
DOI:10.1145/1839676.1839699

NOVEMBER 2010 | VOL. 53 | NO. 11 | COMMUNICATIONS OF THE ACM 93

FastTrack: Efficient and Precise
Dynamic Race Detection
By Cormac Flanagan and Stephen N. Freund

Abstract
Multithreaded programs are notoriously prone to race con-
ditions. Prior work developed precise dynamic race detec-
tors that never report false alarms. However, these checkers
employ expensive data structures, such as vector clocks
(VCs), that result in significant performance overhead.

This paper exploits the insight that the full generality of
VCs is not necessary in most cases. That is, we can replace
VCs with an adaptive lightweight representation that,
for almost all operations of the target program, requires
constant space and supports constant-time operations.
Experimental results show that the resulting race detection
algorithm is over twice as fast as prior precise race detectors,
with no loss of precision.

1. INTRODUCTION
Multithreaded programs are prone to race conditions and
other concurrency errors such as deadlocks and violations
of expected atomicity or determinism properties. The broad
adoption of multicore processors is exacerbating these prob-
lems, both by driving the development of multithreaded
software and by increasing the interleaving of threads in
existing multithreaded systems.

A race condition occurs when two threads concurrently
perform memory accesses that conflict. Accesses conflict
when they read or write the same memory location and at
least one of them is a write. In this situation, the order in
which the two conflicting accesses are performed can affect
the program’s subsequent state and behavior, likely with
unintended and erroneous consequences.

Race conditions are notoriously problematic because
they typically cause problems only on rare interleavings,
making them difficult to detect, reproduce, and eliminate.
Consequently, much prior work has focused on static and
dynamic analysis tools for detecting race conditions.

To maximize test coverage, race detectors use a very
broad notion of when two conflicting accesses are consid-
ered concurrent. The accesses need not be performed at
exactly the same time. Instead, the central requirement is
that there is no “synchronization dependence” between the
two accesses, such as the dependence between a lock release
by one thread and a subsequent lock acquire by a different
thread. These various kinds of synchronization dependen-
cies form a partial order over the instructions in the execu-
tion trace called the happens-before relation.13 Two memory
accesses are then considered to be concurrent if they are not
ordered by this happens-before relation.

In this paper, we focus on online dynamic race detectors,
which generally fall into two categories depending on whether

they report false alarms. Precise race detectors never produce
false alarms. Instead, they compute a precise representation
of the happens-before relation for the observed trace and
report an error if and only if the observed trace has a race con-
dition. Note that there are typically many possible traces for a
particular program, depending on test inputs and scheduling
choices. Precise dynamic race detectors do not reason about
all possible traces, however, and may not identify races that
occur only when other code paths are taken. While full cover-
age is desirable, it comes at the cost of potential false alarms
because of the undecidability of the halting problem. To avoid
these false alarms, precise race detectors focus on detecting
only race conditions that occur on the observed trace.

Typically, precise detectors represent the happens-before
relation with vector clocks (VCs),14 as in the Djit+ race detec-
tor.16 Vector clocks are expensive to maintain, however,
because a VC encodes information about each thread in a
system. Thus, if the target program has n threads, each VC
requires O(n) storage space and VC operations (such as com-
parison) require O(n) time. Since a VC must be maintained
for each memory location and modified on each access to
that location, this O(n) time and space overhead precludes
the use of VC-based race detectors in many settings.

A variety of alternative imprecise race detectors have been
developed, which may provide improved performance (and
sometimes better coverage), but which report false alarms
on some race-free programs. For example, Eraser’s LockSet
algorithm18 enforces a lock-based synchronization disci-
pline and reports an error if no lock is consistently held on
each access to a particular memory location. Eraser may
report false alarms, however, on programs that use alter-
native synchronization idioms such as fork/join or bar-
rier synchronization. Some LockSet-based race detectors
include limited happens-before reasoning to improve preci-
sion in such situations.15, 16, 22

Other optimizations include using static analyses or
dynamic escape analyses3, 21 or using “accordion” VCs
that reduce space overheads for programs with shortlived
threads.5 Alternative approaches record program events for
post-mortem race identification.1, 4, 17

Although these imprecise tools successfully detect race
conditions, their potential to generate many false alarms lim-
its their effectiveness. Indeed, it has proven surprisingly dif-
ficult and time consuming to identify the real errors among

The original version of this paper was published in the
Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation, June
2009.

94 COMMUNICATIONS OF THE ACM | NOVEMBER 2010 | VOL. 53 | NO. 11

research highlights

a number of concurrently executing threads, each with a
thread identifier t Tid. These threads manipulate variables
x Var and locks m Lock. A trace a captures an execution
of a multithreaded program by listing the sequence of opera-
tions performed by the various threads. The operations that
a thread t can perform include:

• rd(t, x) and wr(t, x), which read and write a value from a
variable x

• acq(t, m) and rel(t, m), which acquire and release a
lock m

• fork(t, u), which forks a new thread u
• join(t, u), which blocks until thread u terminates

The happens-before relation (<a) for a trace a is a
 partial order over the operations in a that captures con-
trol and synchronization dependencies. In particular,
the relation a <a b holds whenever operation a occurs
before operation b in a and one of the following condi-
tions applies:

• Program order: The two operations are performed by
the same thread.

• Synchronization order: The two operations acquire or
release the same lock.

• Fork order: The first operation is fork(t, u) and the
 second is by thread u.

• Join order: The first operation is by thread u and the
second is join(t, u).

In addition, the happens-before relation is transitively
closed: that is, if a <a b and b <a c then a <a c.

If a happens before b, then we also say that b happens
after a. If two operations in a trace are not related by the
happens-before relation, then they are considered con-
current. Two memory access conflict if they both access
(read or write) the same variable, and at least one of the
 operations is a write. Using this terminology, a trace
has a race condition if it has two concurrent conflicting
accesses.

2.2. Vector clocks and the DJIT+ algorithm
Before presenting the FastTrack algorithm, we briefly
review the Djit+ online race detection algorithm,16 which is
based on VCs.14 A VC

V : Tid Nat

records a clock for each thread in the system. Vector
clocks are partially-ordered () in a pointwise manner,
with an associated join operation () and minimal ele-
ment (V). In addition, the helper function inct incre-
ments the t-component of a VC:

= λ = +() . () 1 ()inc V u u t V u V uif then else

1 2 1 2

1 2 1 2

iff . () ()
. ((), ())
. 0V

t

V V t V t V t
V V t max V t V t

t

∀ ≤
= λ

⊥ = λ

!
"

the spurious warnings produced by some tools. Even if a code
block looks suspicious, it may still be race-free due to some
subtle synchronization discipline that is not (yet) under-
stood by the current code maintainer. Even worse, additional
real bugs (e.g., deadlocks or performance problems) could
be added while attempting to “fix” a spurious warning pro-
duced by these tools. Conversely, real race conditions could
be ignored because they appear to be false alarms.

This paper exploits the insight that, while VCs provide
a general mechanism for representing the happens-before
relation, their full generality is not actually necessary in
most cases. The vast majority of data in multithreaded pro-
grams is either thread local, lock protected, or read shared.
Our FastTrack analysis uses an adaptive representation for
the happens-before relation to provide constant-time and
constant-space overhead for these common cases, without
any loss of precision or correctness.

In more detail, a VC-based race detector such as Djit+
records the time of the most recent write to each variable
x by each thread t. By comparison, FastTrack exploits the
observation that all writes to x are totally ordered by the
happens-before relation, assuming no races on x have been
detected so far, and records information only about the very
last write to x. Specifically, FastTrack records the clock and
thread identifier of that write. We refer to this pair of a clock
and a thread identifier as an epoch.

Read operations on thread-local and lock-protected data
are also totally ordered, assuming no races on x have been
detected, and FastTrack records only the epoch of the last
read from such data. FastTrack adaptively switches from
epochs to VCs when necessary (e.g., when data becomes
read-shared) in order to guarantee no loss of precision. It also
switches from VCs back to lightweight epochs when possible
(e.g., when read-shared data is subsequently updated).

Using these representation techniques, FastTrack
reduces the analysis overhead of almost all monitored oper-
ations from O(n) time, where n is the number of threads in
the target program, to O(1) time.

In addition to improving performance, the epoch rep-
resentation also reduces space overhead. A VC-based race
detector requires O(n) space for each memory location of the
target program and can quickly exhaust memory resources.
By comparison, FastTrack reduces the space overhead for
thread-local and lock-protected data from O(n) to O(1).

For comparison purposes, we implemented six differ-
ent dynamic race detectors: FastTrack plus five other race
detectors described in the literature. Experimental results
on Java benchmarks, including the Eclipse programming
environment, show that FastTrack outperforms the other
tools. For example, it provides almost a 10x speedup over a
traditional VC-based race detector and a 2.3x speedup over
the Djit+ algorithm. It also provides a substantial increase in
precision over Eraser, with no loss in performance.

2. PRELIMINARIES

2.1. Multithreaded program traces
We begin with some terminology and definitions regard-
ing multithreaded execution traces. A program consists of

NOVEMBER 2010 | VOL. 53 | NO. 11 | COMMUNICATIONS OF THE ACM 95

In Djit+, each thread has its own clock that is incre-
mented at each lock release operation. Each thread t also
keeps a VC t such that, for any thread u, the clock entry

t(u) records the clock for the last operation of thread u
that happens before the current operation of thread t. In
addition, the algorithm maintains a VC m for each lock m.
These VCs are updated on synchronization operations that
impose a happens-before order between operations of dif-
ferent threads. For example, when thread u releases lock m,
the Djit+ algorithm updates m to be u. If a thread t subse-
quently acquires m, the algorithm updates t to be t m,
since subsequent operations of thread t now happen after
that release operation.

To identify conflicting accesses, the Djit+ algorithm keeps
two VCs, x and x, for each variable x. For any thread t, x(t)
and x(t) record the clock of the last read and write to x by
thread t. A read from x by thread u is race-free provided it
happens after the last write of each thread, that is, x u.
A write to x by thread u is race-free provided that the write
happens after all previous accesses to that variable, that is,

x u and x u.
As an example, consider the execution trace fragment

shown in Figure 1, where we include the relevant portion
of the Djit+ instrumentation state: the VCs 0 and 1 for
threads 0 and 1; and the VCs m and x for the last release
of lock m and the last write to variable x, respectively. We
show two components for each VC, but the target program
may of course contain additional threads.a

At the write wr(0, x), Djit+ updates x with current
clock of thread 0. At the release rel(0, m), m is updated
with 0. At the acquire acq(1, m), 1 is joined with m, thus
 capturing the dashed release-acquire happens-before

edge shown above. At the second write, Djit+ compares
the VCs:

x = á4, 0, ...ñ á4, 8, ...ñ = 1

Since this check passes, the two writes are not concurrent,
and no race condition is reported.

3. THE FASTTRACK ALGORITHM
A limitation of VC-based race detectors such as Djit+ is their
performance, since each VC requires O(n) space and each VC
operation (copying, comparing, joining, etc.) requires O(n)
time.

Empirical benchmark data indicates that reads and
writes operations account for the vast majority (over
96%) of monitored operations. The key insight behind
FastTrack is that the full generality of VCs is not nec-
essary in over 99% of these read and write operations: a
more lightweight representation of the happens-before
information can be used instead. Only a small fraction of
operations performed by the target program necessitate
expensive VC operations.

We begin by providing an overview of how our analysis
catches each type of race condition on a memory location. A
race condition is either: a write–write race condition (where a
write is concurrent with a later write); a write–read race condi-
tion (where a write is concurrent with a later read); or a read–
write race condition (where a read is concurrent with a later
write).
Detecting Write–Write Races: We first consider how to
efficiently analyze write operations. At the second write
operation in the trace in Figure 1, Djit+ compares the
VCs x 1 to determine whether there is a race. A care-
ful inspection reveals, however, that it is not necessary
to record the entire VC á4, 0, …ñ from the first write to x.
Assuming no races have been detected on x so far, then
all writes to x are totally ordered by the happens-before
relation, and the only critical information that needs to
be recorded is the clock (4) and identity (thread 0) of the
thread performing the last write. This information (clock
4 of thread 0) is sufficient to determine if a subsequent
write to x is in a race with any preceding write.

We refer to a pair of a clock c and a thread t as an
epoch, denoted c@t. Although rather simple, epochs pro-
vide the crucial lightweight representation for recording
sufficiently- precise aspects of the happens-before relation
efficiently. Unlike VCs, an epoch requires only constant
space and supports constant-time operations.

An epoch c@t happens before a VC V (c@t V) if and only
if the clock of the epoch is less than or equal to the corre-
sponding clock in the vector:

c@t V iff c V(t)

We use ^e to denote a minimal epoch 0@0.
Using this optimized representation, FastTrack analyzes

the trace from Figure 1 using a more compact instrumenta-
tion state that records only a write epoch Wx for variable x,
rather than the entire VC x, reducing space overhead, as

a For clarity, we present a variant of the Djit+ algorithm where some clocks
are one less than in the original formulation.16 This revised algorithm has
the same performance as the original but is slightly simpler and more di-
rectly comparable to FastTrack.

Figure 1. Execution trace under DJIT+.

0 1 m x

á4,0,…ñ á0,8,…ñ á0,0,…ñ á0,0,…ñ

wr(0,x)

á4,0,…ñ á0,8,…ñ á0,0,…ñ á4,0,…ñ

rel(0,m)

á5,0,…ñ á0,8,…ñ á4,0,…ñ á4,0,…ñ

acq(1,m)

á5,0,…ñ á4,8,…ñ á4,0,…ñ á4,0,…ñ

wr(1,x)

á5,0,…ñ á4,8,…ñ á4,0,…ñ á4,8,…ñ

96 COMMUNICATIONS OF THE ACM | NOVEMBER 2010 | VOL. 53 | NO. 11

research highlights

shown in Figure 2. (C and L record the same information as
 and in Djit+.)

At the first write to x, FastTrack performs an O(1)-time
epoch write Wx := 4@0. FastTrack subsequently ensures
that the second write is not concurrent with the preceding
write via the O(1)-time comparison:

Wx = 4@0 á4, 8, ...ñ = C1

To summarize, epochs reduce the space overhead for
detecting write–write conflicts from O(n) to O(1) per allo-
cated memory location, and replaces the O(n)-time VC com-
parison “ ” with the O(1)-time comparison “ ”.
Detecting Write–Read Races: Detecting write–read races
under the new representation is also straightforward. On
each read from x with current VC Ct, we check that the read
happens after the last write via the same O(1)-time compari-
son Wx Ct.
Detecting Read–Write Races: Detecting read–write race con-
ditions is somewhat more difficult. Unlike write operations,
which are totally ordered in race-free programs, reads are
not necessarily totally ordered. Thus, a write to a variable x
could potentially conflict with the last read of x performed
by any other thread, not just the last read in the entire trace
seen so far. Thus, we may need to record an entire VC Rx,
in which Rx(t) records the clock of the last read from x by
thread t.

We can avoid keeping a complete VC in many cases,
however. Our examination of data access patterns across a
variety of multithreaded Java programs indicates that read
operations are often totally ordered in practice, particularly
in the following common situations:

• Thread-local data, where only one thread accesses a
variable, and hence these accesses are totally ordered
by program-order

• Lock-protected data, where a protecting lock is held on
each access to a variable, and hence all access are totally
ordered, either by program order (for accesses by the
same thread) or by synchronization order (for accesses
by different threads)

Reads are typically unordered only when data is read-
shared, that is, when the data is first initialized by one
thread and then shared between multiple threads in a read-
only manner.

FastTrack uses an adaptive representation for the read
history of each variable that is optimized for the common
case of totally-ordered reads, while still retaining the full
precision of VCs when necessary.

In particular, if the last read to a variable happens after all
preceding reads, then FastTrack records only the epoch of
this last read, which is sufficient to precisely detect whether
a subsequent write to that variable conflicts with any preced-
ing read in the entire program history. Thus, for thread-local
and lock-protected data (which do exhibit totally-ordered
reads), FastTrack requires only O(1) space for each allo-
cated memory location and only O(1) time per memory
access.

In the less common case where reads are not totally
ordered, FastTrack stores the entire VC, but still handles
read operations in O(1) time. Since such data is typically
read-shared, writes to such variables are rare, and their anal-
ysis overhead is negligible.

3.1. Analysis details
Based on the above intuition, we now describe the
FastTrack algorithm in detail. Our analysis is an online
algorithm whose analysis state consists of four components:

• Ct is the current VC of thread t.
• Lm is the VC of the last release of lock m.
• Rx is either the epoch of the last read from x, if all

other reads happened-before that read, or else is a
VC that records the last read from x by multiple
threads.

• Wx is the epoch of the last write to x.

The analysis starts with Ct = inct(^V), since the first opera-
tions of all threads are not ordered by happens-before. In
addition, initially Lm = ^V and Rx = Wx = ^e.

Figure 3 presents the key details of how FastTrack (left
column) and Djit+ (right column) handle read and write
operations of the target program. For each read or write oper-
ation, the relevant rules are applied in the order presented
until one matches the current instrumentation state. If an
assertion fails, a race condition exists. The figure shows the
instruction frequencies observed in the programs described
in Section 4, as well as how frequently each rule was applied.
For example, 82.3% of all memory and synchronization opera-
tions performed by our benchmarks were reads, and rule [FT
read same epoch] was used to check 63.4% of those reads.
Expensive O(n)-time operations are highlighted in grey.
Read Operations: The first four rules provide various alter-
natives for analyzing a read operation rd(t, x). The first rule

Figure 2. Execution trace under FASTTRACK.

C0 C1 Lm Wx

á4,0,…ñ á0,8,…ñ á0,0,…ñ
e

wr(0,x)

á4,0,…ñ á0,8,…ñ á0,0,…ñ 4@0

rel(0,m)

á5,0,…ñ á0,8,…ñ á4,0,…ñ 4@0

acq(1,m)

á5,0,…ñ á4,8,…ñ á4,0,…ñ 4@0

wr(1,x)

á5,0,…ñ á4,8,…ñ á4,0,…ñ 8@1

NOVEMBER 2010 | VOL. 53 | NO. 11 | COMMUNICATIONS OF THE ACM 97

FASTTRACK State: DJIT+ State:
Ct : VC

t : VC
Lm : VC

m : VC
Wx : Epoch

x : VC
Rx : Epoch ! VC

x : VC

When Thread t performs rd(t, x): 82.3% of all Operations

[FT READ SAME EPOCH] [DJIT+ READ SAME EPOCH]
 if Rx = Et then
 skip
 endif

63.4% OF READS if x(t) = t(t) then 78.0% OF READS

 skip
 endif

[FT READ SHARED]
 if Rx VC then 20.8% OF READS

 assert Wx Ct

 Rx (t) := Ct(t)
 endif

[FT READ EXCLUSIVE] [DJIT+ READ]
 if Rx Epoch and Rx Ct then 15.7% OF READS if x(t) ≠ t(t) then 22.0% OF READS

 assert Wx Ct assert x t

 Rx := Et x(t) := t(t)
 endif endif

[FT READ SHARE]
 if Rx Epoch then 0.1% OF READS

 let c@u = Rx

 assert Wx Ct

 Rx := V[t Ct(t), u c]
 endif

When Thread t performs wr(t, x): 14.5% of all Operations

[FT WRITE SAME EPOCH] [DJIT+ WRITE SAME EPOCH]
 if Wx = Et then 71.0% OF WRITES if x(t) = t(t) then 71.0% OF WRITES

 skip skip
 endif endif

[FT WRITE EXCLUSIVE]
 if Rx Epoch then 28.9% OF WRITES

 assert Rx Ct

 assert Wx Ct

 Wx := Et

 endif

[FT WRITE SHARED] [DJIT+ WRITE]
 if Rx VC then 0.1% OF WRITES if x(t) ≠ t(t) then 29.0% OF WRITES

 assert Rx Ct assert x t

 assert Wx Ct assert x t

 Wx := Et
 x(t) := t(t)

 Rx := e endif
 endif

Figure 3. FASTTRACK race detection algorithm and its comparison to DJIT+.

98 COMMUNICATIONS OF THE ACM | NOVEMBER 2010 | VOL. 53 | NO. 11

research highlights

[FT read same epoch] optimizes the case where x was
already read in this epoch. This fast path requires only a
single epoch comparison and handles over 60% of all reads.
We use Et to denote the current epoch c@t of thread t, where
c = Ct(t) is t’s current clock. Djit+ incorporates a comparable
rule [Djit+ read same epoch].

The remaining three read rules all check for write–read
conflicts via the fast epoch-VC comparison Wx Ct, and then
update Rx appropriately. If Rx is already a VC, then [FT read
shared] simply updates the appropriate component of
that vector. Note that multiple reads of read-shared data
from the same epoch are all covered by this rule. We could
extend rule [FT read same epoch] to handle same-epoch
reads of read-shared data by matching the case that Rx VC
and Rx(t) = Ct(t). The extended rule would cover 78% of all
reads (the same as [Djit+ read same epoch]) but does not
improve performance perceptibly.

If the current read happens after the previous read epoch
(where that previous read may be either by the same thread
or by a different thread, presumably with interleaved syn-
chronization), [FT read exclusive] simply updates Rx with
the accessing thread’s current epoch. For the more general
situation where the current read is concurrent with the pre-
vious read, [FT read share] allocates a VC to record the
epochs of both reads, since either read could subsequently
participate in a read–write race.

Of these three rules, the last rule is the most expen-
sive but is rarely needed (0.1% of reads) and the first
three rules provide commonly-executed, constant-time
fast paths. In contrast, the corresponding rule [Djit+
read] always executes an O(n)-time VC comparison for
these cases.
Write Operations: The next three FastTrack rules handle a
write operation wr(t, x). Rule [FT write same epoch] opti-
mizes the case where x was already written in this epoch,
which applies to 71.0% of write operations, and Djit+ incor-
porates a comparable rule. [FT write exclusive] provides

a fast path for the 28.9% of writes for which Rx is an epoch,
and this rule checks that the write happens after all previous
accesses. In the case where Rx is a VC, [FT write shared]
requires a full (slow) VC comparison, but this rule applies
only to a tiny fraction (0.1%) of writes. In contrast, the cor-
responding Djit+ rule [Djit+ write] requires a VC compari-
son on 29.0% of writes.
Other Operations: Figure 4 shows how FastTrack handles
synchronization operations. These operations are rare, and the
traditional analysis for these operations in terms of expensive
VC operations is perfectly adequate. Thus, these FastTrack
rules are similar to those of Djit+ and other VC-based analyses.
Example: The execution trace in Figure 5 illustrates how
FastTrack dynamically adapts the representation for the
read history Rx of a variable x. Initially, Rx is e, indicating
that x has not yet been read. After the first read operation
rd(1, x), Rx becomes the epoch 1@1 recording both the
clock and the thread identifier of that read. The second
read rd(0, x) at clock 8 is concurrent with the first read, and
so FastTrack switches to the VC representation á8, 1, …ñ
for Rx, recording the clocks of the last reads from x by both
threads 0 and 1. After the two threads join, the write opera-
tion wr(0, x) happens after all reads. Hence, any later opera-
tion cannot be in a race with either read without also being
in a race on that write operation, and so the rule [FT write
shared] discards the read history of x by resetting Rx to

e, which also switches x back into epoch mode and so

Other: 3.3% of all Operations

When Thread t performs acq(t, m):

 Ct := Ct Lm

When Thread t performs rel(t, m):

 Lm := Ct

 Ct := inct(Ct)

When Thread t performs fork(t, u):

 Cu := Cu Ct

 Ct := inct(Ct)

When Thread t performs join(t, u):

 Ct := Ct Cu

 Cu := incu(Cu)

Figure 4. Synchronization, threading operations.

Figure 5. Adaptive read history representation.

C0 C1 Wx Rx

á7,0,…ñ á0,1,…ñ
e e

wr(0,x)

á7,0,…ñ á0,1,…ñ 7@0
e

fork(0,1)

á8,0,…ñ á7,1,…ñ 7@0
e

rd(1,x)

á8,0,…ñ á7,1,…ñ 7@0 1@1

rd(0,x)

á8,0,…ñ á7,1,…ñ 7@0 á8,1,…ñ

rd(1,x)

á8,0,…ñ á7,1,…ñ 7@0 á8,1,…ñ

join(0,1)

á8,1,…ñ á7,2,…ñ 7@0 á8,1,…ñ

wr(0,x)

á8,1,…ñ á7,2,…ñ 8@0
e

rd(0,x)
á8,1,…ñ á7,2,…ñ 8@0 8@0

NOVEMBER 2010 | VOL. 53 | NO. 11 | COMMUNICATIONS OF THE ACM 99

optimizes later accesses to x. The last read in the trace then
sets Rx to a nonminimal epoch.

4. EVALUATION
To validate FastTrack, we implemented it as a component
of the RoadRunner dynamic analysis framework for mul-
tithreaded Java programs.10 RoadRunner takes as input a
compiled Java target program and inserts instrumentation
code into the target to generate an event stream of memory
and synchronization operations. Back-end checking tools
process these events as the target executes. The FastTrack
implementation extends the algorithm described so far
to handle additional Java primitives, such as volatile
variables and wait(), as outlined previously.8 Some of the
benchmarks contain faulty implementations of barrier
synchronization.9 FastTrack contains a specialized analy-
sis to compensate for these bugs.

We compare FastTrack’s precision and performance
to six other analyses implemented in the same framework:

– Empty, a trivial checker that performs no analysis
and is used to measure the overhead of RoadRunner

– Eraser,18 an imprecise race detector based on the
LockSet algorithm described in Section 1

– Goldilocks, a precise race detector based on an
extended notion of LockSets7

– BasicVC, a traditional VC-based race detector that
maintains a read and a write VC for each memory
location and performs at least one VC comparison on
every memory access

– Djit+, a high-performance VC-based race detector16
described in Section 2

– MultiRace, a hybrid LockSet/Djit+ race detector16

4.1. Performance and precision
Table 1 lists the size, number of threads, and uninstru-
mented running times for a variety of benchmark programs
drawn from the Java Grande Forum,12 Standard Performance
Evaluation Corporation,19 and elsewhere.2,7,11,21 All timing
measurements are the average of 10 test runs. Variability
across runs was typically less than 10%.

The “Instrumented Time” columns show the running
times of each program under each of the tools, reported as
the ratio to the uninstrumented running time. Thus, tar-
get programs ran 4.1 times slower, on average, under the
Empty tool. Most of this overhead is due to communicat-
ing all target program operations to the back-end checker.

The variations in slowdowns for different programs
are not uncommon for dynamic race condition checkers.
Different programs exhibit different memory access and
synchronization patterns, some of which impact analysis
performance more than others. In addition, instrumenta-
tion can impact cache performance, class loading time, and
other low-level JVM operations. These differences can some-
times even make an instrumented program run slightly
faster than the uninstrumented (as in colt).

The last six columns show the number of warnings pro-
duced by each checker. The tools report at most one race
for each field of each class, and at most one race for each
array access in the program source code. All eight warn-
ings from FastTrack reflect real race conditions. Some
of these are benign (as in tsp, mtrt, and jbb) but oth-
ers can impact program behavior (as in raytracer and
hedc).15, 20, 21

Program
Size
(loc)

Thread
Count

Base
Time

(s)

Instrumented Time (slowdown) Warnings

E
M
P
T
Y

E
R
A
S
E
R

M
U
LT
IR
A
C
E

G
O
LD
IL
O
C
K
S

B
A
S
IC

V
C

D
J
IT

+

FA
S
T
TR
A
C
K

E
R
A
S
E
R

M
U
LT
IR
A
C
E

G
O
LD
IL
O
C
K
S

B
A
S
IC

V
C

D
J
IT

+

FA
S
T
TR
A
C
K

colt 111,421 11 16.1 0.9 0.9 0.9 1.8 0.9 0.9 0.9 3 0 0 0 0 0

crypt 1,241 7 0.2 7.6 14.7 54.8 77.4 84.4 54.0 14.3 0 0 0 0 0 0
lufact 1,627 4 4.5 2.6 8.1 42.5 – 95.1 36.3 13.5 4 0 – 0 0 0
moldyn 1,402 4 8.5 5.6 9.1 45.0 17.5 111.7 39.6 10.6 0 0 0 0 0 0
montecarlo 3,669 4 5.0 4.2 8.5 32.8 6.3 49.4 30.5 6.4 0 0 0 0 0 0
mtrt 11,317 5 0.5 5.7 6.5 7.1 6.7 8.3 7.1 6.0 1 1 1 1 1 1
raja 12,028 2 0.7 2.8 3.0 3.2 2.7 3.5 3.4 2.8 0 0 0 0 0 0
raytracer 1,970 4 6.8 4.6 6.7 17.9 32.8 250.2 18.1 13.1 1 1 1 1 1 1
sparse 868 4 8.5 5.4 11.3 29.8 64.1 57.5 27.8 14.8 0 0 0 0 0 0
series 967 4 175.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1 0 0 0 0 0
sor 1,005 4 0.2 4.4 9.1 16.9 63.2 24.6 15.8 9.3 3 0 0 0 0 0
tsp 706 5 0.4 4.4 24.9 8.5 74.2 390.7 8.2 8.9 9 1 1 1 1 1
elevator* 1,447 5 5.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0 0 0 0 0 0
philo* 86 6 7.4 1.1 1.0 1.1 7.2 1.1 1.1 1.1 0 0 0 0 0 0
hedc* 24,937 6 5.9 1.1 0.9 1.1 1.1 1.1 1.1 1.1 2 1 0 3 3 3
jbb* 30,491 5 72.9 1.3 1.5 1.6 2.1 1.6 1.6 1.4 3 1 – 2 2 2

Average slowdown/total warnings 4.1 8.6 21.7 31.6 89.8 20.2 8.5 27 5 3 8 8 8

Table 1. Benchmark results. Programs marked with ‘*’ are not compute-bound and are excluded from average slowdowns.

100 COMMUNICATIONS OF THE ACM | NOVEMBER 2010 | VOL. 53 | NO. 11

research highlights

Eraser Comparison: Our reimplementation of Eraser
incurs an overhead of 8.7x, which is competitive with similar
Eraser implementations built on top of unmodified JVMs.15
Surprisingly, FastTrack is slightly faster than Eraser on
some programs, even though it performs a precise analysis
that traditionally has been considered more expensive.

More significantly, Eraser reported many spurious warn-
ings that do not correspond to actual races. Augmenting
our Eraser implementation to reason about additional
synchronization constructs, such as fork/join or wait/
notify operations,16, 22 would eliminate some of these
spurious warnings, but not all. On hedc, Eraser reported
a spurious warning but also missed two of the real race
conditions reported by FastTrack, due to an (intentional)
unsoundness in how the Eraser algorithm reasons about
thread-local and read-shared data.18

BasicVC and Djit+ Comparison: Djit+ and BasicVC
reported exactly the same race conditions as FastTrack.
That is, all three checkers provide identical precision.
However, FastTrack outperforms the other checkers. It is
roughly 10x faster than BasicVC and 2.3x faster than Djit+.
These performance improvements are due primarily to the
reduction in the allocation and use of VCs. Across all bench-
marks, Djit+ allocated more over 790 million VCs, whereas
FastTrack allocated only 5.1 million. Djit+ performed
over 5.1 billion O(n)-time VC operations, while FastTrack
performed only 17 million. The memory overhead for stor-
ing the extra VCs leads to significant cache performance
degradation in some programs, particularly those that ran-
domly access large arrays. These tools are likely to incur
even greater overhead when checking programs with larger
numbers of threads.
MultiRace Comparison: MultiRace maintains Djit+’s
instrumentation state, as well as a lock set for each memory
location.16 The checker updates the lock set for a location
on the first access in an epoch, and full VC comparisons
are performed only after this lock set becomes empty. This
synthesis substantially reduces the number of VC opera-
tions, but introduces the overhead of storing and updating
lock sets. In addition, the use of Eraser’s unsound state
machine for thread-local and read-shared data leads to
imprecision.

Our reimplementation of the MultiRace algorithm
exhibited performance comparable to Djit+. Performance
of MultiRace (and, in fact, all of our other checkers) can
be improved by adopting a coarse-grain analysis in which all
fields of an object are represented as a single “logical loca-
tion” in the instrumentation state.16, 22

Goldilocks Comparison: Goldilocks7 is a precise race
detector that does not use VCs to capture the happens-before
relation. Instead, it maintains, for each memory location, a
set of “synchronization devices” and threads. A thread in
that set can safely access the memory location, and a thread
can add itself to the set (and possibly remove others) by per-
forming any of the operations described by the synchroniza-
tion devices in the set.

Goldilocks is a complicated algorithm to optimize, and
ideally requires tight integration with the underlying virtual
machine and garbage collector, which is not possible under

RoadRunner. Because of these difficulties, Goldilocks
reimplemented in RoadRunner incurred a slowdown of
31.6x across our benchmarks, but ran out of memory on
lufact. Our Goldilocks reimplementation missed three
races in hedc, due to an unsound performance optimiza-
tion for handling thread-local data efficiently.7 We believe
some performance improvements are possible, for both
Goldilocks and the other tools, by integration into the vir-
tual machine.

4.2. Checking eclipse for race conditions
To validate FastTrack in a more realistic setting, we also
applied it to five common operations in the Eclipse devel-
opment environment.6 These include launching Eclipse,
importing a project, rebuilding small and large workspaces,
and starting the debugger. The checking overhead for these
operations is as follows:

Operation
Base

Time (s)

Instrumented Time (Slowdown)

EMPTY ERASER DJIT+ FASTTRACK

Startup 6.0 13.0 16.0 17.3 16.0
Import 2.5 7.6 14.9 17.1 13.1
Clean Small 2.7 14.1 16.7 24.4 15.2
Clean Large 6.5 17.1 17.9 38.5 15.4
Debug 1.1 1.6 1.7 1.7 1.6

Eraser reported potential races on 960 distinct field and
array accesses for these five tests, largely because Eclipse
uses many synchronization idioms that Eraser cannot
handle, such as wait()and notify(), semaphores, and
readers-writer locks. FastTrack reported 27 distinct warn-
ings, 4 of which were subsequently verified to be potentially
destructive.9 Djit+ reported 28 warnings, which overlapped
heavily with those reported by FastTrack, but schedul-
ing differences led to several being missed and several new
(benign) races being identified. Although our exploration of
Eclipse is far from complete, these preliminary observations
are quite promising. FastTrack is able to scale to precisely
check large applications with lower run-time and memory
overheads than existing tools.

5. CONCLUSION
Race conditions are difficult to find and fix. Precise race
detectors avoid the programmer-overhead of identifying
and eliminating spurious warnings, which are particularly
problematic when using imprecise checkers on large pro-
grams with complex synchronization. Our FastTrack anal-
ysis is a new precise race detection algorithm that achieves
better performance than existing algorithms by tracking
less information and dynamically adapting its represen-
tation of the happens-before relation based on memory
access patterns. We have used FastTrack to identify data
races in programs as large as the Eclipse programming
environment, and also to improve the performance of other
analyses that rely on precise data race information, such
as serializability checkers.8 The FastTrack algorithm and
adaptive epoch representation is straightforward to imple-
ment and may be useful in other dynamic analyses for

NOVEMBER 2010 | VOL. 53 | NO. 11 | COMMUNICATIONS OF THE ACM 101

multithreaded software.

Acknowledgments
This work was supported in part by NSF Grants 0341179,
0341387, 0644130, and 0707885. We thank Ben Wood for
implementing Goldilocks in RoadRunner and for com-
ments on a draft of this paper, and Tayfun Elmas, Shaz
Qadeer, and Serdar Tasiran for their assistance with
Goldilocks.

Cormac Flanagan, Computer Science
Department, University of California at
Santa Cruz, Santa Cruz, CA.

Stephen N. Freund, Computer
Science Department, Williams College,
Williamstown, MA.

 1. Adve, S.V., Hill, M.D., Miller, B.P.,
Netzer, R.H.B. Detecting data races
on weak memory systems. In ISCA
(1991), 234–243.

 2. CERN. Colt 1.2.0. Available at
http://dsd.lbl.gov/~hoschek/colt/
(2007).

 3. Choi, J.-D., Lee, K., Loginov, A.,
O’Callahan, R., Sarkar, V., Sridhara,
M. Efficient and precise datarace
detection for multithreaded object-
oriented programs. In PLDI (2002),
258–269.

 4. Choi, J.-D., Miller, B.P., Netzer R.H.B.
Techniques for debugging parallel
programs with flowback analysis.
TOPLAS 13, 4 (1991), 491–530.

 5. Christiaens, M., Bosschere, K.D.
TRaDe: Data race detection for
Java. In International Conference

on Computational Science (2001),
761–770.

 6. The Eclipse programming
environment, version 3.4.0.
Available at http://www.eclipse.org,
2009.

 7. Elmas, T., Qadeer, S., Tasiran, S.
Goldilocks: A race and transaction-
aware Java runtime. In PLDI (2007),
245–255.

 8. Flanagan, C., Freund, S.N. FastTrack:
Efficient and precise dynamic race
detection. In PLDI (2009), 121–133.

 9. Flanagan, C., Freund, S.N. Adversarial
memory for detecting destructive
races. In PLDI (2010), 244–254.

10. Flanagan, C., Freund, S.N. The
RoadRunner dynamic analysis
framework for concurrent programs.
In PASTE (2010), 1–8.

11. Fleury, E., Sutre, G. Raja, version
0.4.0-pre4. Available at http://raja.
sourceforge.net/, 2007.

12. Java Grande Forum. Java Grande
benchmark suite. Available at
http://www.javagrande.org/, 2008.

13. Lamport, L. Time, clocks, and the
ordering of events in a distributed
system. Commun. ACM 21, 7 (1978),
558–565.

14. Mattern, F. Virtual time and global
states of distributed systems. In
Workshop on Parallel and Distributed
Algorithms, 1988.

15. O’Callahan, R., Choi J.-D. Hybrid
dynamic data race detection. In
PPOPP (2003), 167–178.

16. Pozniansky, E., Schuster, A. MultiRace:
Efficient on-the-fly data race detection
in multithreaded C++ programs.
Concurrency and Computation:
Practice and Experience 19, 3 (2007),
327–340.

17. Ronsse, M., Bosschere, K.D. RecPlay: A
fully integrated practical record/replay
system. TCS 17, 2 (1999), 133–152.

18. Savage, S., Burrows, M., Nelson, G.,
Sobalvarro, P., Anderson, T.E. Eraser:
A dynamic data race detector for
multi-threaded programs. TOCS 15, 4
(1997), 391–411.

19. Standard Performance Evaluation
Corporation. SPEC benchmarks.
http://www.spec.org/, 2003.

20. von Praun, C., Gross, T. Object race
detection. In OOPSLA, 2001,
70–82.

21. von Praun, C., Gross, T. Static conflict
analysis for multi-threaded object-
oriented programs. In PLDI (2003),
115–128.

22. Yu, Y., Rodeheffer, T., Chen, W.
RaceTrack: Efficient detection of data
race conditions via adaptive tracking.
In SOSP (2005), 221–234.

References

© 2010 ACM 0001-0782/10/1100 $10.00

! ACM Professional Members can enjoy the convenience of making a single payment for their
entire tenure as an ACM Member, and also be protected from future price increases by
taking advantage of ACM's Lifetime Membership option.

! ACM Lifetime Membership dues may be tax deductible under certain circumstances, so
becoming a Lifetime Member can have additional advantages if you act before the end of
2010. (Please consult with your tax advisor.)

! Lifetime Members receive a certificate of recognition suitable for framing, and enjoy all of
the benefits of ACM Professional Membership.

Learn more and apply at:
http://www.acm.org/life

Take Advantage of
ACM’s Lifetime Membership Plan!

