
moldyn array index [0] and [1] 0 0 100 100 100 100 Yes

Figure 9. Observation rate for erroneous behavior under various heuristics. Destructive races are marked in bold. QoS indicates that the only
observed difference was significant slowdown.

but the value of that variable is not used anywhere else in the pro-
gram. Thus we consider this race benign.

Program raytracer, JGFRayTracerBench.checksum1: This
program creates a group of worker threads that, upon completion,
add a thread-local checksum to the global checksum checksum1,
without synchronization. Under JUMBLE, checksum1 becomes
corrupted, and the program detects and reports a failed execution.
JUMBLE’s treatment of longs helps uncover this error.

Program tsp, TspSolver.MinTourLen: This TSP solver uses
worker threads to explore and evaluate routes, using a branch-and-
bound algorithm in which the length of the current best route is
stored in MinTourLen and monotonically decreases. The protect-
ing lock MinLock is held for updates to MinTourLen, but not for
reads, via the following variant of double-checked locking:

static void set_best(int best, int[] path) {
if (best >= MinTourLen) return;
synchronized(MinLock) {

if (best < MinTourLen) {
MinTourLen = best;
for (int i = 0; i < Tsp.TspSize; i++)

MinTour[i] = path[i];
}

}

Worker threads check and discard partially constructed paths
longer than MinTourLen. This check is performed without acquir-
ing MinLock, meaning that stale (i.e., larger) values could be read,
which would cause redundant path exploration. The program ran
up to twice as slow under JUMBLE because of redundant path ex-
ploration, which we consider a “Quality of Service” (QoS) problem
rather than a destructive race.

Program sor, arrays: Between each iteration of this algorithm,
worker threads wait for their “neighboring” threads to finish using
a barrier implemented with the array sync, where sync[id][0]
counts iterations finished by the thread id. The following code
signals that id has finished and waits for its neighbors.

public static volatile long sync[][];
...
sync[id][0]++;
if (id > 0)

while (sync[id-1][0] < sync[id][0]) ;
if (id < JGFSORBench.nthreads -1)

while (sync[id+1][0] < sync[id][0]) ;

Unfortunately, this code does not include any synchronization
— perhaps because the programmer mistakenly assumed that reads
of the volatile variable sync would be sufficient. Therefore, the

barrier does not introduce happens-before edges between writes
before the barrier and reads following the barrier, so read operations
could read stale data, causing the program to compute the incorrect
final value. The program recognizes and reports this failure when
validating its result 100% of the time under JUMBLE.

Programs lufact and moldyn, arrays: A TournamentBarrier
class shared by these programs has a similar flaw. It maintains
an array IsDone of boolean flags to indicate whether a thread
has finished and is now waiting at the barrier: Since writes to the
elements of IsDone are not ordered, a thread reading an older value
can get out of sync and essentially live-lock waiting at the barrier.
All of our heuristics triggered non-termination 100% of the time.

6.2 JUMBLE Performance
Figure 10 investigates JUMBLE’s performance overhead and other
run-time statistics. It first shows the base running time of each
benchmark, when no instrumentation or monitoring is performed,
and then shows the slowdown under ROADRUNNER using both the
EMPTY checker and JUMBLE. The EMPTY checker performs no
analysis and just measures the overhead of using the ROADRUN-
NER. We configured JUMBLE to use the Sequentially Consistent
heuristic when measuring performance in order to avoid the extra
path exploration performed by benchmarks such as TspSolver un-
der other heuristics. The other heuristics have comparable perfor-
mance to Sequentially Consistent, except in degenerate cases like
TspSolver. Each measurement averages ten test runs.

Programs incur a slowdown between roughly 1.2x and 5x when
run under EMPTY. Most of this overhead is due to instrumenting
class files and generating events for synchronization operations.
The slowdown for JUMBLE is roughly the same as EMPTY in most
cases, with only minor variations due to instrumentation and event
handling. This low overhead is because JUMBLE performs rela-
tively few write-buffer operations, since it tracks a small number
of racy memory locations and each one is updated only a small
number of times (as shown in the “Num. Instances” and “Num.
Writes” columns). More significant differences were seen for the
array-based programs, since the barrier defects in those programs
described above cause the write buffers to become much larger and
more heavily used. In these cases, more aggressive sampling or
tracking fewer arrays would help keep the overhead lower.

The last two columns of Figure 10 shows the maximum buffer
size required, both with and without the use of our three compres-
sion rules. When using these rules, JUMBLE limited buffers to con-
tain at most 32 entries, but the garbage collection rules [GC1] and
[GC2] were sufficient to ensure that this bound was never reached



Size Num. Base Slowdown Num. Num. Max. Buffer Size
Program (lines) Threads Field Time (s) Empty Jumble Instances Writes No Comp. With Comp.

jbb 30,491 5 Company.elapsed time 74.4 1.3 1.3 1 2 2 2
jbb 30,491 5 Company.mode 74.4 1.3 1.4 2 10 8 4
montecarlo 3,669 4 Universal.UNIVERSAL DEBUG 1.6 1.2 1.2 1 40,005 40,005 5
mtrt 11,317 5 RayTracer.threadCount 0.5 4.5 4.9 1 10 10 5
raytracer 1,970 4 JGFRayTracerBench.checksum 5.6 1.1 1.1 1 6 6 5
tsp 742 5 TspSolver.MinTourLen 0.7 2.3 4.0 1 26 26 23
sor 883 4 array index [0] and [1] 0.6 3.9 5.8 2,106 104,620 255 32
lufact 1,627 4 array index [0] and [1] 0.4 4.1 4.2 1,108 14,526 2,047 7
moldyn 1,407 4 array index [0] and [1] 0.9 4.1 8.9 62 53,433 16,383 32

Figure 10. Performance of JUMBLE under the Sequentially-Consistent configuration.

for all but two programs, and the garbage collection overhead was
negligible. The montecarlo and lufact benchmarks benefited
the most, and garbage collection enabled the buffers for those pro-
grams to be several orders of magnitude smaller that otherwise.
For some array-intensive benchmarks, JUMBLE had to apply the
[REMOVE OLDEST] rule to maintain this bound on write buffers, but
in practice this rule did not limit JUMBLE’s ability to detect de-
structive races.

6.3 Checking the Eclipse Development Environment
To validate JUMBLE in a more realistic environment, we also ap-
plied it to the Eclipse development environment, version 3.4.0.
FASTTRACK reported 27 race conditions on a test configuration
that involved starting-up Eclipse and rebuilding a collection of
projects. Our subsequent experiments were limited by the require-
ment to run Eclipse interactively, since we did not have an appro-
priate automated test harness. Therefore, for each of these 27 racy
fields, we interactively ran JUMBLE only a single time looking for
incorrect behaviors.

For four of these racy fields, these JUMBLE tests produced null
pointer exceptions, providing clear evidence of a destructive race.
Four other fields produced non-deterministic reads, but the read
value did not cause incorrect behavior (at least in this single run).
For the remaining fields, JUMBLE did not detect non-deterministic
reads, indicating that the races were on fields to which the same
value was written, or were similar to the read-then-write race in
Figure 4. An automated test infrastructure would provide the ability
to perform more test runs and to identify more destructive races.

Nevertheless, by showing how to easily identify four previously-
unknown destructive race conditions in a well-tested and robust
software system such as Eclipse, these preliminary experiments
already demonstrate the effectiveness of adversarial memory.

7. Related Work
The difficulty of manually identifying destructive races has moti-
vated prior work on this problem. One approach uses replay anal-
ysis [29] to re-execute a racy trace after swapping the relative or-
der of the two racy operations. Unlike JUMBLE, this approach re-
quires a somewhat complex replay infrastructure, and is prone to
“falling off the trace” during replay, resulting in false positives.
Race-directed random testing [36] explores a similar approach, but
avoids the need for a replay infrastructure. Both of these approaches
assume sequential consistency and will not detect destructive race
conditions as in Figures 1 and 2 (or in the moldyn benchmark) that
cause incorrect behavior only under relaxed memory models. In
particular, results from race-directed random testing [36] suggest
that the race conditions in moldyn are benign (under the assump-
tion of sequential consistency).

In concurrent work, Burnim et al also explore testing-based
methodologies for relaxed memory models. For three hardware-
level memory models (TSO, PSO, and PSLO), their work success-

fully detects violations of sequential consistency [9, 10], but does
not identify which sequential consistency violations cause destruc-
tive behavior. An interesting area for future work is to adapt Jum-
ble’s adversarial memory approach to detect destructive race con-
ditions for these memory models.

Much other work (including, for example, [27, 40]) identifies
defects in multithreaded programs by exploring many (or possibly
all) possible interleavings. Most of these tools assume sequential
consistency. In contrast to this prior work based on scheduling non-
determinism, this paper proposes a complementary approach of
using memory-model non-determinism to expose destructive races.

Dynamic analyses to detect race conditions include Eraser’s
LockSet algorithm [35] and its refinements [30, 41], happens-
before-based detectors [32], and detectors combining those two
approaches, e.g., [15, 33, 45]. Others have also combined dy-
namic analysis with a global static analysis to improve precision
and performance [12, 42]. Post-mortem race identification tech-
niques record program events for later analysis (see, for exam-
ple, [3, 13, 34]), but might be difficult to use for long-running
programs. The FASTTRACK algorithm preserves the precision of
happens-before-based detectors, but with significantly improved
performance [17], and the PACER algorithm uses sampling to pro-
vide increased performance, while still providing strong probabilis-
tic coverage guarantees [6].

Many type-based and whole program static analysis techniques
have been developed for identifying races in various languages, in-
cluding C [16, 38], Java [1, 4, 8, 28, 43], and SPMD programs [5].
While static race detection provides the potential to detect all race
conditions over all program paths, decidability limitations imply
that, for all realistic programming languages, any sound static race
detector is incomplete and may produce false alarms. A variety
of other approaches have also been developed, including model
checking [11, 27, 44].

Recent work [7] developed an operational semantics for pro-
grams under a relaxed memory model. Operational PJMM is sim-
ilar in some ways (e.g., in making write buffers explicit), but our
specification only needs to define the legality of traces, not pro-
grams, and is somewhat less involved. In addition, whereas [7] de-
velops a new relaxed memory model, the development of JUMBLE
required an operational formulation of a subset of an existing mem-
ory model, namely the JMM.

8. Conclusions and Future Work
Race conditions are becoming increasingly problematic given the
relaxed memory models implemented by modern multi-core pro-
cessors and virtual machines. This work presents a promising dy-
namic analysis approach of using adversarial memory to expose
destructive race conditions, which has proven highly effective in
our experiments. Adversarial memory complements the traditional
approach of exploring many or all possible thread interleavings un-
der the assumption of sequential consistency (as in [27, 40]), and



suggests that future tools should exploit both scheduling and mem-
ory model non-determinism for detecting concurrency errors.
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