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FastTrack: Efficient and Precise 
Dynamic Race Detection
By Cormac Flanagan and Stephen N. Freund

Abstract
Multithreaded programs are notoriously prone to race con-
ditions. Prior work developed precise dynamic race detec-
tors that never report false alarms. However, these checkers 
employ expensive data structures, such as vector clocks 
(VCs), that result in significant performance overhead.

This paper exploits the insight that the full generality of 
VCs is not necessary in most cases. That is, we can replace 
VCs with an adaptive lightweight representation that, 
for almost all operations of the target program, requires 
constant space and supports constant-time operations. 
Experimental results show that the resulting race detection 
algorithm is over twice as fast as prior precise race detectors, 
with no loss of precision.

1. INTRODUCTION
Multithreaded programs are prone to race conditions and 
other concurrency errors such as deadlocks and violations 
of expected atomicity or determinism properties. The broad 
adoption of multicore processors is exacerbating these prob-
lems, both by driving the development of multithreaded 
software and by increasing the interleaving of threads in 
existing multithreaded systems.

A race condition occurs when two threads concurrently 
perform memory accesses that conflict. Accesses conflict 
when they read or write the same memory location and at 
least one of them is a write. In this situation, the order in 
which the two conflicting accesses are performed can affect 
the program’s subsequent state and behavior, likely with 
unintended and erroneous consequences.

Race conditions are notoriously problematic because 
they typically cause problems only on rare interleavings, 
making them difficult to detect, reproduce, and eliminate. 
Consequently, much prior work has focused on static and 
dynamic analysis tools for detecting race conditions.

To maximize test coverage, race detectors use a very 
broad notion of when two conflicting accesses are consid-
ered concurrent. The accesses need not be performed at 
exactly the same time. Instead, the central requirement is 
that there is no “synchronization dependence” between the 
two accesses, such as the dependence between a lock release 
by one thread and a subsequent lock acquire by a different 
thread. These various kinds of synchronization dependen-
cies form a partial order over the instructions in the execu-
tion trace called the happens-before relation.13 Two memory 
accesses are then considered to be concurrent if they are not 
ordered by this happens-before relation.

In this paper, we focus on online dynamic race detectors, 
which generally fall into two categories depending on whether 

they report false alarms. Precise race detectors never produce 
false alarms. Instead, they compute a precise representation 
of the happens-before relation for the observed trace and 
report an error if and only if the observed trace has a race con-
dition. Note that there are typically many possible traces for a 
particular program, depending on test inputs and scheduling 
choices. Precise dynamic race detectors do not reason about 
all possible traces, however, and may not identify races that 
occur only when other code paths are taken. While full cover-
age is desirable, it comes at the cost of potential false alarms 
because of the undecidability of the halting problem. To avoid 
these false alarms, precise race detectors focus on detecting 
only race conditions that occur on the observed trace.

Typically, precise detectors represent the happens-before 
relation with vector clocks (VCs),14 as in the Djit+ race detec-
tor.16 Vector clocks are expensive to maintain, however, 
because a VC encodes information about each thread in a 
system. Thus, if the target program has n threads, each VC 
requires O(n) storage space and VC operations (such as com-
parison) require O(n) time. Since a VC must be maintained 
for each memory location and modified on each access to 
that location, this O(n) time and space overhead precludes 
the use of VC-based race detectors in many settings.

A variety of alternative imprecise race detectors have been 
developed, which may provide improved performance (and 
sometimes better coverage), but which report false alarms 
on some race-free programs. For example, Eraser’s LockSet 
algorithm18 enforces a lock-based synchronization disci-
pline and reports an error if no lock is consistently held on 
each access to a particular memory location. Eraser may 
report false alarms, however, on programs that use alter-
native synchronization idioms such as fork/join or bar-
rier synchronization. Some LockSet-based race detectors 
include limited happens-before reasoning to improve preci-
sion in such situations.15, 16, 22

Other optimizations include using static analyses or 
dynamic escape analyses3, 21 or using “accordion” VCs 
that reduce space overheads for programs with shortlived 
threads.5 Alternative approaches record program events for 
post-mortem race identification.1, 4, 17

Although these imprecise tools successfully detect race 
conditions, their potential to generate many false alarms lim-
its their effectiveness. Indeed, it has proven surprisingly dif-
ficult and time consuming to identify the real errors among 
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a number of concurrently executing threads, each with a 
thread identifier t  Tid. These threads manipulate variables 
x  Var and locks m  Lock. A trace a captures an execution 
of a multithreaded program by listing the sequence of opera-
tions performed by the various threads. The operations that 
a thread t can perform include:

• rd(t, x) and wr(t, x), which read and write a value from a 
variable x

• acq(t, m) and rel(t, m), which acquire and release a 
lock m

• fork(t, u), which forks a new thread u
• join(t, u), which blocks until thread u terminates

The happens-before relation (<a) for a trace a is a 
 partial order over the operations in a that captures con-
trol and synchronization dependencies. In particular, 
the relation a <a b holds whenever operation a occurs 
before operation b in a and one of the following condi-
tions applies:

• Program order: The two operations are performed by 
the same thread.

• Synchronization order: The two operations acquire or 
release the same lock.

• Fork order: The first operation is fork(t, u) and the 
 second is by thread u.

• Join order: The first operation is by thread u and the 
second is join(t, u).

In addition, the happens-before relation is transitively 
closed: that is, if a <a b and b <a c then a <a c.

If a happens before b, then we also say that b happens 
after a. If two operations in a trace are not related by the 
happens-before relation, then they are considered con-
current. Two memory access conflict if they both access 
(read or write) the same variable, and at least one of the 
 operations is a write. Using this terminology, a trace 
has a race condition if it has two concurrent conflicting 
accesses.

2.2. Vector clocks and the DJIT+ algorithm
Before presenting the FastTrack algorithm, we briefly 
review the Djit+ online race detection algorithm,16 which is 
based on VCs.14 A VC

V : Tid  Nat

records a clock for each thread in the system. Vector 
clocks are partially-ordered ( ) in a pointwise manner, 
with an associated join operation ( ) and minimal ele-
ment ( V). In addition, the helper function inct incre-
ments the t-component of a VC:
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the spurious warnings produced by some tools. Even if a code 
block looks suspicious, it may still be race-free due to some 
subtle synchronization discipline that is not (yet) under-
stood by the current code maintainer. Even worse, additional 
real bugs (e.g., deadlocks or performance problems) could 
be added while attempting to “fix” a spurious warning pro-
duced by these tools. Conversely, real race conditions could 
be ignored because they appear to be false alarms.

This paper exploits the insight that, while VCs provide 
a general mechanism for representing the happens-before 
relation, their full generality is not actually necessary in 
most cases. The vast majority of data in multithreaded pro-
grams is either thread local, lock protected, or read shared. 
Our FastTrack analysis uses an adaptive representation for 
the happens-before relation to provide constant-time and 
constant-space overhead for these common cases, without 
any loss of precision or correctness.

In more detail, a VC-based race detector such as Djit+ 
records the time of the most recent write to each variable 
x by each thread t. By comparison, FastTrack exploits the 
observation that all writes to x are totally ordered by the 
happens-before relation, assuming no races on x have been 
detected so far, and records information only about the very 
last write to x. Specifically, FastTrack records the clock and 
thread identifier of that write. We refer to this pair of a clock 
and a thread identifier as an epoch.

Read operations on thread-local and lock-protected data 
are also totally ordered, assuming no races on x have been 
detected, and FastTrack records only the epoch of the last 
read from such data. FastTrack adaptively switches from 
epochs to VCs when necessary (e.g., when data becomes 
read-shared) in order to guarantee no loss of precision. It also 
switches from VCs back to lightweight epochs when possible 
(e.g., when read-shared data is subsequently updated).

Using these representation techniques, FastTrack 
reduces the analysis overhead of almost all monitored oper-
ations from O(n) time, where n is the number of threads in 
the target program, to O(1) time.

In addition to improving performance, the epoch rep-
resentation also reduces space overhead. A VC-based race 
detector requires O(n) space for each memory location of the 
target program and can quickly exhaust memory resources. 
By comparison, FastTrack reduces the space overhead for 
thread-local and lock-protected data from O(n) to O(1).

For comparison purposes, we implemented six differ-
ent dynamic race detectors: FastTrack plus five other race 
detectors described in the literature. Experimental results 
on Java benchmarks, including the Eclipse programming 
environment, show that FastTrack outperforms the other 
tools. For example, it provides almost a 10x speedup over a 
traditional VC-based race detector and a 2.3x speedup over 
the Djit+ algorithm. It also provides a substantial increase in 
precision over Eraser, with no loss in performance.

2. PRELIMINARIES

2.1. Multithreaded program traces
We begin with some terminology and definitions regard-
ing multithreaded execution traces. A program consists of 
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In Djit+, each thread has its own clock that is incre-
mented at each lock release operation. Each thread t also 
keeps a VC t such that, for any thread u, the clock entry 

t(u) records the clock for the last operation of thread u 
that happens before the current operation of thread t. In 
addition, the algorithm maintains a VC m for each lock m. 
These VCs are updated on synchronization operations that 
impose a happens-before order between operations of dif-
ferent threads. For example, when thread u releases lock m, 
the Djit+ algorithm updates m to be u. If a thread t subse-
quently acquires m, the algorithm updates t to be t  m, 
since subsequent operations of thread t now happen after 
that release operation.

To identify conflicting accesses, the Djit+ algorithm keeps 
two VCs, x and x, for each variable x. For any thread t, x(t) 
and x(t) record the clock of the last read and write to x by 
thread t. A read from x by thread u is race-free provided it 
happens after the last write of each thread, that is, x u. 
A write to x by thread u is race-free provided that the write 
happens after all previous accesses to that variable, that is, 

x u and x u.
As an example, consider the execution trace fragment 

shown in Figure 1, where we include the relevant portion 
of the Djit+ instrumentation state: the VCs 0 and 1 for 
threads 0 and 1; and the VCs m and x for the last release 
of lock m and the last write to variable x, respectively. We 
show two components for each VC, but the target program 
may of course contain additional threads.a

At the write wr(0, x), Djit+ updates x with current 
clock of thread 0. At the release rel(0, m), m is updated 
with 0. At the acquire acq(1, m), 1 is joined with m, thus 
 capturing the dashed release-acquire happens-before 

edge shown above. At the second write, Djit+ compares 
the  VCs:

x = á4, 0, ...ñ á4, 8, ...ñ = 1

Since this check passes, the two writes are not concurrent, 
and no race condition is reported.

3. THE FASTTRACK ALGORITHM
A limitation of VC-based race detectors such as Djit+ is their 
performance, since each VC requires O(n) space and each VC 
operation (copying, comparing, joining, etc.) requires O(n) 
time.

Empirical benchmark data indicates that reads and 
writes operations account for the vast majority (over 
96%) of monitored operations. The key insight behind 
FastTrack is that the full generality of VCs is not nec-
essary in over 99% of these read and write operations: a 
more lightweight representation of the happens-before 
information can be used instead. Only a small fraction of 
operations performed by the target program necessitate 
expensive VC operations.

We begin by providing an overview of how our analysis 
catches each type of race condition on a memory location. A 
race condition is either: a write–write race condition (where a 
write is concurrent with a later write); a write–read race condi-
tion (where a write is concurrent with a later read); or a read–
write race condition (where a read is concurrent with a later 
write).
Detecting Write–Write Races: We first consider how to 
efficiently analyze write operations. At the second write 
operation in the trace in Figure 1, Djit+ compares the 
VCs x  1 to determine whether there is a race. A care-
ful inspection reveals, however, that it is not necessary 
to record the entire VC á4, 0, …ñ from the first write to x. 
Assuming no races have been detected on x so far, then 
all writes to x are totally ordered by the happens-before 
relation, and the only critical information that needs to 
be recorded is the clock (4) and identity (thread 0) of the 
thread performing the last write. This information (clock 
4 of thread 0) is sufficient to determine if a subsequent 
write to x is in a race with any preceding write.

We refer to a pair of a clock c and a thread t as an 
epoch, denoted c@t. Although rather simple, epochs pro-
vide the crucial lightweight representation for recording 
sufficiently- precise aspects of the happens-before relation 
efficiently. Unlike VCs, an epoch requires only constant 
space and supports constant-time operations.

An epoch c@t happens before a VC V (c@t  V) if and only 
if the clock of the epoch is less than or equal to the corre-
sponding clock in the vector:

c@t  V iff c  V(t)

We use ^e to denote a minimal epoch 0@0.
Using this optimized representation, FastTrack analyzes 

the trace from Figure 1 using a more compact instrumenta-
tion state that records only a write epoch Wx for variable x, 
rather than the entire VC x, reducing space overhead, as 

a For clarity, we present a variant of the Djit+ algorithm where some clocks 
are one less than in the original formulation.16 This revised algorithm has 
the same performance as the original but is slightly simpler and more di-
rectly comparable to FastTrack.

Figure 1. Execution trace under DJIT+.

0 1 m x

á4,0,…ñ á0,8,…ñ á0,0,…ñ á0,0,…ñ

wr(0,x)

á4,0,…ñ á0,8,…ñ á0,0,…ñ á4,0,…ñ

rel(0,m)

á5,0,…ñ á0,8,…ñ á4,0,…ñ á4,0,…ñ

acq(1,m)

á5,0,…ñ á4,8,…ñ á4,0,…ñ á4,0,…ñ

wr(1,x)

á5,0,…ñ á4,8,…ñ á4,0,…ñ á4,8,…ñ
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shown in Figure 2. (C and L record the same information as 
 and  in Djit+.)

At the first write to x, FastTrack performs an O(1)-time 
epoch write Wx := 4@0. FastTrack subsequently ensures 
that the second write is not concurrent with the preceding 
write via the O(1)-time comparison:

Wx = 4@0 á4, 8, ...ñ = C1

To summarize, epochs reduce the space overhead for 
detecting write–write conflicts from O(n) to O(1) per allo-
cated memory location, and replaces the O(n)-time VC com-
parison “ ” with the O(1)-time comparison “ ”.
Detecting Write–Read Races: Detecting write–read races 
under the new representation is also straightforward. On 
each read from x with current VC Ct, we check that the read 
happens after the last write via the same O(1)-time compari-
son Wx  Ct.
Detecting Read–Write Races: Detecting read–write race con-
ditions is somewhat more difficult. Unlike write operations, 
which are totally ordered in race-free programs, reads are 
not necessarily totally ordered. Thus, a write to a variable x 
could potentially conflict with the last read of x performed 
by any other thread, not just the last read in the entire trace 
seen so far. Thus, we may need to record an entire VC Rx, 
in which Rx(t) records the clock of the last read from x by 
thread t.

We can avoid keeping a complete VC in many cases, 
however. Our examination of data access patterns across a 
variety of multithreaded Java programs indicates that read 
operations are often totally ordered in practice, particularly 
in the following common situations:

• Thread-local data, where only one thread accesses a 
variable, and hence these accesses are totally ordered 
by program-order

• Lock-protected data, where a protecting lock is held on 
each access to a variable, and hence all access are totally 
ordered, either by program order (for accesses by the 
same thread) or by synchronization order (for accesses 
by different threads)

Reads are typically unordered only when data is read-
shared, that is, when the data is first initialized by one 
thread and then shared between multiple threads in a read-
only manner.

FastTrack uses an adaptive representation for the read 
history of each variable that is optimized for the common 
case of totally-ordered reads, while still retaining the full 
precision of VCs when necessary.

In particular, if the last read to a variable happens after all 
preceding reads, then FastTrack records only the epoch of 
this last read, which is sufficient to precisely detect whether 
a subsequent write to that variable conflicts with any preced-
ing read in the entire program history. Thus, for thread-local 
and lock-protected data (which do exhibit totally-ordered 
reads), FastTrack requires only O(1) space for each allo-
cated memory location and only O(1) time per memory 
access.

In the less common case where reads are not totally 
ordered, FastTrack stores the entire VC, but still handles 
read operations in O(1) time. Since such data is typically 
read-shared, writes to such variables are rare, and their anal-
ysis overhead is negligible.

3.1. Analysis details
Based on the above intuition, we now describe the 
FastTrack algorithm in detail. Our analysis is an online 
algorithm whose analysis state consists of four components:

• Ct is the current VC of thread t.
• Lm is the VC of the last release of lock m.
• Rx is either the epoch of the last read from x, if all 

other reads happened-before that read, or else is a 
VC that records the last read from x by multiple 
threads.

• Wx is the epoch of the last write to x.

The analysis starts with Ct = inct(^V), since the first opera-
tions of all threads are not ordered by happens-before. In 
addition, initially Lm = ^V and Rx = Wx = ^e.

Figure 3 presents the key details of how FastTrack (left 
column) and Djit+ (right column) handle read and write 
operations of the target program. For each read or write oper-
ation, the relevant rules are applied in the order presented 
until one matches the current instrumentation state. If an 
assertion fails, a race condition exists. The figure shows the 
instruction frequencies observed in the programs described 
in Section 4, as well as how frequently each rule was applied. 
For example, 82.3% of all memory and synchronization opera-
tions performed by our benchmarks were reads, and rule [FT 
read same epoch] was used to check 63.4% of those reads. 
Expensive O(n)-time operations are highlighted in grey.
Read Operations: The first four rules provide various alter-
natives for analyzing a read operation rd(t, x). The first rule 

Figure 2. Execution trace under FASTTRACK.

C0 C1 Lm Wx

á4,0,…ñ á0,8,…ñ á0,0,…ñ
e

wr(0,x)

á4,0,…ñ á0,8,…ñ á0,0,…ñ 4@0

rel(0,m)

á5,0,…ñ á0,8,…ñ á4,0,…ñ 4@0

acq(1,m)

á5,0,…ñ á4,8,…ñ á4,0,…ñ 4@0

wr(1,x)

á5,0,…ñ á4,8,…ñ á4,0,…ñ 8@1
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FASTTRACK State: DJIT+ State:
Ct     : VC

t     : VC
Lm   : VC

m   : VC
Wx  : Epoch

x  : VC
Rx    : Epoch ! VC

x    : VC

When Thread t performs rd(t, x):               82.3% of all Operations

[FT READ SAME EPOCH]                         [DJIT+ READ SAME EPOCH]
   if Rx = Et then
      skip
   endif

63.4% OF READS   if x(t) = t(t) then 78.0% OF READS

      skip
  endif

[FT READ SHARED]
  if Rx  VC then 20.8% OF READS

  assert Wx  Ct

       Rx (t) := Ct(t)
  endif

[FT READ EXCLUSIVE] [DJIT+ READ]
  if Rx  Epoch and Rx  Ct then 15.7% OF READS   if x(t) ≠ t(t) then 22.0% OF READS

  assert Wx  Ct   assert x  t

       Rx := Et   x(t) := t(t)
  endif   endif

[FT READ SHARE]
  if Rx  Epoch then 0.1% OF READS

      let c@u = Rx

      assert Wx  Ct

       Rx  := V[t  Ct(t), u  c]
  endif

When Thread t performs wr(t, x):                  14.5% of all Operations

[FT WRITE SAME EPOCH] [DJIT+ WRITE SAME EPOCH]
  if Wx = Et then 71.0% OF WRITES   if x(t) = t(t) then 71.0% OF WRITES

      skip       skip
  endif   endif

[FT WRITE EXCLUSIVE]
  if Rx  Epoch then 28.9% OF WRITES

  assert Rx  Ct

  assert Wx  Ct

  Wx := Et

  endif

[FT WRITE SHARED] [DJIT+ WRITE]
  if Rx  VC then 0.1% OF WRITES   if x(t) ≠ t(t) then 29.0% OF WRITES

  assert Rx  Ct   assert x  t

  assert Wx  Ct   assert x  t

  Wx := Et
  x(t) := t(t)

  Rx  := e   endif
  endif

Figure 3. FASTTRACK race detection algorithm and its comparison to DJIT+.
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[FT read same epoch] optimizes the case where x was 
already read in this epoch. This fast path requires only a 
single epoch comparison and handles over 60% of all reads. 
We use Et to denote the current epoch c@t of thread t, where 
c = Ct(t) is t’s current clock. Djit+ incorporates a comparable 
rule [Djit+ read same epoch].

The remaining three read rules all check for write–read 
conflicts via the fast epoch-VC comparison Wx  Ct, and then 
update Rx appropriately. If Rx is already a VC, then [FT read 
shared] simply updates the appropriate component of 
that vector. Note that multiple reads of read-shared data 
from the same epoch are all covered by this rule. We could 
extend rule [FT read same epoch] to handle same-epoch 
reads of read-shared data by matching the case that Rx  VC 
and Rx(t) = Ct(t). The extended rule would cover 78% of all 
reads (the same as [Djit+ read same epoch]) but does not 
improve performance perceptibly.

If the current read happens after the previous read epoch 
(where that previous read may be either by the same thread 
or by a different thread, presumably with interleaved syn-
chronization), [FT read exclusive] simply updates Rx with 
the accessing thread’s current epoch. For the more general 
situation where the current read is concurrent with the pre-
vious read, [FT read share] allocates a VC to record the 
epochs of both reads, since either read could subsequently 
participate in a read–write race.

Of these three rules, the last rule is the most expen-
sive but is rarely needed (0.1% of reads) and the first 
three rules provide commonly-executed, constant-time 
fast paths. In contrast, the corresponding rule [Djit+ 
read] always executes an O(n)-time VC comparison for 
these cases.
Write Operations: The next three FastTrack rules handle a 
write operation wr(t, x). Rule [FT write same epoch] opti-
mizes the case where x was already written in this epoch, 
which applies to 71.0% of write operations, and Djit+ incor-
porates a comparable rule. [FT write exclusive] provides 

a fast path for the 28.9% of writes for which Rx is an epoch, 
and this rule checks that the write happens after all previous 
accesses. In the case where Rx is a VC, [FT write shared] 
requires a full (slow) VC comparison, but this rule applies 
only to a tiny fraction (0.1%) of writes. In contrast, the cor-
responding Djit+ rule [Djit+ write] requires a VC compari-
son on 29.0% of writes.
Other Operations: Figure 4 shows how FastTrack handles 
synchronization operations. These operations are rare, and the 
traditional analysis for these operations in terms of expensive 
VC operations is perfectly adequate. Thus, these FastTrack 
rules are similar to those of Djit+ and other VC-based analyses.
Example: The execution trace in Figure 5 illustrates how 
FastTrack dynamically adapts the representation for the 
read history Rx of a variable x. Initially, Rx is e, indicating 
that x has not yet been read. After the first read operation 
rd(1, x), Rx becomes the epoch 1@1 recording both the 
clock and the thread identifier of that read. The second 
read rd(0, x) at clock 8 is concurrent with the first read, and 
so FastTrack switches to the VC representation á8, 1, …ñ 
for Rx, recording the clocks of the last reads from x by both 
threads 0 and 1. After the two threads join, the write opera-
tion wr(0, x) happens after all reads. Hence, any later opera-
tion cannot be in a race with either read without also being 
in a race on that write operation, and so the rule [FT write 
shared] discards the read history of x by resetting Rx to 

e, which also switches x back into epoch mode and so 

Other:      3.3% of all Operations

When Thread t performs acq(t, m):

 Ct := Ct  Lm

When Thread t performs rel(t, m):

 Lm := Ct

  Ct := inct(Ct)

When Thread t performs fork(t, u):

 Cu := Cu  Ct

 Ct := inct(Ct)

When Thread t performs join(t, u):

 Ct := Ct  Cu

 Cu := incu(Cu)

Figure 4. Synchronization, threading operations.

Figure 5. Adaptive read history representation.

C0 C1 Wx Rx

á7,0,…ñ á0,1,…ñ
e e

wr(0,x)

á7,0,…ñ á0,1,…ñ 7@0
e

fork(0,1)

á8,0,…ñ á7,1,…ñ 7@0
e

rd(1,x)

á8,0,…ñ á7,1,…ñ 7@0 1@1

rd(0,x)

á8,0,…ñ á7,1,…ñ 7@0 á8,1,…ñ

rd(1,x)

á8,0,…ñ á7,1,…ñ 7@0 á8,1,…ñ

join(0,1)

á8,1,…ñ á7,2,…ñ 7@0 á8,1,…ñ

wr(0,x)

á8,1,…ñ á7,2,…ñ 8@0
e

rd(0,x)
á8,1,…ñ á7,2,…ñ 8@0 8@0
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optimizes later accesses to x. The last read in the trace then 
sets Rx to a nonminimal epoch.

4. EVALUATION
To validate FastTrack, we implemented it as a component 
of the RoadRunner dynamic analysis framework for mul-
tithreaded Java programs.10 RoadRunner takes as input a 
compiled Java target program and inserts instrumentation 
code into the target to generate an event stream of memory 
and synchronization operations. Back-end checking tools 
process these events as the target executes. The FastTrack 
implementation extends the algorithm described so far 
to handle additional Java primitives, such as volatile 
variables and wait(), as outlined previously.8 Some of the 
benchmarks contain faulty implementations of barrier 
synchronization.9 FastTrack contains a specialized analy-
sis to compensate for these bugs.

We compare FastTrack’s precision and performance 
to six other analyses implemented in the same framework:

– Empty, a trivial checker that performs no analysis 
and is used to measure the overhead of RoadRunner

– Eraser,18 an imprecise race detector based on the 
LockSet algorithm described in Section 1

– Goldilocks, a precise race detector based on an 
extended notion of LockSets7

– BasicVC, a traditional VC-based race detector that 
maintains a read and a write VC for each memory 
location and performs at least one VC comparison on 
every memory access

– Djit+, a high-performance VC-based race detector16 
described in Section 2

– MultiRace, a hybrid LockSet/Djit+ race detector16

4.1. Performance and precision
Table 1 lists the size, number of threads, and uninstru-
mented running times for a variety of benchmark programs 
drawn from the Java Grande Forum,12 Standard Performance 
Evaluation Corporation,19 and elsewhere.2,7,11,21 All timing 
measurements are the average of 10 test runs. Variability 
across runs was typically less than 10%.

The “Instrumented Time” columns show the running 
times of each program under each of the tools, reported as 
the ratio to the uninstrumented running time. Thus, tar-
get programs ran 4.1 times slower, on average, under the 
Empty tool. Most of this overhead is due to communicat-
ing all target program operations to the back-end checker.

The variations in slowdowns for different programs 
are not uncommon for dynamic race condition checkers. 
Different programs exhibit different memory access and 
synchronization patterns, some of which impact analysis 
performance more than others. In addition, instrumenta-
tion can impact cache performance, class loading time, and 
other low-level JVM operations. These differences can some-
times even make an instrumented program run slightly 
faster than the uninstrumented (as in colt).

The last six columns show the number of warnings pro-
duced by each checker. The tools report at most one race 
for each field of each class, and at most one race for each 
array access in the program source code. All eight warn-
ings from FastTrack reflect real race conditions. Some 
of these are benign (as in tsp, mtrt, and jbb) but oth-
ers can impact program behavior (as in raytracer and 
hedc).15, 20, 21

Program
Size  
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Time  
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colt 111,421 11 16.1 0.9 0.9 0.9 1.8 0.9 0.9 0.9 3 0 0 0 0 0

crypt 1,241 7 0.2 7.6 14.7 54.8 77.4 84.4 54.0 14.3 0 0 0 0 0 0
lufact 1,627 4 4.5 2.6 8.1 42.5 – 95.1 36.3 13.5 4 0 – 0 0 0
moldyn 1,402 4 8.5 5.6 9.1 45.0 17.5 111.7 39.6 10.6 0 0 0 0 0 0
montecarlo 3,669 4 5.0 4.2 8.5 32.8 6.3 49.4 30.5 6.4 0 0 0 0 0 0
mtrt 11,317 5 0.5 5.7 6.5 7.1 6.7 8.3 7.1 6.0 1 1 1 1 1 1
raja 12,028 2 0.7 2.8 3.0 3.2 2.7 3.5 3.4 2.8 0 0 0 0 0 0
raytracer 1,970 4 6.8 4.6 6.7 17.9 32.8 250.2 18.1 13.1 1 1 1 1 1 1
sparse 868 4 8.5 5.4 11.3 29.8 64.1 57.5 27.8 14.8 0 0 0 0 0 0
series 967 4 175.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1 0 0 0 0 0
sor 1,005 4 0.2 4.4 9.1 16.9 63.2 24.6 15.8 9.3 3 0 0 0 0 0
tsp 706 5 0.4 4.4 24.9 8.5 74.2 390.7 8.2 8.9 9 1 1 1 1 1
elevator* 1,447 5 5.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0 0 0 0 0 0
philo* 86 6 7.4 1.1 1.0 1.1 7.2 1.1 1.1 1.1 0 0 0 0 0 0
hedc* 24,937 6 5.9 1.1 0.9 1.1 1.1 1.1 1.1 1.1 2 1 0 3 3 3
jbb* 30,491 5 72.9 1.3 1.5 1.6 2.1 1.6 1.6 1.4 3 1 – 2 2 2

Average slowdown/total warnings 4.1 8.6 21.7 31.6 89.8 20.2 8.5 27 5 3 8 8 8

Table 1. Benchmark results. Programs marked with ‘*’ are not compute-bound and are excluded from average slowdowns.
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Eraser Comparison: Our reimplementation of Eraser 
incurs an overhead of 8.7x, which is competitive with similar 
Eraser implementations built on top of unmodified JVMs.15 
Surprisingly, FastTrack is slightly faster than Eraser on 
some programs, even though it performs a precise analysis 
that traditionally has been considered more expensive.

More significantly, Eraser reported many spurious warn-
ings that do not correspond to actual races. Augmenting 
our Eraser implementation to reason about additional 
synchronization constructs, such as fork/join or wait/
notify operations,16, 22 would eliminate some of these 
spurious warnings, but not all. On hedc, Eraser reported 
a spurious warning but also missed two of the real race 
conditions reported by FastTrack, due to an (intentional) 
unsoundness in how the Eraser algorithm reasons about 
thread-local and read-shared data.18

BasicVC and Djit+ Comparison: Djit+ and BasicVC 
reported exactly the same race conditions as FastTrack. 
That is, all three checkers provide identical precision. 
However, FastTrack outperforms the other checkers. It is 
roughly 10x faster than BasicVC and 2.3x faster than Djit+. 
These performance improvements are due primarily to the 
reduction in the allocation and use of VCs. Across all bench-
marks, Djit+ allocated more over 790 million VCs, whereas 
FastTrack allocated only 5.1 million. Djit+ performed 
over 5.1 billion O(n)-time VC operations, while FastTrack 
performed only 17 million. The memory overhead for stor-
ing the extra VCs leads to significant cache performance 
degradation in some programs, particularly those that ran-
domly access large arrays. These tools are likely to incur 
even greater overhead when checking programs with larger 
numbers of threads.
MultiRace Comparison: MultiRace maintains Djit+’s 
instrumentation state, as well as a lock set for each memory 
location.16 The checker updates the lock set for a location 
on the first access in an epoch, and full VC comparisons 
are performed only after this lock set becomes empty. This 
synthesis substantially reduces the number of VC opera-
tions, but introduces the overhead of storing and updating 
lock sets. In addition, the use of Eraser’s unsound state 
machine for thread-local and read-shared data leads to 
imprecision.

Our reimplementation of the MultiRace algorithm 
exhibited performance comparable to Djit+. Performance 
of MultiRace (and, in fact, all of our other checkers) can 
be improved by adopting a coarse-grain analysis in which all 
fields of an object are represented as a single “logical loca-
tion” in the instrumentation state.16, 22

Goldilocks Comparison: Goldilocks7 is a precise race 
detector that does not use VCs to capture the happens-before 
relation. Instead, it maintains, for each memory location, a 
set of “synchronization devices” and threads. A thread in 
that set can safely access the memory location, and a thread 
can add itself to the set (and possibly remove others) by per-
forming any of the operations described by the synchroniza-
tion devices in the set.

Goldilocks is a complicated algorithm to optimize, and 
ideally requires tight integration with the underlying virtual 
machine and garbage collector, which is not possible under 

RoadRunner. Because of these difficulties, Goldilocks 
reimplemented in RoadRunner incurred a slowdown of 
31.6x across our benchmarks, but ran out of memory on 
lufact. Our Goldilocks reimplementation missed three 
races in hedc, due to an unsound performance optimiza-
tion for handling thread-local data efficiently.7 We believe 
some performance improvements are possible, for both 
Goldilocks and the other tools, by integration into the vir-
tual machine.

4.2. Checking eclipse for race conditions
To validate FastTrack in a more realistic setting, we also 
applied it to five common operations in the Eclipse devel-
opment environment.6 These include launching Eclipse, 
importing a project, rebuilding small and large workspaces, 
and starting the debugger. The checking overhead for these 
operations is as follows:

Operation
Base  

Time (s)

Instrumented Time (Slowdown)

EMPTY ERASER DJIT+ FASTTRACK

Startup 6.0 13.0 16.0 17.3 16.0
Import 2.5 7.6 14.9 17.1 13.1
Clean Small 2.7 14.1 16.7 24.4 15.2
Clean Large 6.5 17.1 17.9 38.5 15.4
Debug 1.1 1.6 1.7 1.7 1.6

Eraser reported potential races on 960 distinct field and 
array accesses for these five tests, largely because Eclipse 
uses many synchronization idioms that Eraser cannot 
handle, such as wait()and notify(), semaphores, and 
readers-writer locks. FastTrack reported 27 distinct warn-
ings, 4 of which were subsequently verified to be potentially 
destructive.9 Djit+ reported 28 warnings, which overlapped 
heavily with those reported by FastTrack, but schedul-
ing differences led to several being missed and several new 
(benign) races being identified. Although our exploration of 
Eclipse is far from complete, these preliminary observations 
are quite promising. FastTrack is able to scale to precisely 
check large applications with lower run-time and memory 
overheads than existing tools.

5. CONCLUSION
Race conditions are difficult to find and fix. Precise race 
detectors avoid the programmer-overhead of identifying 
and eliminating spurious warnings, which are particularly 
problematic when using imprecise checkers on large pro-
grams with complex synchronization. Our FastTrack anal-
ysis is a new precise race detection algorithm that achieves 
better performance than existing algorithms by tracking 
less information and dynamically adapting its represen-
tation of the happens-before relation based on memory 
access patterns. We have used FastTrack to identify data 
races in programs as large as the Eclipse programming 
environment, and also to improve the performance of other 
analyses that rely on precise data race information, such 
as serializability checkers.8 The FastTrack algorithm and 
adaptive epoch representation is straightforward to imple-
ment and may be useful in other dynamic analyses for 
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multithreaded software.
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