
Programming Languages as Part of Core Computer Science

Kim Bruce

Computer Science Department
Pomona College

Claremont, CA 91711

Stephen N. Freund

Computer Science Department
Williams College

Williamstown, MA 01267

Abstract
While the programming languages course played a key role in Curricula ’68, ’78, and ’91, Curriculum 2001
replaced most of the content in programming languages with sections on learning to program. We argue
that the need for a programming languages course has not diminished, but instead increased, especially as
we move into an era of many-core computing.

Categories and Subject Descriptors K.3.2 [Computers and Education]: Computer and Information Sci-
ence Education—Computer Science Education; D.3.3 [Programming Languages]: Language Constructs
and Features

General Terms Languages

Keywords Programming languages curriculum

1. PLs in ACM/IEEE CS Curricula
Curriculum 2001 [For01] departed from all previous ACM and IEEE CS model curricula by deemphasizing
the role of programming languages, aside from its use in teaching programming. Below we have listed the
Curriculum 2001 recommendations in programming languages:

PL. Programming Languages (21 core hours)
PL1. Overview of programming languages (2)
PL2. Virtual machines (1)
PL3. Introduction to language translation (2)
PL4. Declarations and types (3)
PL5. Abstraction mechanisms (3)
PL6. Object-oriented programming (10)
PL7. Functional programming
PL8. Language translation systems
PL9. Type systems
PL10. Programming language semantics
PL11. Programming language design

Only PL1–PL6 are considered core topics in the curriculum. The others are recommendations for
programs that wish to go beyond the core. Of the 21 hours spent on those core topics, only the five hours in
PL1–PL3 were in the PL section of the 1998 draft report. PL4–PL6 were originally in the “Programming

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
2008 SIGPLAN Workshop on Programming Language Curriculum, May 29–30, 2008, Cambridge, Massachusetts, USA.
Copyright © 2008 ACM 0362-1340/2008/05...$5.00.

ACM SIGPLAN Notices 50 Vol. 43 (11), Nov. 2008

Fundamentals” section, but were moved to programming languages to appease the complaints from the
programming languages community about this area being ignored. All of the sample curricula presented
by the committee placed the material in PL4–PL6 in the introductory course sequence, rather than more
advanced courses as envisaged in earlier curricula.

There were no representatives from the programming languages community on the committee, and no
advisory group was originally formed for the area. Only after complaints about the earlier draft was a PL
KFG (Knowledge Focus Group) formed. The recommendations of that group were subsequently mainly
ignored by the full committee. (See [Bru00] for the PL KFG’s recommendations.1)

While there was never any substantive response to the PL KFG’s recommendations, the impression was
left that the study of programming languages was no longer important, and that it was more important to
include material on more trendy topics in computer science.

In contrast, the Liberal Arts Computer Science consortium’s 2007 model curriculum in Computer Science
[Con07] has a Programming Languages course as part of the core curriculum as well as a segment on
functional languages in another course.

In the remainder of this document, we address the importance of programming languages to an under-
graduate education in Computer Science.

2. The Study of Programming Languages is Central
Today’s recommended computer science curriculum exposes students to very few kinds of programming
languages. Aside from the languages in the C/C++/Java/C# family, some students will see scripting
languages like Python and Ruby, while even fewer will see a functional language like LISP, Scheme, ML,
or Haskell.

However, exposure to these languages, and those representative of other programming paradigms, is
central to a solid computer science education for several reasons:

• Core CS Ideas. The study of programming languages raises key issues that permeate computer science.
Recurring themes include:

1. time/space tradeoffs;

2. the limits of computability;

3. the flexibility obtained by putting off decisions versus the efficiency obtainable by making decisions
early (late/early binding); and

4. modularity and abstraction.

The programming languages course is well-suited for pulling in topics from across the core of computer
science and examining their connections in a rigorous way.

• Algorithmic thinking. It is imperative that students learn early on to be flexible in expressing their
algorithmic thinking. Exposure to and practice using different programming paradigms is the best way to
teach students this fundamental skill. Students must be able to adapt to languages that they will be using
in the future, as well as adopt techniques originally developed for other paradigms.

• Preparing for the future. The computing platform and application domains are not static, and changes to
them will impact the programming languages used in the future. The most used programming languages
have changed regularly over the last several decades, and they will certainly change again in the coming
years (due, in part, to the issues described below). C++ has been dominant, but it has lost ground to Java,
just as Java will certainly be replaced by another language.

1 An on-line version of the knowledge units is available at http://www.cs.pomona.edu/∼kim/Curric2001/PL2001.html

ACM SIGPLAN Notices 51 Vol. 43 (11), Nov. 2008

Students must be able to understand the impacts of new languages on how they approach computational
problem solving. The programming languages course can and should provide the background for students
to evaluate and adapt to future changes.

3. Visions of Programming Languages
For us, a programming languages course is as essential as a course in computer organization. A program-
ming language creates a “virtual computer” with data structures and operations for creating algorithms. If a
computer scientist were only to use a single language during his/her career, then perhaps there would be little
reason for requiring a programming languages course. However, it is not atypical for computer scientists to
use six or more quite different languages during their professional careers. Programming languages courses
examine the dimensions in which these languages differ and provide unifying concepts (e.g., binding time)
with which one can better understand the differences between languages.

Perhaps even more importantly, learning different kinds of programming languages requires different
ways of thinking about algorithms. Algorithms are expressed quite differently, for example, in procedural,
functional, object-oriented, and logic programming languages. Recognizing how these kinds of languages
differ and are similar requires understanding the fundamental principles of programming languages. We
refer the reader to the description of the proposed knowledge units in programming languages for Curricula
2001, referenced earlier, for examples of these principles.

In case there is any concern that the topics in a programming languages class are static and no longer
of interest, we list below several recent trends that have substantially impacted programming languages.
Our computing platforms and applications domains are not static. Other trends will arise that will require
the development and adoption of new language technologies, and understanding programming languages
principles is not decreasing in importance, but perhaps even more important now than ever.

3.1 Recent changes in programming languages.
Generics. Among the more recent changes in existing programming languages has been the addition of
generics (type parameters) in languages such as C++, Java, and C#. Generics have been around at least since
the language Clu [LSAS77], and they played an important role in Ada [US 80].

Generics were a late addition to C++ and functioned essentially via macro-expansion, leading to a
long struggle for robust and efficient implementations. The Java addition incorporated a relatively new
kind of bounded polymorphism, with a clever implementation [BOSW98] that enabled this feature to be
compatible with the existing Java virtual machine language. C# added similar features, but with support in
the intermediate language [KS01].

The “F-bounded” polymorphism mechanism incorporated by Java and C# was developed by language
researchers [CCH+89] in 1989 and was quickly modelled in an extension of the bounded polymorphic
lambda calculus [CW85]. Because of the extensive work on the type theory of this theoretical foundational
language, correct type-checking rules were quickly developed, providing a sound theoretical basis for the
language and suggesting algorithmic implementations of the typing rules.

The implementations of this form of polymorphism in these three languages illustrate different important
principles of programming languages. For example, the concepts of early and late binding are represented by
the difference between the link-time type checking of the instantiation of generics in C++ and the compile-
time checking possible in Java and C#. Careful analysis of the programming languages reveals why generics
instantiation can be done at compile time in the latter two, while it must be delayed in C++.

The recent popularity of languages like Python also presents an excellent opportunity to emphasize
the important differences between dynamic and static type checking (again illustrating the importance of
binding time) and the trade-offs involving different levels of information hiding.

Concurrency. It is widely accepted that the rapid increases in processor speed due to Moore’s law are at
an end. Instead Moore’s law will be preserved by increasing the number of processors on a chip. Given these

ACM SIGPLAN Notices 52 Vol. 43 (11), Nov. 2008

architectural advances, multithreading is likely to be the most promising way to achieve further performance
improvements for many computer systems.

Quad-core and eight-core chips are already readily available, and if current trends continue, processors
may have hundreds or even thousands of cores within ten years. However, building large, robust single-
threaded programs is already quite difficult. The complexities of programming multiple processes on many-
core computers reliably and efficiently are well beyond the capabilities of a large proportion of today’s
computer scientists.

Similarly, distributed computing and the provision of software services raise programming issues that
are not well supported by current languages. These changes to the computational resources available to
programmers require new mechanisms for managing complexity.

It is hard to avoid writing concurrent code in many modern applications. For example, event-driven
programming using the Subject-Observer pattern (as exemplified in the Java event model) requires the
provision of separate threads to respond to events while a computation is progressing.

If we are to provide mechanisms to support concurrent programming then we will be forced to make
many decisions in the choice of an appropriate programming language. Traditionally these have included
the choice of shared-memory versus message-passing, how to control memory access in shared-memory,
and whether to make message passing synchronous or asynchronous.

Ad hoc attempts to add concurrency to existing languages have generally resulted in many problems. For
example early implementations of concurrency in Java were problematic. See [MPA05], for example, for
problems with the Java memory model. Moreover, the rather low-level support for concurrency presently
found in most programming languages makes it too hard for most programmers to write correct and efficient
programs running on a large number of processors.

Many researchers are examining different approaches to concurrent programming that should suggest
new robust and high-level programming language constructs. In the last few years, for example, we
have seen proposed languages Chapel [CCZ07], Fortress [ACH+08], and X10 [CGS+05], each of which
exhibits interestingly different approaches to concurrency. The concepts of software transactional memory
[ATKS07, Jon07] (taken from database transactions) and chords [BCF04], for example, represent even more
intriguing new ideas for controlling concurrency.

It is hard to anticipate what language features will prove to be the most useful in writing programs for
1000-core chips. However, the analysis tools gained in a programming languages course will help us to
understand the differences and evaluate the trade-offs in the various proposals that will arise.

Security. A final element of systems design that has recently become much more important in the context
of programming languages is security. The wide-spread dissemination of code on the web (and from
possibly untrusted sources), as well as the continually-growing list of software services in our daily life,
make the robustness and security of programs increasingly important.

Various languages have begun to include mechanisms to help ensure security properties. Java, for
example, includes a stack inspection mechanism (as described in [WF98]) to determine which code has
access to resources. Other languages and prototypes now include mechanisms for tracking information flow
to prevent security violations [Mye99, WCO00]. In the future, it is likely that programming languages will
include even more features to manage trust, secrecy, and integrity.

4. Summary
The programming language course has played, and will continue to play, an important role in the education
of undergraduates. As such, it should regain its status as an integral part of a computer science education
in curricular standards. Not only are the topics of central interest to computer scientists today, but they
also help prepare students for the inevitable changes that they will encounter over their careers. Moreover,
the recurring themes in a good programming languages course reinforce those learned in other courses,

ACM SIGPLAN Notices 53 Vol. 43 (11), Nov. 2008

making it a good location to pull together many of the intellectual threads introduced in a computer science
education.

References
[ACH+08] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen, Sukyoung Ryu, Jr. Guy

L. Steele, and Sam Tobin-Hochstadt. The Fortress Language Specification 1.0. Sun Microsystems,
2008.

[ATKS07] Ali-Reza Adl-Tabatabai, Christos Kozyrakis, and Bratin Saha. Unlocking concurrency. Queue,
4(10):24–33, 2007.

[BCF04] Nick Benton, Luca Cardelli, and Cédric Fournet. Modern concurrency abstractions for C#. ACM Trans.
Program. Lang. Syst., 26(5):769–804, 2004.

[BOSW98] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the future safe for the
past: Adding genericity to the Java programming language. In Proceedings of the ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications, Vancouver, October 1998.
ACM.

[Bru00] Kim B. Bruce. Curriculum 2001 draft found lacking in programming languages. SIGPLAN Not.,
35(4):26–28, 2000.

[CCH+89] P. Canning, W. Cook, W. Hill, J. Mitchell, and W. Olthoff. F-bounded quantification for object-oriented
programming. In Functional Prog. and Computer Architecture, pages 273–280, 1989.

[CCZ07] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. Parallel programmability and the Chapel
language. International Journal of High Performance Computing Applications, 21:291–312, 2007.

[CGS+05] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal
Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented approach to non-uniform
cluster computing. In Proceedings of the ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 519–538, New York, NY, USA, 2005. ACM.

[Con07] Liberal Arts Computer Science Consortium. A 2007 model curriculum for a liberal arts degree in
computer science. J. Educ. Resour. Comput., 7(2):2, 2007.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism. Computing
Surveys, 17(4):471–522, 1985.

[For01] CC2001 Joint Task Force. Computing Curricula 2001: Computer Science. December 15, 2001.
Available online at http://www.acm.org/sigcse/cc2001/.

[Jon07] Simon Peyton Jones. Beautiful concurrency. In Greg Wilson, editor, Beautiful code. O’Reilly, 2007.

[KS01] Andrew Kennedy and Don Syme. Design and implementation of generics for the .NET Common
Language Runtime. In Proceedings of the ACM Conference on Programming Language Design and
Implementation, pages 1–12, 2001.

[LSAS77] B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert. Abstraction mechanisms in CLU. Comm. ACM,
20:564–576, 1977.

[MPA05] Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory model. In Proceedings of the
ACM Symposium on Principles of Programming Languages, pages 378–391, New York, NY, USA,
2005. ACM.

[Mye99] Andrew C. Myers. JFlow: Practical mostly-static information flow control. In Proceedings of the ACM
Symposium on Principles of Programming Languages, pages 228–241, 1999.

[US 80] US Dept. of Defense. Reference Manual for the Ada Programming Language. GPO 008-000-00354-8,
1980.

[WCO00] Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl. O’Reilly & Associates, Inc., 2000.

[WF98] Dan S. Wallach and Edward W. Felten. Understanding Java stack inspection. In Proceedings of IEEE
Symposium on Security and Privacy, 1998.

ACM SIGPLAN Notices 54 Vol. 43 (11), Nov. 2008

