
Specification-Based Sketching with Sketch#

Hesam Samimi
University of California, Los Angeles

hesam@cs.ucla.edu

Kaushik Rajan
Microsoft Research India

krajan@microsoft.com

ABSTRACT
We introduce a new tool employing the sketching synthesis
technique in programs annotated with declarative contracts.
While Sketch, the original sketching tool, reasons entirely on
imperative code, Sketch# works on top of the full-fledged
specification language Spec#. In such a language, high-
level specifications in the form of pre- and postconditions
annotate code, which can be formally verified using decision
procedures. But once a given method’s implementation is
verified, there is no need to look inside its body again. An in-
vocation of the method elsewhere simply implies its specified
postcondition. The approach widens the scalability of the
sketching technique, as reasoning can be done in a modular
manner when specifications accompany implementations.

This paper describes our implementation of Sketch# on
top of Spec# and its program verifier Boogie. We also re-
count our experience applying the tool to aid optimistic par-
allel execution frameworks, where we used it to discover and
verify operation inverses, commutativity conditions, and op-
erational transformations for several data structures.

Categories and Subject Descriptors
D.1.2 [Program Techniques]: Automatic Programming;
D.2.4 [Software/Program Verification]: Programming
by Contract

General Terms
LANGUAGES, DESIGN, VERIFICATION

Keywords
Program Synthesis, Sketching, Specification Languages, Con-
tracts, Optimistic Parallelization

1. INTRODUCTION
Sketching [10, 11] is a synthesis technique where the user

specifies the desired functionality for the final implemen-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FTfJP’11, July 26, 2011, Lancaster, UK.
Copyright 2011 ACM 978-1-4503-0893-9/11/07 ...$10.00.

tation of a particular operation, along with a sketch, an in-
complete implementation that omits certain low-level details
that are often easy to get wrong. An automatic synthesis
tool is then used to try to search for pieces of code that com-
plete the implementation, while satisfying the specifications.

The main advantage of this idea is that it scales better
than full synthesis, as it is up to the programmer how much
of the final implementation to fill in. A source of prob-
lem, however, is that the Sketch tool currently cannot reason
in the modular manner that, for instance, recent program
verifiers supporting high-level specifications can. There are
two ways that functionality can be specified in Sketch: us-
ing low-level assertions, or using function equivalence, i.e.
asserting the operation being synthesized must behave as
another already implemented method. However, low-level
program assertions are often not expressive enough to de-
scribe interesting specifications, forcing the user to write
imperative code to express the desired functionality. This
in turn further complicates the synthesis conditions as large
pieces of code, usually with loops, get into the reasoning.
Consequently, the applicability of the sketching technique
in real-world applications is reduced.

In order to improve its scalability, we designed a new tool
that enables sketching in the presence of declarative con-
tracts. While the original sketching tool reasons entirely on
imperative code, Sketch# works on top of C#’s full-fledged
specification and verification framework Spec# [1]. The re-
sult is that (1) high-level specifications in the form of pre-
and postconditions can annotate code, and thus more in-
teresting properties and sketches can be expressed declara-
tively, (2) the technique scales better as we take advantage of
the modular reasoning power that is present in this program
specification and verification environment.

To evaluate Sketch#, we utilize it to aid the development
of programs for speculative parallelization frameworks. Such
frameworks rely on precise semantic properties such as oper-
ation inverses, commutativity conditions [9], and operational
transformations [3] to parallelize or distribute applications.
We used the tool to discover and verify these properties for
various data structures, an error-prone task if done by hand.

After providing an overview of the various components
of Spec# development framework (Section 2), introducing
Sketch# by example (Section 3), and discussing its imple-
mentation strategy (Section 4), we describe our experience
applying Sketch# as a resource for speculative parallel run-
times (Section 5). Sketch# is built as a fork of Spec# com-
piler, and available at
http://www.cs.ucla.edu/~hesam/sketchsharp

2. BACKGROUND

Spec# Specification Language
JML [6] for Java and Spec# for C# are among the most
comprehensive specification languages today. These lan-
guages allow Java and C# programs to be annotated with
expressive specifications, and support first-order logic, own-
ership specifications, frame conditions, and much more. As a
result, interesting properties can be expressed declaratively
and without having to write imperative code.

The need for specification languages is not just a matter of
convenience. A major source of strength for these languages
is that they plug into a program verifier at the back-end.
This enables the user to automatically and formally prove
that a program does in fact meet its specifications, or else
obtain a counterexample where it fails. But once the imple-
mentation of a particular operation is proven correct, there
is no need to look inside the implementation for the pur-
poses of reasoning beyond this operation. An invocation
of the operation elsewhere, for instance, simply implies its
specified postcondition. This modular form of reasoning is
key in enabling these tools to deal with the level of complex-
ity and the widespread usage of libraries in today’s software.
Sketch# is designed with this goal in mind.

Boogie Verifier and Z3 SMT Solver
The Spec# language is powered in the back-end by the pro-
gram verifier Boogie [7]. Boogie translates the C# source
along with its Spec# annotations into verification condition
formulas, which are then passed down to the theorem prover
Z3 [2] to extract a counterexample. If none is found the
implementation is validated. Z3 is a state of the art Satisfi-
ability Modulo Theory (SMT) solver, making C#/Spec# a
powerful and efficient development tool with high-level spec-
ifications and automated verification capabilities.

3. USING Sketch#
Sketch# is an extension over the full-fledged specification

language Spec#. It extends the syntax to enable program
sketching for C#, i.e. it allows the user to leave out parts of
program as holes, letting the tool find values for them that
are proven correct with respect to the given specifications.
We introduce Sketch# by an integer Stack example.

3.1 An Example
Our starting point is the Spec# code for Push and Pop

operations for the Stack class in Figure 1, whose implemen-
tations are not shown, yet already validated using the ver-
ifier Boogie. Let us start with a trivial task of discovering
the inverse operation for Push(int). The Equals method is
specified to be used in defining the semantics of inverse.

The inverse operation op−1 asserts that for any state S of
the object, it undoes the effects of op. In other words,

∀S.{op−1(op(S)) = S}

The stub in Figure 2 demonstrates how the inverse semantics
can be specified in Spec#. It assumes two equal stacks s1

and s2 are given (requires clause is a precondition). It then
applies to s1 only a Push(val) operation (val may have
arbitrary value), followed by Push_Inverse_Sketch(val),
which is the inverse operation we are sketching. Assuming
the inverse operation is implemented correctly, the resulting

class Stack {
public int size, int[]! elements;
invariant size >= 0;
invariant size < elements.Length;

[Operation]
void Push(int val)

modifies size, elements[*];
ensures elements[0] == val;
ensures forall {int i in (0 : old(size));

elements[i+1] == old(elements[i])};
ensures size == old(size) + 1;

[Operation]
int Pop()

modifies size, elements[*];
requires size > 0;
ensures result == old(elements[0]);
ensures forall {int i in (1 : old(size));

elements[i-1] == old(elements[i])};
ensures size == old(size) - 1;

bool Equals(Stack s)
ensures result <==> size == s.size &&

(forall {int i in (0 : size);
elements[i] == s.elements[i]});

}

Figure 1: Stack in Spec#. Method bodies are not
shown.

void Inverse_Push(Stack s1, Stack s2, int val)
requires s1.Equals(s2);
ensures s1.Equals(s2); {
s1.Push(val); s1.Push_Inverse_Sketch(val);

}

[Inline]
void Push_Inverse_Sketch(int val) {

if (?!) Push(?!(val)); else if(?!) Pop();
}

Figure 2: Sketch for Push Inverse (bottom), and the
stub that describes its semantics (top).

void Push_Inverse_Sketch(int val) { ?!{}; }

Figure 3: Short-form syntax for the sketch of Push

Inverse.

state should be the same as the starting state, i.e. s1 and
s2 must have stayed equals and unchanged (ensures clause
is a postcondition).

Below the stub, we show the sketch used for finding the
inverse. The sketched method is marked as [Inline] so
that, for the purpose of reasoning, the body of the method
is inlined at the location it is called.

The ?! symbol denotes a free boolean or integer sketch
variable depending on the inferred type, whose value should
be decided by synthesis. We use a boolean sketch variable
as a non-deterministic choice of the operation to call. The
integer argument for the Push operation is also synthesized
as a sketch representing a linear combination of the integer
variables that are in scope, namely the only local variable
val. This is denoted by the ?!(val) syntax, translating to
(?! * val + ?!).

Now that we have provided the sketch and described its
semantics, we can compile the source as usual. Once the
Sketch# compiler detects sketches are present, it utilizes the
SMT solver to find a set of assignments to the sketch vari-
ables that makes the complete program verify. One correct
synthesis for the example above is:

if (false) Push(0 * val + 0) else if (true) Pop()

This example included multiple calls to operations. If
sketching was to be done purely on code, the synthesis would
have had to consider the bodies of these operations, which
include loops, multiple times. In specification-based sketch-
ing, on the other hand, only the postconditions matter here.

3.2 Sketch Syntax
Sketch# supports a special sketching syntax for synthe-

sizing a sequence of conditional invocations of finite number
of operations. That is, users can (a) mark methods as op-
erations (b) provide high-level hints for sketches involving
calls to those operations. Table 1 summarizes the types of
sketch variables supported in the tool.

We have already seen the constant sketch variable ?!, as
well as the linear combination sketched expression ?!(...),
whose translations depend on the inferred types. Each oc-
currence of a sketch variable implies a fresh one.

The call sketch ?!{...} is used to sketch a non-deterministic
choice for a sequence of operation invocations. The call can
be guarded, in which case the sketch is translated as an
if statement or a conditional expression, depending on its
type. Translation of a call sketch depends on the optional
parameters specified by the user. These are listed in Table 2.

Let’s assume for the previous example, we expected the
inverse for Push to be a single call to either of the two ex-
isting operations. We also did not expect the choice of the
inverse operation to depend on the argument to Push. This
intuition is specified with parameter settings ?!{calls: 1,

branches: 1}. These happen to be default values, and thus
unnecessary to specify. Figure 3 represents the short-hand
notation for the sketch of Push Inverse in Figure 2, as the
set of available operations and their formal declarations, as
well as variables in scope are all known at compiling time.

4. IMPLEMENTATION
Enabling sketching on top of Spec#/Boogie did not re-

quire much effort. Boogie already generates the verification
conditions, a set of logical formulas describing the correct-
ness criteria for a program, that can be handed to SMT
solver Z3 for either proof of validity, or else a counterexam-

Symbol Type Translation
?! int / bool ?!

?!(v1, v2, ...) int ?!*v1+?!*v2+...+?!

?!(v1, v2, ...) bool ?!*v1+?!*v2+...+?! >= 0

?!{Params∗} stmt if (?!(...))

if (?!) Op1(?!(...),...)

else if (?!) Op2(...)

...

else if (?!(...)) ...

...

?!{Params∗} expr cond. expr equiv. to above

Table 1: Sketch syntax in Sketch#. ∗Optional
Params list described in Table 2.

Parameter Semantics Default Value
branches: n # if branches 1 (unguarded)

calls: n # calls upper-bound 1 (single call)

ops: {...} possible operations all operations

args: {...} args to synthesize all args

vars: {...} vars that can appear in vars in scope

synthesized exprs

conjuncts: n # of ∧/∨ in 0

disjuncts: n synthesized conditions

Table 2: Optional parameters for call sketch: ?!{}

ple. This section describes a few modifications that had to
be made, in order to extend the Boogie verifier for synthesis.

Turning a Verifier into a Synthesizer
Given the set of input variables I1, ..., In and the verifi-
cation condition fvc(I1, ..., In), the verification formula is:
∀I1, ..., In|fvc , whose negation is passed to the SMT solver.
If this negated formula is satisfiable, a counterexample is
found and the program fails to verify. To do synthesis,
given that X1, ..., Xm is the set of present sketch vari-
ables in the program, the above formula is modified as:
∃X1, ..., Xm∀I1, ..., In|fvc.

While making this modification to the formula in the code
is trivial, solving it is not. As this formula contains both
universal and existential quantifiers, it cannot be handled by
a typical SMT solver. Consequently, we followed Sketch to
implement the Counter-Example Guided Inductive Synthesis
(CEGIS) [10] loop. In such a case just SMT solving suffices.

CEGIS makes synthesis via SAT solving possible by solv-
ing for only a finite (k) number of input sets. With a fi-
nite set of inputs, the verification formula can be instan-
tiated (and simplified) for each particular input set, clear-
ing the left side of the formula of the universal quantifier:
∃X1, X2, ..., Xm|fvc1 ∧ fvc2 ∧ ... ∧ fvck .

The starting point for the iterative process is one valid
input set. This starting input example itself can be ob-
tained by asking the SMT solver for an assignment of input
variables satisfying any user-specified preconditions. The
CEGIS loop then starts off with a call to the SMT solver
to find an assignment of sketch variables that satisfy the
above formula with k=1. The candidate synthesized values
are then inserted in the sketch to make a complete program,
which is then verified with Boogie as usual. If failed, Z3
provides an input counterexample, which is added as a new
input set and the loop repeats with k+1 (see [10], appendix).

5. EVALUATION: OPTIMISTIC PARALLEL
RUNTIMES

Speculative execution plays a crucial role in both paral-
lel and distributed systems. Optimistic runtimes rely on
the programmer to provide auxiliary information associated
with operations such as conditions under which two oper-
ations commute, operation inverses, and operational trans-
forms [3]. In the absence of these definitions such runtimes
cannot be used to parallelize or distribute applications.

Many optimistic parallelization frameworks (e.g. Galois [5]
and CommSets [8]) exploit conditional commutativity and
inverse operations to parallelize programs. Commutativity
conditions [9] are used to check if operations that were ex-
ecuted speculatively in parallel indeed commute. Inverse
operations are then used to roll back one of the operations
in case the check fails. For valid parallelization the program-
mer has to provide for each operation (a) an inverse oper-
ation (b) a set of commutativity conditions, one for each
operation defined on the object.

Finding the right operations and conditions even on sim-
plest data structures can be error-prone [3, 4], so the sketch-
ing technique can become an invaluable resource for such
systems to obtain these properties precisely and with sound
correctness guarantees. We built the tool described here
as an interactive program synthesis framework that can be
used by developers to discover and validate these precisely.

While Sketch# can be used as a general specification-
based synthesis tool, we have focused on how it may bene-
fit speculative parallelization frameworks. The sketches for
such case studies all follow a similar pattern. Given a finite
set of fully specified methods designated as operations, we
would like to synthesize a sequence of calls to those opera-
tions, such that a given specification is satisfied.

5.1 Sketching Inverses, Commuting Conditions
In the Stack example of Figure 2, we saw how to use

Spec# specifications and a sketch to discover the inverse of
an operation.

A commutativity condition for op1 with respect to a sec-
ond operation op2 is a necessary and sufficient predicate over
the arguments of op1, op2, i.e. pred(op1.args, op2.args), that
asserts the following.

∀(op1, op2, S).{pred(op1.args, op2.args) ⇐⇒
op1(op2(S)) = op2(op1(S))}

Figure 4 presents how a sketch for the commutativity con-
ditions can be verified. Given a sketched condition Com-

mute_Cond_Sketch(op1, op2) the stub ensures the predi-
cate represents both a necessary and sufficient commuting
condition for the two operations op1 and op2.

It should be noted that we only seek commutativity condi-
tions that only depend on operations themselves, and not the
state of objects. In other words, it is possible that for some
initial state, two non-commuting operations actually com-
mute. More preconditions are added to reject these state-
dependent commutativity conditions (not shown, see [4]).

5.2 Sketching Operational Transformations
Distributed systems explore an even more aggressive form

of optimistic execution referred to as optimistic replication.
Such systems maintain local object replicas at each ma-
chine and allow these replicas to be locally updated without

void Commutativity_Condition
(Object s1, Object s2, Op op1, Op op2)
requires s1.Equals(s2);
ensures Commute_Cond_Sketch(op1, op2) <==>

s1.Equals(s2); {
s1.Apply(op1); s1.Apply(op2);
s2.Apply(op2); s2.Apply(op1);

}

Figure 4: Stub for Commutativity Condition Sound-
ness and Completeness.

void T(Object s1, Object s2, Op op1, Op op2)
requires s1.Equals(s2);
ensures s1.Equals(s2); {
s1.Apply(op1); s1.Apply(T_Sketch(op2, op1));
s2.Apply(op2); s2.Apply(T_Sketch(op1, op2));

}

Figure 5: Stub for Operational Transformation.

synchronization. Concurrent operations are then exchanged
over the network. At each machine the remote operations
are first transformed with respect to local operations using
programmer provided operational transforms (OT) [3] be-
fore they update the local state. To guarantee eventual con-
sistency the programmer needs to provide a transformation
function T such that

∀(op1, op2, op′1, op′2, S).{op′1 = T (op1, op2) ∧
op′2 = T (op2, op1) =⇒ op′2(op1(S)) = op′1(op2(S))}

For the Stack example T (Push(v),Pop()) = Push(v) and
T (Pop(),Push(v)) = Pop();Pop();Push(v) satisfy the formula
above.

Given such transformation functions, optimistic replica-
tion frameworks can guarantee eventual consistency. But
finding the correct operational transformation has proven
extremely difficult for most common data structures [3], pre-
venting the approach to gain much traction in practice. Fig-
ure 5 presents the corresponding stub we have used to sketch
the OT for several examples.

5.3 Results
A summary of our experiments on several data structures

appears in Table 3, showing the particular properties being
synthesized, the sketch, as well as the results with running
times. Integer sketch variables are initially restricted to 2-
bits, essentially used as non-deterministic choice operators in
the expression ?! * v1 + ?! * v2 + Whenever this
resulted in an unsatisfiable sketch, we expanded the variable
bounds to 8-bits. We currently do not simplify the CEGIS
synthesis formula of Section 4 for each input set and simply
instantiate the same formula k times, so synthesis times can
be improved.

Not surprisingly, the tool reports an unsatisfiable sketch
in the case of Delete(i) inverse. This, unfortunately, does
not prove the non-existence of an inverse, but rather that
no solution exists within the space of all programs covered
by the given sketch.

Type Class Operation Sketch Synthesized sec.

In
ve
rs
e Stack

Push(v) ?!{} Pop() 0.6

int r = Pop() ?!{} Push(r) 1.0

ArrayList
Insert(i,v) ?!{} Delete(i) 1.3

Delete(i) ?!{} UNSAT 1.5

O
pe
ra
ti
o
n
a
l
T
ra
n
sf
o
rm

(O
T
)

Stack

Push(v1)/Push(v2) ?!{branches: 2, calls: 3} if(v1 ≥ v2) Push(v1) else 9.5

{Pop();Push(v1);Push(v2)}1

Pop()/Pop() ?!{} Pop() 1.1

Push(v1)/Pop() ?!{} Push(v1) 2.3

Pop()/Push(v1) ?!{calls: 3} Pop();Pop();Push(v1)

ArrayList

Insert(i1,v1)/ ?!{branches: 3, ops:{Insert}, if (i1 > i2 ∨ i1 = i2 ∧ v1 ≥ v2) 240

Insert(i2,v2) args:{0}, conjuncts:2} Insert(i1 + 1, v1) else Insert(i1, v1)1

Insert(i1,v1)/ ?!{branches: 2, ops:{Insert}, if(i1 > i2) Insert(i1 − 1,v1) 26

Delete(i2) args:{0}, vars:{i1, i2}} else Insert(i1,v1)

Delete(i1)/ ?!{branches: 2, ops:{Delete}, if(i1 ≥ i2) Delete(i1 + 1)

Insert(i2,v2) vars:{i1, i2}} else Delete(i1)

C
o
m
m
u
te

C
o
n
d
.

Stack

Push(v1)/Push(v2) ?!(conjuncts:1) v1 = v2 70

Pop()/Pop() ?! true 1.2

Push(v1)/Pop() ?!(conjuncts:1) false (state dependent) 2.0

XmlNode2
InsertAfter(id1,n1)/ ?!(vars:{id1, n1.id, id2, n2.id}, id1 6= id2 67

InsertAfter(id2,n2) disjuncts:1)

1 v1, v2 values are compared not because the data enforces an ordering, but to pick an ordering between two ops consistently.

2 XmlNode based on XML Tree implementation at http://msdn.microsoft.com/en-us/library/system.xml.xmlnode.aspx

Table 3: Summary of a few synthesized properties.

6. RELATED WORK
This project is based on the sketching technique intro-

duced by Solar-Lezama et al. [10]. Some of the features in
Sketch tool are not present in the syntax of Sketch#. Most
notably, Sketch lets the user specify a sketch as a grammar,
whereas Sketch# currently only supports integer or boolean
holes, on top of which the syntactic sugars for call sketches
are built. There is no support for synthesizing loops, but
sketching methods that include loops is possible. To do
that, just as in the case of verification, loop invariants must
be specified.

We also tested the examples in our case study in Sketch,
and found that Sketch# is significantly more scalable (orders
of magnitude in some cases) when compared on equal sizes of
space (number of bits for inputs and counterexamples). This
is because Sketch# reasons on top of declarative Spec# [1]
contracts, and is powered by the efficient Z3 SMT solver [2].
To the best of our knowledge, Sketch# is first to enable
synthesis within a mainstream specification language.

Kim et al. recently used high-level specifications over ab-
stract states of data structures to formally prove the cor-
rectness of operation inverses and commutativity conditions
for a large number of data structures and operations [4].
Their study for commutativity conditions was more compre-
hensive, as they also considered conditions on state as well
as operations. Researchers in distributed applications have
done the same for operational transformations [3]. Both
studies involved the verification of properties, not synthesis.

Synthesizing program inverses, on the other hand, has
seen a great deal of attention. Most recently, Srivastava

et al.’s PINS system [12] uses symbolic execution to refine
the space of instantiations for the inverse template, and uses
the original program as a heuristic for mining the template.
While PINS works on imperative code, our approach takes
a specification-based angle and works at a higher level. For
instance, given the stack operations along with their specs,
Sketch# can find an invocation that inverts Push(v). PINS,
on the other hand, may be used to derive the implementa-
tion of Pop(), given the code for Push(v).

At the expense of an oversimplification, we say while Sketch
and PINS are used to synthesize inside of an operation (its
implementation), Sketch# is more likely to scale when con-
sidering beyond it (when used in a larger context).

7. OUTLOOK
We have presented Sketch#, a specification-based tool for

performing program sketching. Our first contribution in this
paper is showing that enabling the sketching synthesis tech-
nique on top of a high-level specification language broadens
its applicability due to the added modular form of reason-
ing. This is essential as real-world applications have many
complex but decomposable components, and the usage of
library code is ubiquitous.

Secondly, we have applied the tool to synthesize and ver-
ify inverse operations, commutativity conditions, and oper-
ational transformations for several common data structures.
While researchers have extensively studied synthesis of in-
verses, to the best of our knowledge, this synthesis study is a
first for commutativity conditions and operational transfor-
mations. Providing such precise and provably-correct prop-

erties is essential for the success of the emerging speculative
parallel runtimes.

We came across a problem during our experiments with
the synthesis of operational transformations. There exists
a more restrictive definition of OT than the formula given
in section 5.2, that is necessary for a distributed applica-
tion that is truly free of any global ordering of operations
(see [3]). For a pair of Insert(i, v) operations in a List

data structure, a transformation satisfying such definition
is not known yet. We attempted to find this illusive trans-
formation, but Sketch# reported unsatisfiability for several
sketches we tried. However, it is impossible to try all pos-
sible sketches manually. This demonstrated that when syn-
thesis is being used to discover an unknown, template-based
synthesis cannot work unless refining the sketch is also aided
by a computer. The final aspect of this work is highlighting
the need for automated techniques to refine (and expand)
synthesis templates. We designed the sketch parameters de-
scribed before in order to open the possibility of a more me-
chanical search over a space of possible synthesis templates.
The project described here lays out some groundwork to-
wards such a study.

8. REFERENCES
[1] M. Barnett, R. Leino, and W. Schulte. The Spec#

programming system: an overview. In G. Barthe,
L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean,
editors, Post Conference Proceedings of CASSIS,
volume 3362 of LNCS, pages 49–69. Springer-Verlag,
2005, 2005.

[2] L. De Moura and N. Bjørner. Z3: an efficient SMT
solver. In Proceedings of the Theory and practice of
software, 14th international conference on Tools and
algorithms for the construction and analysis of
systems, TACAS’08/ETAPS’08, pages 337–340,
Berlin, Heidelberg, 2008. Springer-Verlag.

[3] A. Imine, M. Rusinowitch, G. Oster, and P. Molli.
Formal design and verification of operational
transformation algorithms for copies convergence.
Theoretical Computer Science, 2006:167–183, 2005.

[4] D. Kim and M. C. Rinard. Verification of semantic
commutativity conditions and inverse operations on
linked data structures. In Proceedings of the 2011
ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, 2011.

[5] M. Kulkarni, K. Pingali, B. Walter,
G. Ramanarayanan, K. Bala, and L. P. Chew.
Optimistic parallelism requires abstractions. In
Proceedings of the 2007 ACM SIGPLAN conference,
on Programming language design and implementation,
PLDI ’07, pages 211–222, New York, NY, USA, 2007.
ACM.

[6] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
design of JML: a behavioral interface specification
language for Java. SIGSOFT Softw. Eng. Notes,
31:1–38, May 2006.

[7] K. R. M. Leino. Specifying and verifying software. In
Proceedings of the twenty-second IEEE/ACM
international conference on Automated software
engineering, ASE ’07, pages 2–2, New York, NY, USA,
2007. ACM.

[8] P. Prabhu, S. Ghosh, Y. Zhang, N. P. Johnson, and

D. I. August. Commutative set: A language extension
for implicit parallel programming. In Proceedings of
the 2011 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, 2011.

[9] M. C. Rinard and P. C. Diniz. Commutativity
analysis: A new analysis technique for parallelizing
compilers. ACM Transactions on programming
languages and systems, 19(6):1–47, 1997.

[10] A. Solar-Lezama, G. Arnold, L. Tancau, and
R. Bodik. Sketching stencils. In Proceedings of the
2007 ACM SIGPLAN conference, on Programming
language design and implementation, PLDI ’07, pages
167–178, New York, NY, USA, 2007. ACM.

[11] A. Solar-Lezama, R. Rabbah, R. Bod́ık, and
K. Ebcioğlu. Programming by sketching for
bit-streaming programs. In Proceedings of the 2005
ACM SIGPLAN conference, on Programming
language design and implementation, PLDI ’05, pages
281–294, New York, NY, USA, 2005. ACM.

[12] S. Srivastava, S. Gulwani, S. Chaudhuri, and J. S.
Foster. Path-based inductive synthesis for program
inversion. In Proceedings of the 2011 ACM SIGPLAN
conference, on Programming language design and
implementation, PLDI ’11, New York, NY, USA, 2011.
ACM.

int abs(int x)
requires true;
ensures x >= 0 ==> result == x &&

x < 0 ==> result == -x;
{

if (x >= ?!)
return x;

else
return -x;

}

Figure 6: abs function specification and implemen-
tation sketch.

APPENDIX
A Sample of CEGIS [10] Loop at Work

Consider the simple sketch of the absolute value function
in Figure 6. The verification condition for the method using
weakest-precondition generation is the following.

∀x.{x isInt =⇒ ((x ≥?! =⇒ ((x ≥ 0 =⇒ x = x) ∧ (1)

(x < 0 =⇒ x = −x))) ∧
(x <?! =⇒ ((x ≥ 0 =⇒ −x = x) ∧

(x < 0 =⇒ −x = −x))))}

which simplifies to:

∀x.{x isInt =⇒ ((x ≥?! =⇒ x ≥ 0) ∧ (2)

(x <?! =⇒ x ≤ 0))}

The synthesis formula is:

∃?!.{∀x.{x isInt =⇒ ((x ≥?! =⇒ x ≥ 0) ∧ (3)

(x <?! =⇒ x ≤ 0))}}

and the precondition is:

x isInt (4)

The first step is to use the SMT solver to get a starting input
set that satisfies the precondition.

(4)
SMT−−−→ x = −55

Now the CEGIS loop has a finite number of input sets with
k=1. The CEGIS synthesis formula becomes the following.

x1 = −55 ∧ (5)

∃?!.{x1 isInt =⇒
((x1 ≥?! =⇒ x1 ≥ 0) ∧ (x1 <?! =⇒ x1 ≤ 0))}}

The loop starts by asking for a candidate synthesis model:

(5)
SMT−−−→?! = −12

The synthesis model works for our current finite number
of inputs, but is it correct in general? Next, we need to
verify the complete program by checking the validity of the
verification condition formula in (2).

∀x.{x isInt =⇒ ((x ≥ −12 =⇒ x ≥ 0) ∧ (6)

(x < −12 =⇒ x ≤ 0))}

¬(6)
SMT−−−→ x = −4

Adding the new counterexample to the input set, our new
synthesis formula becomes as follows, where the existentially
quantified sketch variables ?! appearing in (5) and (7) must
be the same.

(5) ∧ (7)

x2 = −4 ∧
∃?!.{x2 isInt =⇒

((x2 ≥?! =⇒ x2 ≥ 0) ∧ (x2 <?! =⇒ x2 ≤ 0))}}

Asking for a new candidate synthesis model we get:

(7)
SMT−−−→?! = 108

Again, we need to verify the complete program by checking
the validity of the verification condition formula in (2):

∀x.{x isInt =⇒ ((x ≥ 108 =⇒ x ≥ 0) ∧ (8)

(x < 108 =⇒ x ≤ 0))}

¬(8)
SMT−−−→ x = 1

After adding the new counter example and updating the
synthesis formula:

(7) ∧ (9)

x3 = 1 ∧
∃?!.{x3 isInt =⇒

((x3 ≥?! =⇒ x3 ≥ 0) ∧ (x3 <?! =⇒ x3 ≤ 0))}}

And maybe at this point we finally get the right synthesis.

(9)
SMT−−−→?! = 0

which is verified correct as the following verification condi-
tion is valid.

∀x.{x isInt =⇒ ((x ≥ 0 =⇒ x ≥ 0) ∧ (10)

(x < 0 =⇒ x ≤ 0))}

¬(10)
SMT−−−→ UNSAT

